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Abstract
LiDAR and photogrammetry data are integrated to study an Early Jurassic extensional 
synsedimentary structure in the Italian Southern Alps. Airborne LiDAR data helped in 
getting geologic information in areas covered by vegetation, photogrammetry was applied 
to produce a high-resolution 3D textured model of the inaccessible parts of the outcrop. 
LiDAR and photgrammetric data were merged together producing a multi-resolution 
model. Key geologic boundaries and faults bounding the synsedimentary structure were 
digitized in a 3D geomodeling environment. The reconstruction yielded information about 
the structure kinematics and accumulated displacements.
Keywords: 3D modeling, photogrammetry, LiDAR, synsedimentary tectonics, Early 
Jurassic.

Introduction
The integration of geologic 3D modeling and remote sensing techniques has become a 
diffused practice in the study of outcrops [McCaffrey et al., 2005; Trinks et al., 2005]. 
Petroleum industry has been the major driver of the advances in these approaches. The 
reason for this lies in the capability of outcrop modelling of filling the gap in scale range 
between geophysical investigations and log observations and, hence, helping in capturing 
the potential reservoir heterogeneities [Jones et al., 2008]. Remote sensing techniques have 
two primary strengths: 1) they allow studying outcrops that for their exposition and/or size 
could not otherwise be easily examined with traditional methods; 2) allow a quantitative 
approach which results extremely useful for modeling purposes. Both active, e.g. laser 
scanning [Hodgetts, 2013], and passive, e.g. hyperspectral imaging and photogrammetry 
[Buckley et al., 2013; Tavani et al., 2014], have been successfully applied to outcrop 
modeling. Among the laser scanning devices, airborne Light Detection And Range (LiDAR) 
systems are used to produce digital elevation models of the topographic surface and to 
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highlight morphological features even beneath the vegetation canopy. Photogrammetry is a 
technique that permits to produce 3D models of objects starting from 2D images acquired 
with a camera. The portability of camera systems, which far exceeds that of laser scanners, 
make this technique very flexible in many operational contexts. Successful examples of 
application of photogrammetry to structural outcrop modeling are found, for instance, in 
Bistacchi et al., [2011], Assali et al. [2014] and Martín et al. [2013].
In this paper we present an example of integration of photogrammetry and airborne 
LiDAR to study an outcrop where a synsedimentary extensional structure is exposed 
(mount Cornello, Southern Alps, Italy). The exposure’s conditions, a virtually inaccessible 
vertical wall, have so far discouraged a detailed characterization of the structure, which 
was previously described by Doglioni and Bosellini [1987] and Avanzini et al. [2012] on 
the basis on 2D images and drawings. The application of geologic 3D modeling techniques 
has allowed representing the mount Cornello structure in his three dimensionality for the 
first time. This allowed a more quantitative reconstruction of the faulting geometry and the 
estimate of the displacements across each fault.
To the best of our knowledge, this represents the first example of application of this integrated 
approach to the investigation of outcropping synsedimentary structures in extensional 
geodynamic contexts. Usually 3D models of extensional structures are reconstructed 
starting from seismic data [Beidinger and Decker, 2011] or through sandbox modeling [Wu 
et al., 2009]. Few studies have been dedicated to the study of outcropping examples and yet 
no digital model has been realized starting from outcrop data of extensional synsedimentary 
structures. In this work we show how the integration of LiDAR data, photogrammetry, 3D 
geomodeling and classical geologic mapping is a readily applicable method for structural 
analysis where exposure conditions prevent direct access.

Geological Setting
The Early Jurassic was a period of important continental reorganization that brought to the 
Pangea mega-continent break-up [Smith et al., 1994]. In the area now occupied by the Italian 
Southern Alps, rifting caused the formation of a series of structural highs characterized 
by shallow water carbonate precipitation and lows where deep-water sediments deposited 
[Winterer and Bosellini, 1981]. The Calcari Grigi Group [Avanzini et al., 2006] encompasses 
the Early Jurassic sediments deposited on one of these highs. 
Rifting-induced synsedimentary tectonics in the area [Bertotti, 2001; Berra and Carminati, 
2010] is testified by the presence of synsedimentary faults and structures and by sharp and 
abrupt thickness-variations in the Calcari Grigi Group’s stratigraphic units [Masetti et al., 
1998, 2012; Franceschi et al., 2014a].
The study area is located close to Mezzolombardo village (Fig. 1A) and is covered by the 
1:50000 “Mezzolombardo”geological map [Avanzini et al., 2012]. The present structural 
setting is dominated by a series of approximately N/S and NE/SW trending faults and thrusts. 
To the W of the study area the main structural feature is the Trento-Cles line, interpreted as 
a Mesozoic extensional fault reactivated with a strike slip kinematics during the Neogene 
[Prosser, 1998; Massironi et al., 2006]. To the East, there are the alpine Mezzolombardo-
Taio fault, interpreted as left-lateral strike slip fault, and the Paganella thrust system (Fig. 
1A).
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Figure 1 - A) Simplified geologic map (from Avanzini et al. [2012], modified) with major faults 
indicated. Position of M. Cornello is highlighted (star). B) View points (dots) of the high-resolution 
images taken for the realization of the photogrammetric model of the M. Cornello structure. 
Location of the structure is highlighted by a green dashed square.

Figure 2 - Left. mount Cornello (46°14′13.53″N, 11°04′42.22″E). Right: line drawing highlighting 
the Early Jurassic negative flower structure. RTZ = Rotzo Formation; LOP = Loppio Oolitic 
Limestone Formation; FMZ = Monte Zugna Formation.

The structure object of this study is spectacularly exposed on the southern slope of mount 
Cornello (46°14′13.53″N, 11°04′42.22″E) in the Trentino Province (Italy) (Fig. 2). The 
stratigraphic succession at mount Cornello is the following, from bottom to top: (a) Monte 
Zugna Formation (Hettangian-Sinemurian), (b) Loppio Oolitc Limestone (Sinemurian p.p.) 
and (c) Rotzo Formation (Pliensbachian p.p.) [Masetti et al., 1998 for a detailed description 
of the depositional environments]. The current structural setting of mount Cornello is related 
to Alpine compression along and consists of a broad anticline with a ENE/WSW-trending 
NNW/SSE-dipping axial plane. Beds attitude is to NNW. The mount Cornello structure 
consists of a series of approximately N/S-trending synsedimentary faults cross-cutting the 
Early Jurassic formations (Fig. 2B) [Doglioni and Bosellini,1987; Avanzini et al., 2012]. 
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Doglioni and Bosellini [1987] did not subdivide the Calcari Grigi Group into different 
formations, hence they were not able to distinguish multiple deformation phases within 
the Early Jurassic activity of the synsedimentary normal faults. By contrast, Avanzini et 
al. [2012] provided a finer stratigraphic framework that allowed two extensional phases 
of deformation to be recognized. In the first phase, Sinemurian in age, one of the faults 
was active during the deposition of the Monte Zugna formation as testified by its thickness 
variations. A stasis in the differential subsidence is testified by the rather constant thickness 
of the Loppio Oolitic Limestone. A second extensional pulse was Pliensbachian in age and 
is responsible of the activation of the synsedimentary faults that dissect the Loppio Oolitic 
Limestone, displacing it and again inducing differential subsidence testified by thickness 
variations the Rotzo formation.

Material and Methods
The study area is covered by a 1 m resolution DTM obtained from aerial acquisitions 
realized by the Provincia Autonoma di Trento. LiDAR data were used to produce a first-
order 3D model of the topographic surface of the mount Cornello area. This was useful as 
reference framework for the field observations and helped in producing the geologic map.
Aerial LiDAR gives a good description of flat to low-inclined surfaces, even in vegetated 
areas, but steep or vertical areas are poorly resolved because the acquisition is carried out 
with a nadir-looking device. Since the mount Cornello structure is best exposed on the 
southern vertical slope of the mountain, LiDAR did not help in investigating that area. 
Photogrammetry was instead applied to reconstruct the outcrop’s vertical walls in 3D and 
get relevant geometric information on the synsedimentary structure.
Photogrammetry allows the 3D reconstruction of an object’s surface starting from a set of 
2D overlapping photographs taken from different view-points, provided that the intrinsic 
parameters of the camera and the acquisition geometry are known [Remondino and El-
Hakim, 2006]. Crucial steps in this process are the image-network planning to achieve 
complete coverage of the target and the calculation of the image orientation to perform 
bundle adjustment [Baltsavias et al., 2008]. A D3X Nikon camera with a 135 mm Nikkor 
lens was used to acquire 16 high-resolution images in a frontal position with respect to 
the target at an approximate distance of 4 km (Fig. 1B). This allowed a ground-sample-
distance (GSD) between 0.05 m and 0.1 m. To cover the portions of the target that were not 
visible from the frontal acquisitions, 62 images were acquired using a Nikon D800E camera 
equipped with 50 mm Nikkor lens. In this case the acquisition were performed from sites 
located in the close surroundings of the mount Cornello structure at a distance ranging from 
50 m to 300 m.
All the view-points were georeferenced with GPS (Geotagger Pro 2 - Solmeta) connected 
to the cameras. Image processing was carried out with Agisoft Photoscan® to obtain a 
scaled and georeferenced 3D model. Six overlapping point-clouds (average resolution 0.25 
m) with RGB values associated to each point were merged together to create a complete
3D model.
LiDAR and photogrammetric models were merged using Geomagic Studio® producing
a multi-resolution 3D model. Alignment was obtained on the basis of the georeferencing
and refined applying Iterative Closest Point (ICP) algorithm [Besl and McKay, 1992].
Since models were obtained with different methods and had different resolution, perfect
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alignment was not possible and the final standard deviation registration error resulted 
0.43 m between the six photogrammetric models and 1.8 m between photogrammetric 
and LiDAR (DEM) models.

Figure 3 - Geologic map of the study area. Darker color marks outcrops, 
lighter color interpreted areas. Main faults are numbered from 1 to 5.

Geologic mapping of the study area was undertaken at 1:10000 scale to produce a new digital 
geologic map in GIS environment (Fig. 3). As criteria for distinguishing the stratigraphic 
units of the Calcari Grigi Group, we used those adopted for the Mezzolombardo sheet 
[Avanzini et al., 2012]. Being beyond the scopes of this contribution, we do not report a 
complete description of the Calcari Grigi units and of their distinctive features, however 
detailed informations can be found in Masetti et al. [1998] and Avanzini et al. [2012]. 
LiDAR DTM obtained considering last-pulse laser signal were helpful in tracing faults and 
geologic boundaries in the areas covered by the vegetation. Field observations were carried 
out with the help of differential GPS.
The 3D point cloud derived from the complete multi-resolution model was imported in 
SKUA® geomodeling software as 3D data in the form x, y, z, i. The i parameter carried 
the photographic greyscale texture information of each point. Imported points were then 
transformed into a triangular 3D mesh.
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Figure 4 - A) LiDAR-derived 3D model of the study area. Note (B) the low-resolution of the vertical 
cliffs. C) Multiresolution 3D model obtained from the integration of LiDAR and photogrammetry 
data. D) Detail showing the improvement in resolution in the vertical areas.

Figure 4A and 4B shows the LiDAR derived model before the integration of the 
photogrammetric model while Figure 4C and 4D shows the same view of the integrated 
model and highlight the sensible improvement in terms of resolution on the vertical cliffs.
The multi-resolution 3D model of the mount Cornello’s surface allowed us to directly 
digitize the boundaries of the outcropping geologic units and the faults. Hence, the digitized 
polylines were used to improve the accuracy of the geologic map. Geologic cross sections 
were drawn starting from the 3D-model-corrected geologic map.
The geological cross sections were built using the specific tool embedded in SKUA® 
that permit to easily get a topographic profile and digitize the geologic interpretation. In 
particular, four digitized geologic cross sections, including all the intercepted geologic 
boundaries and faults, were drawn on the basis of the geologic map and displaying. In 
SKUA® the cross sections are shown as vertical 3D planes in their exact position (Fig. 6). 
This permits to easily cross-check the geologic interpretation with the geologic map and the 
cross cutting sections. The polylines digitized on the geologic map, on the 3D surface model 
and on the cross sections together with available layers and faults attitude measurements 
were used as constraints to model the 3D surfaces of unit boundaries and faults in SKUA® 
working in its Structure&Stratigraphy module.

Results
The geologic map of the area is shown in Figure 3. The map essentially agrees with the 
“Mezzolombardo” 1:50000 sheet, but the finer scale allowed a better  mapping of Loppio 
Oolitic Limestone in the study area. This was important in the 3D modeling phase to 
characterize the upper part of the mount Cornello structure, which essentially influenced the 
deposition of the Rotzo formation, and to calculate the synsedimentary tectonics-induced 
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thickness variations.
The final model of the structure and the geologic map show a series of NNW/SSE trending 
conjugate faults.
The structure (Fig. 5 A-B), is formed by a series of NNW/SSE-trending, ENE-dipping normal 
faults (2, 3, 4, 5) and a conjugate NNW/SSE-trending, WSW-dipping normal fault (1).
Original dip-angles of the faults, prior to Alpine uplift, range from 50° to 70° which are the 
cut off angles between the bedding and the fault surfaces.

Figure 5 - A) SKUA® 3D geologic model of the mount Cornello structure with Monte Zugna 
formation, Loppio Oolitic Limestone and Rotzo formation highlighted. Faults labels and 
colors of the displayed geologic units are the same of Figure 3. B) faults displayed in 3D and 
traces of cross-sections (white lines) highlighted.
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The geologic cross sections (e.g., Fig. 6) and the 3D model highlight a considerable 
increase in thickness of the Monte Zugna formation from E (370 m) to W (560 m). The 
maximum thickness is reached close to fault (3). Across fault (3), westward, the Monte 
Zugna formation is 450 m thick. This is what it retrieved from the 3D reconstruction of the 
boundary between the Monte Zugna formation and the underling Dolomia Principale as it 
is traced in the Mezzolombardo map. However, it is important to underline that the lower 
boundary of Monte Zugna formation is often difficult to locate due to a dolomitization 
belt of variable thickness at its base; hence, any thickness estimate of the Monte Zugna 
formation should be taken with caution.

Figure 6 - A) 3D planes of cross sections shown in Figure 5A. B) Cross sections realized on 
from the 3D model of the mount Cornello structure. Fault labels and colors of geologic units 
are the same of Figure 3.
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Instead, thicknesses of the Rotzo formation can be assessed with higher accuracy because 
of the sharp contact with the Loppio Oolitic limestone (lower boundary) and the overlying 
Rosso Ammonitico Veronese (upper boundary) (see Fig. 4). Between the W-dipping fault 
(1) and the E-dipping fault (2) the Rotzo formation is 240 m-thick, while outside the area 
bounded by the two faults thickness is 90 m to the W and 130 m to the E. The Rotzo 
formation thickness further decrease westward reaching only 35 m. at the Rocchetta section, 
located few kilometers to the W of the study area [Franceschi et al., 2014b]. The Loppio 
Oolitic Limestone does not display significant thickness variation. Thickness variations 
across the faults unequivocally testify for the synsedimentary extensional nature of the 
mount Cornello structure.
The visible variations in thickness of the Rotzo formation and Monte Zugna formation 
allowed estimating the dip-slip displacement of the faults. The most significant with this 
respect are fault (2) and (3) (Fig. 4) that trend NNW/SSE and dip approximately 60° to 
the WSW. Across fault (3) a difference in thickness is visible both in the Monte Zugna 
formation (110 m) and in the Rotzo formation (20 m), the cumulative dip-slip displacement 
can be estimated in approximately 160 m. Across fault (2) the difference in thickness in the 
Rotzo formation is approximately 100 m, hence the dip-slip displacement is 130 m.
Transcurrent Alpine reactivation of the fault system is evidenced by the presence of 
kinematic indicators on fault planes and by the right lateral offset of Rotzo-Rosso 
Ammonitico geological boundary. A dextral strike-slip kinematic along NNW-SSE faults 
is kinematically consistent with  the nearby sinistral N/S-trending Mezzolombardo-Taio 
and Trento-Cles faults (Fig. 1A), being the overall Alpine maximum compressional axis 
in-between these two orientations.

Discussion and Conclusions
In this study, we have characterized an ancient exhumed extensional tectonic structure by 
integrating remote sensing, 3D modelling and geologic mapping.
Aearial LIDAR highlighted geologic boundaries and fault traces even in areas covered 
by the vegetation canopy. Photogrammery allowed the high-resolution 3D imaging of the 
portion of structure exposed on the inaccessible vertical parts of the studied outcrop. The 
choice of photogrammetry instead of terrestrial laser scanning was driven by practical 
considerations since the complexity of the outcrop required several viewpoints, some of 
which on the outcrop itself, to be described completely.
Altogether, the acquired data permitted to highlight and digitize in 3D key-geologic features 
(faults and stratigraphic boundaries) with an accuracy otherwise not possible.
The integration of the photogrammetric model with available LiDAR of the study area 
yielded a complete 3D multi-resolution model of the structures. This was useful in improving 
the accuracy of the GIS-based geologic map of the area.
3D geomodeling (SKUA®) was used to reconstruct fault planes and stratigraphic boundaries 
in three dimensions. The 3D geo-model allowed to precisely and easily determine the 
faults’ strikes and dips. It also helped to calibrate the cross sections and to determine the 
thickness variations in the lithostratigraphic units interested by the structure. This brought 
unequivocal evidence of the synsedimentary activity of the faults.
The mount Cornello structure can be divided into a lower and an upper part. The lower 
part displays changes in thickness in Monte Zugna Formation, in particular close to fault 
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(3). This was interpreted as a growth structure by Doglioni and Bosellini [1987] The 
upper part mainly interests the Rotzo formation, which shows a significant increase in 
thickness in particular between fault (1) and (2).  The Loppio Oolitic Limestone in between 
Monte Zugna Formation and Rotzo formation do not show any thickness variation and 
appear to be passively dissected by the faults. The upper part of the structure, with the 
clear involvement of the Rotzo formation, was not characterized by Doglioni and Bosellini 
[1987] because they did not adopted the internal subdivision of the Calcari Grigi Group, 
but is described in the notes of the “Mezzolombardo” 1:50000 sheet [Avanzini et al., 2012]. 
However, there seems to be a discrepancy between the synsedimentary faults drawn on the 
“Mezzolombardo” geologic map and the line drawing presented on the interpreted pictures 
within the notes. In the geologic map faults (2) and (3) are sharp and parallel whereas in the 
line drawing fault (3) is listric abruptly changing its dip into a pellicular flat surface at the 
base of the Loppio Limestones. The interpretation of the 3D model realized in this study 
favors the interpretation proposed in the geologic map even though the trajectory of fault 
(2) is now slightly revised.
Thickness variations in the Monte Zugna and the Rotzo formations obtained from the 3D 
model confirm the interpretation of Avanzini et al. [2012] and testify at least two pulses of 
activity. One Sinemurian that was responsible for a differential subsidence during Monte 
Zugna deposition and one Pliensbachian that caused thickness variations in the Rotzo 
Formation and passively displaced the Loppio Ooltic Limestone.
The 3D model allowed also estimating the dip-slip displacement across the major faults 
of the mount Cornello structure. In particular fault (3), displaying a synsedimentary 
activity during the deposition of both the Rotzo and the Monte Zugna formations, has 
a cumulative offset of 160 m, whereas fault (2) induces thickness variations only in the 
Rotzo formation with a dip-slip displacement of 120. According to the displacement-length 
scaling relationships for normal faults [Kim and Sanderson, 2005; Torabi and Berg, 2011], 
this value suggest a length of these extensional faults in the order of the tens of kilometers 
at the time of its Mesozoic activity.
Although slightly reactivated during the Alpine deformation, the attitudes and kinematics 
of the faults still preserve the traces of their ancient activity and are consistent with an E-W 
regional extension associated with the Early Jurassic rifting in the area [Bertotti, 2001].
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