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ABSTRACT 
 
WebGIS and virtual globes allow DTMs distribution and three dimensional representations to the Web users’ community. In these 
applications, the database storage size represents a critical point. 
DTMs are obtained by some sampling or interpolation on the raw observations and typically are stored and distributed by data based 
models, like for example regular grids. A new approach to store and transmit DTMs is presented. The idea is to use multi-resolution 
bilinear spline functions to interpolate the observations and to model the terrain. More in detail, the algorithm performs the following 
actions. 
1) The spatial distribution of the observations is investigated. Where few data are available, few levels of splines are activated while 
more levels are activated where the raw observations are denser: each new level corresponds to an halving of the spline support with 
respect to the previous level. 
2) After the selection of the spline functions to be activated, the relevant coefficients are estimated by interpolating the observations. 
The interpolation is computed by batch least squares. 
3) Finally, the estimated coefficients of the splines are stored. 
The model guarantees a local resolution consistent with the data density and can be defined analytical, because the coefficients of a 
given function are stored instead of a set of heights. 
The approach is discussed and compared with the traditional techniques to interpolate, store and transmit DTMs, considering 
accuracy and storage requirements. It is also compared with another multi-resolution technique. The research has been funded by the 
INTERREG HELI-DEM (Helvetia Italy Digital Elevation Model) project. 
 

1. INTRODUCTION 
 
Nowadays, Digital Terrain Models (DTMs, Li et al, 2005) 
represent fundamental databases for the Geographical 
Information Systems (GIS, O' Sullivan and Unwin, 2003). Up 
to few years ago, DTMs were only used in specific applications 
of territorial analyses, typically by the scientific community. 
The coming and the diffusion of the new technologies based on 
Web GIS and virtual globes have changed the perspective: 
altimetric analyses and three dimensional representations of the 
terrain are still object of new researches but also praxis.  
With respect to the traditional programs for the two 
dimensional representation, virtual globes have introduced the 
third dimension and, consequently, a simpler usage and a 
greater visual consistence between the digital representation 
and the real world. At present, the new acquisition techniques 
provide information with a never seen accuracy. Therefore, 
virtual globes are no more merely qualitative viewers for low 
resolution global data, but can become scientific instruments to 
process and analyze high accuracy geographical information. 
Virtual globes and Web GIS cannot be properly compared, but 
they share a fundamental principle: the geographic information 
(satellite and aerial images, height data, vectorial objects) is 
accessed via Web. Particularly, the servers provide the data 
according to specific transmission standards that have been 
defined mainly by the Open Geospatial Consortium (OGC, 
2006, 2010a, 2010b). 
The new DTMs provide height information with never seen 
accuracy and spatial density (El-Sheimy et al., 2005). However, 
in the Web distribution of geographical information, the 
databases storage size represents a critical point. Given a 
specific interest area, typically the server needs to perform 
some preprocessing, the data have to be sent to the client, that 
applies some additional processing: the efficiency of all these 

actions is crucial to guarantee a near real time availability of 
the information.  
Generally speaking, the terrain surface is composed by an 
infinite number of points: a DTM is obtained by interpolating 
the available height observations and extracting a finite dataset 
that allows the reconstruction of the whole surface at a given 
accuracy. DTMs can be stored and transmitted according to 
two different approaches: the data based models and the 
analytical models (Biagi et al., 2011). 
In the data based models, the DTM is stored and transmitted by 
a sample of interpolated heights that are used to reconstruct 
(interpolate) the terrain heights in other points. On the contrary, 
an analytical model implies the storage of a dataset of 
coefficients that, in a one to one relation with a given function, 
allows the computation of the height everywhere.  
The purpose of this paper is to discuss a new analytical 
approach, that is based on an least squares interpolation by 
multi-resolution bilinear splines and has been already discussed 
in its preliminary implementation in (Brovelli and Zamboni, 
2009). The raw observations are interpolated by a linear 
combination of splines with compact support, whose 
resolutions and positions vary in space and are automatically 
chosen according to the distribution of the raw observations. In 
the following, they will be called multi resolution splines. For 
each spline, the resolution level, the position and the coefficient 
are stored by the server and are transmitted to the clients. The 
coefficients and their auxiliaries metadata allow the complete 
reconstruction of the terrain at any point and different detail 
levels can be provided, according to the required accuracy. The 
purpose of the proposed approach is the saving of storage 
requirements with respect to the traditional models without any 
loss of accuracy. 
The following part of the introduction shortly summarizes the 
data models and interpolation methods that are typically 
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adopted to store and compute DTMs. Section 2 discusses our 
new approach and its storage requirements. In Sect. 3, the 
performances of the different models are analyzed, by 
comparing their application to a case study. The conclusions 
and the future developments follow. 
 
1.1 Data based Models 
 
Different data models can be adopted to store and transmit a 
DTM. Contour lines, grids (or elevation matrix) and Triangular 
Irregular Networks (TIN) are the standard. 
Contour lines are obtained by connecting with a line all the 
points with the same height. The lines are drawn at given, 
equally spaced in height, intervals. Contour lines are useful to 
visualize heights on maps in 2D applications, but seldom are 
used for analysis purposes, and are stored and transmitted 
following the general rules of vector objects. 
Gridded DTMs (in the following DTMGRID) are georeferenced 
as regular grids of nodes, whose heights are stored. The storage 
of a grid requires a set of metadata that allow its georeferencing 
(see Sect. 3) and are listed in the so called header. The heights 
are stored in an ordered sequence. DTMGRID is a very simple 
conceptual model and can be easily accessed, visualized and 
spatially analyzed by map algebra. However, the choice of the 
grid resolution is a crucial point, because the storage size is 
inversely proportional to the square of the gridding interval. If 
rough terrain (for example mountains) alternates to flat terrain 
(plains), the high resolution needed to accurately describe the 
first causes a useless redundancy in the second. To 
continuously describe the heights between the nodes, either a 
bilinear or a bicubic interpolation is typically applied. 
In a TIN, the DTM (in the following DTMTIN) is described by a 
set of planar triangular faces that are obtained by connecting 
sparse points, whose horizontal coordinates and heights are 
given. Usually, the Delaunay criterion is applied to triangulate 
the points. By a TIN model, more points can be stored where 
the terrain is rough and less points are used in flat areas. Each 
point of a TIN is represented by its three (X, Y, height) 
coordinates. Moreover, to reconstruct the topology of the 
triangles, the labels of the three vertices of each triangle are 
needed. This simple data model requires long computation 
times for the processing and the analysis of the 3D surface: 
therefore, in the practice, more complex topological models are 
applied, like for example the node based, the triangle based or 
the edge based data structures. These models reduce 
computation times but require an overhead of information that 
is stored and transmitted to the clients. When a TIN model is 
used, the height within each triangle is linearly interpolated 
from its three vertices. 
 
1.2 Interpolation techniques 
 
To produce a DTM, several interpolation techniques exist: a 
first classification can be into exact and approximate 
interpolations. An exact interpolator passes for all the 
observations and allows the complete reconstruction of all the 
discontinuities existing in the dataset. However, the observation 
errors are not filtered and propagate into the model. A classical 
example of exact interpolator is given by the Inverse Distance 
Weighting (IDW). Approximate interpolators apply statistical 
methods to estimate a smoother function from the observations: 
in this way, the errors can be filtered and both the observations 
accuracy and the function correctness can be assessed. 
However, actual details and discontinuities can be lost in the 
smoothing. Local Polynomial (POL) is an approximate 
interpolator when the coefficients are fewer than the 
observations and are estimated by least squares. 

In the deterministic interpolation, either exact or approximate, 
the analytical model of the surface is a priori chosen and the 
observations are used to estimate it: IDW and POL are 
examples of deterministic interpolators. In the stochastic 
interpolation (Christakos, 1992), the observations are 
considered as a sample of a random field (the surface) that is 
completely described by spatial stochastic properties like, for 
example, the covariance function. The stochastic properties are 
estimated analyzing the observations and then applied to 
interpolate the surface. Collocation and kriging are the classical 
examples of stochastic interpolators. 
Note that the most popular interpolation techniques, as reported 
in scientific and technical literature, cannot be easily and 
efficiently used to implement an analytical model because the 
interpolating functions cannot be described by a small number 
of parameters or coefficients. In IDW and POL, the 
interpolation coefficients and domain are a function of the 
positions of both the interpolation point and the observations: 
to reply the model, all the observations must be stored and 
distributed. Radial Basis technique uses a linear combination of 
radial functions that interpolate exactly the observations and 
are characterized by the minimum curvature. These methods 
(Regularized Spline, Spline with Tension, Thin Plate Spline) 
differ in the function choice, all of them could be analytically 
described by a finite set of coefficients but the needed 
coefficients are at least as many as the raw observations. 
Let consider a stochastic interpolator, for example the 
collocation. The height in a point is provided by the 
ˆ( ) Th P  c ξ , where ξ is the vector of the observations 

multiplied by its inverse covariance matrix, c  is the cross-
covariance vector between the point and the observations. c  
can be built by knowing the covariance function of the surface 
and the positions of the observations, while ξ needs to be 
stored: also in this case, an analytical model would require as 
many data as the original observations. 
The classical bilinear splines estimated by least squares provide 
a twofold interpretation, because they can be thought as both 
data based and analytical models. Given the required spatial 
resolution, the observations are interpolated to estimate the 
coefficients of the splines, that are used to predict the heights 
on a regular grid, that represents the data based model. If the 
splines and the grid have the same spatial resolution, the 
coefficients of the splines and the heights of the relevant grid 
nodes are equal. Moreover, the coefficients of the bilinear 
splines used to interpolate from the four neighboring nodes of a 
regular grid are exactly the relevant four heights: indeed each 
local bilinear spline assumes the maximum in its node, while 
annihilates on all the other nodes. In this case, the analytical 
model has exactly the same complexity of the data based 
model. 
The adoption of a new multi-resolution splines interpolation 
has been studied, that represents a true analytical model and 
provides actual storage and distribution saving with respect to a 
data based model. 
 

2. THE MULTI-RESOLUTION SPLINES APPROACH 
 
The approach has been previously discussed in a preliminary 
way by (Brovelli and Zamboni, 2009): it is an approximate 
deterministic method whose estimation principle is based on 
Least Squares (LS, Kock, 1987). 
The founding idea is to combine splines with different width in 
order to guarantee the resolution adequate to the data density in 
every region of the field, exploiting all available information 
implicitly stored in the sample. Different levels of splines, 
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corresponding to different halving steps, are considered. A new 
level halves the width of the support of the previous level.  
We suppose that a field ( ) ( , )h h x yt  has been sampled at m  

locations 1 2, ,..., mt t t , ( , )i i ix yt . The interpolation domain is 

 min max,t t . The field observations 0iy  are modelled by means 

of a suitable combination of bilinear spline functions and noise 

i : 0 ( )i i iy h  t .  

Let define the following 
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The height field is given by the 
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where minX h xq x x i x    , min  Y h yq y y i y    , 

max min
12h h

x x
x 


  max min

12h h

y y
y 


  . M is the number of 

levels, , ,X Yh i i  is the coefficient of the spline at the grid node 

( , )X Yi i , hN is the number of nodes at the h  level, 
12 1h

hN   . 

In the estimation, all the field observations are tiled in a vector  

  2
0 0, , yyE        y y ν Aλ ν ν 0 C C I  

where ,λ A  are respectively the vector containing all the 

, ,X Yh i i coefficients to be estimated and the design matrix 

obtained by applying (1) to the observations. The estimation of 
1

0
ˆ ( )T Tλ A A A y  is based on the well known LS principle. 

Two innovative aspects characterize our interpolation 
approach. 
Given a level, each local spline is individually activated if no 
spline of some lower level has the same application point. 
Moreover the spline is activated if at least , 1,f f   

observations exist in at least k  ( 1,2,3,4k  ) quarters of the 

spline support: ,f k  are input by the user. They must be 

choosen according to two criteria. Clearly 1, 1f k   

correspond to no redundancy in the estimation, while bigger 
values smooth the interpolating field. Moreover, particular 
spatial configurations of the observations can produce a LS 
system that, although redundant, is either rank deficient or ill 
conditioned: in these cases, f  and k  should be increased 

independently of redundancy considerations. The individual 
activation of the splines guarantees a real multi-resolution 
interpolation. 
The levels are activated iteratively from level 0 to level M. A 
new level is activated if and only if its splines significantly 
improve the accuracy of the interpolation. 
Let suppose that M  ( 0,1,..., 1h M  ) levels have been 

already activated, for a total number of MN  splines estimated 

coefficients. The criterion to activate or not the 1M  -th level 
is based on a significance analysis. Let suppose that 1MN   is 

the number of splines activated with the new level and use 

1
ˆ

M λ to indicate the vector containing all the splines 

coefficients of the new level. We want to evaluate the 
following hypothesis 
 

  0 1 1
ˆ: 0M MH E  λ λ    (2) 

 
If H0 is true, the coefficients of the new level are not 
significant, the relevant estimates can be discarded and the 
iterative process can be stopped. Otherwise, the coefficients 
should be kept and a new higher level should be tested. Let 
define the following quantities 
 

2 2
0 ˆ ˆ, /( )M M M M Mm N   ν y y ν  
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where 0 1[ ,..., ]T

mh hy  is the vector containing all the field 

observations, 1ˆ ˆ,M M y y  are the a posterior estimates provided 

by LS. From a geometrical point of view the situation is 
depicted in Fig. 1. 
 

 
Figure 1. Geometric interpretation of the significance analysis 
of a new level. 
 
If (2) holds,  0 ME V y y , and the usual significance 

analysis on the a posterior variances can be applied 
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where 2

,,i i jF  indicate respectively a chi square variable with 

i  degrees of freedom and a Fisher variable with ( , )i j  degrees 

of freedom. A threshold value F  with significance   can be 

set and the zero hypothesis (2) can be tested by (3). 
 
2.1 Storage requirements 
 
To evaluate the DTM storage requirement of the different 
models, at first a numerical comparison between grids, TINs 
and our multi-resolution approach is here presented. 
Particularly, an occupation of 64 bits (8 bytes) is hypothesized 
for the horizontal coordinates and the height of a point. In the 
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following S() is the storage space required by the model type 
. To compute it, the following formulas are used. 
 
S(DTMα)= S(metadataDTMα) + S(dataDTMα) 
 
To georeference a grid, the minimum needed metadata are four 
geographic coordinates and two integers: typically, the X 
(LL_X) e Y (LL_Y) coordinates of the lower left node of the 
grid, the spacing in X and Y between the nodes (DX and DY) 
and the number of the nodes in X and Y directions (N_X and 
N_Y) are provided. Other ways can be adopted but the number 
of minimally needed metadata does not change. Moreover, a 
field should be devoted to the conventional identifier of no-data 
(ND). So, the following holds 
 
S(metadataGRID) =  
S(LL_X)+S(LL_Y)+S(DX)+S(DY)+S(N_X)+S(N_Y)+S(ND) 
= 7×64 bits = 56 bytes 
S(dataGRID) = N_X × N_Y × S(height) = N × 8 bytes 
 
As TINs are concerned, the minimal model, without additional 
topological information, is discussed. 
 
S(metadataTIN) = S(N_V)+S(N_F) 
S(dataTIN)=S(dataNODES)+S(dataFACES) = 
N_V×3×64bits+N_F×3× Ceil[log2(N_V)]bits 
 
N_V and N_F are the number of vertices and faces. The 
vertices are stored as 3D points (X, Y and height). The 
triangular faces are stored simply by the list of the three 
relevant vertices. Consider that k bits can address 2k points: if 
the number of vertices is N_V, the size in bits needed for each 
label is Ceil(log2(N_V)), where Ceil is the rounding to the 
greater integer. 
DTMMR requires the storing of metadata relevant to the 
coefficients, that are needed to define the position and the 
resolution of each activated spline. Once defined the global 
interpolation domain (lower left and upper right corners), the 
record corresponding to a particular level is stored in the 
following way: 

hN , 1 X
i , 1Y

i , , 1 , 1X Yh i i , 2 X
i , ..., 

hN Xi , 
hN Yi , , ,X Yh iN iN  

where hN  is the number of activated splines in the level; 
Xj

i  

and 
XJi  are the row and column indexes of the node occupied 

by the J-th spline; , ,X Yh iJ iJ  is the coefficient of the J-th spline. 

At level h, the maximum number of active splines is 
1 2

max (2 1)hN   . It is easy to show that 

    1
2log 2 1 2hCeil h    . The storage requirements for 

level h , ( 0,...h M ) are: 
 
 2 ( 2)h   bits to store the number of active splines,  

 ( 2) 2 hh N    bits needed to store the row and column 

indexes, 

 64 hN  bits needed to store the coefficients. 

 
3. A CASE STUDY 

 
In order to evaluate the proposed approach and compare it with 
the data based models, we have analyzed one case study. The 
data stem from a LiDAR survey of a promontory overlooking 
the lake of Como in Northern Italy. The horizontal spacing of 
the pre-processed grid is 2 m x 2 m and its vertical accuracy 
(Rood, 2004) is of about 20 cm. 

The first step is to extract three different samples in order to 
simulate three dataset of sparse observations with different 
accuracies from which extract the relevant DTMs. 
For this reason, four TINs have been extracted from the grid, 
with different sampling tolerances. By fixing the tolerance 
equal to 5m, 2m and 1m, we have created respectively the 
training datasets TR5, TR2 and TR1 containing scattered data 
(i. e. the nodes of the TIN's) . By fixing the tolerance equal to 
20 cm (and removing TR5, TR2 and TR1), we have finally 
created the test dataset TE to use for cross-validate the results. 
The original dataset is shown in Figure 2. In Table 1 the 
statistics of the datasets are reported. 
 

 
Figure 2. The original DTM 

 
Using the three training sets as raw observations, TIN and grid 
models corresponding to the height accuracies of 1, 2 and 5 m 
have been built. By construction, the training sets directly 
provide the DTMTIN at the different accuracy levels: in Table 2 
the storage requirements of the DTMTIN are reported. 
To produce DTMGRID, five deterministic interpolation 
techniques have been tested: the Inverse Distance Weighting 
(IDW), the 1° Order Local Polynomial (POL), the Completely 
Regularized Spline (CRS), the Spline with Tension (SWT) and 
the Thin Plate Spline (TPS). The interpolations have been 
computed in ArcGIS, applying the parameters automatically 
optimized by the software itself. 
 

 DTM TR5 TR2 TR1 TE 
Count 422610 3274 9256 21656 81869 
Min 197.44 197.44 197.44 197.44 197.47 
Max 332.27 332.27 332.27 332.27 332.23
Mean 225.27 214.33 225.75 230.81 235.59 
RMS 27.80 28.58 30.85 30.36 27.83 

Table 1. Statistics of the sampled datasets. Values in m. 
 

TR N_V 
S_V 

(bytes) 
N_F 

S_F 
(bytes) 

S  
(KB) 

1m 21656 519744 41343 294374 795

2m 9256 222144 16580 110430 325

5m 3274 78576 4644 28320 104
Table 2. Characteristics of the three sampled TIN. N_V: 

number of vertices; S_V: storage space for vertices; N_F: 
number of faces; S_F: storage space for faces; S: total storage 

size. 
If both the accuracy and the storage size of a grid have to be 
considered, the optimal compromise is given by the coarser 
grid that guarantees the desired accuracy. Therefore, different 
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spatial resolutions have been tested in the interpolation, starting 
from 10 m and decreasing it by steps of one meter. The 
residuals of each resulting DTMGRID have been computed with 
respect to the starting TR and to the set of check points (TE). 
For each interpolation function and for each starting TR, the 
coarser DTMGRID whose accuracy is consistent with the starting 
data set has been selected. In Table 3, the statistics and the 
characteristics of the final DTMGRID are reported. 

In the interpolation of TR1 and TR2, POL function does not 
provide consistent accuracies, even pushing the resolution of 
DTMGRID to one meter. The other algorithms provide 
satisfactory results, the best being CRS that provides one meter 
accuracy already at the resolution of three meters. 
As expected, the TIN model requires less storage space than the 
grid model. The saving ranges from 72% to 97% for TR1, from 
68% to 80% for TR2, from 59% to 67% for TR5. 
 

 

T TR R (m) NX NY S(KB) 
ResObs ResCheck 

M (m) RMSE (m) M (m) RMSE (m) 

IDW 
1m 1 1830 1784 25506 -0.0 0.1 -0.1 1.1
2m 5 366 357 1021 -0.3 2.0 -0.2 2.0
5m 10 183 179 256 -0.9 5.0 -0.7 4.8

 

POL 
1m 1 1830 1784 25506 -0.2 1.9 -0.2 1.5
2m 1 1830 1784 25506 -0.4 3.5 -0.4 2.6
5m 8 229 223 399 -0.8 5.5 -0.9 5.0

 

CRS 
1m 3 610 595 2836 -0.2 1.3 -0.1 1.1
2m 5 366 357 1021 -0.4 2.4 -0.1 1.8
5m 10 183 178 255 -0.9 5.2 -0.8 4.9

SWT 
1m 2 915 892 6376 -0.2 1.1 -0.1 1.1
2m 5 366 357 1021 -0.4 2.3 -0.3 2.0
5m 9 203 198 314 -0.7 4.7 -0.7 4.8

 

TPS 
1m 1 1830 1784 25506 -0,10 0,50 -0,03 1,19
2m 4 458 446 1596 -0,44 2,06 -0,10 2,05
5m 10 183 178 255 -1,39 5,71 -0,77 4,99

Table 3. Characteristics of the interpolated grids. T: technique used to interpolate; TR: interpolated dataset; R: final resolution; NX 
and NY: number of nodes in X and Y; S: storage size; ResObs, ResCheck: statistics of the residuals on the used observations and the 

check points; M: mean; RMSE: root mean square error. 
 

TR NSplines 
Number of coefficients for each level L ResObs ResCheck S 

(KB) L0 L1 L2 L3 L4 L5 L6 L7 M (m) RMSE (m) M (m) RMSE (m)
1m 5616 9 9 34 106 336 955 2080 2087 0.0 1.1 0.0 1.4 55
2m 1767 9 9 34 106 292 610 707 / 0.0 1.8 0.0 2.2 17
5m 349 9 9 34 85 112 100 / / 0.0 3.4 -0.4 4.8 3

Table 4. Statistics of DTMMR. TR: interpolated dataset. NSplines: total number of activated splines. ResObs, ResCheck: statistics of 
the residuals on the used observations and the check points. M: mean. RMSE: root mean square error. S: storage size. 

 

T TR R(m) NX NY S(KB) 
ResObs ResCheck 

M (m) RMSE (m) M (m) RMSE (m) 
IDW 1m 3 610 595 2836 -0.2 1.1 -0.1 1.2 
CRS 1m 4 458 446 1596 -0.3 1.9 -0.2 1.4 
SWT 1m 4 458 446 1596 -0.3 1.9 -0.2 1.4 
TPS 1m 3 610 595 2836 -0.2 1.2 -0.0 1.4 

Table 5. Characteristics of the grids interpolated from TR1 with accuracy similar to DTMMR. T: technique used to interpolate; R: 
spatial resolution; NX and NY: number of nodes in X and Y; S: storage size; ResObs, ResCheck: statistics of the residual on the 

used observations and the check points; M: mean; RMSE: root mean square error. 
 

3.1 Interpolation and storage size of the multi-resolution 
model 
 
By interpolating TR1, TR2 and TR5, the coefficients of the 
multi-resolution splines model (DTMMR) have been estimated, 
according to the criteria described in Sect. 2. Then, the relevant 
accuracies and storage sizes have been analyzed. 
The statistics of the DTMMRs obtained by interpolating T1, T2 
and T5 are summarized in Table 4. For each TR, the total 
number of splines, the number of splines per level, the statistics 
of the residuals on the used observations and on the 

checkpoints are reported. Moreover the storage size in Kbytes 
is given. 
The interpolations of TR1, TR2 and TR5 activate eight, seven 
and six levels of splines respectively. However, the final 
accuracies of DTMMR(TR1) and DTMMR(TR2) are not 
completely satisfactory: indeed, their RMSEs exceed one and 
two meters respectively and are worse than those of the 
respective DTMGRIDs. The criteria that we are adopting to 
automatically activate the splines (f=1 and k=4) is conservative 
and, in these cases, provide sub optimal results: more analyses 
are needed and will be discussed in a final paper. Moreover, it 
should be taken into account that the decimation criterion 
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adopted to create TR1, TR2 and TR5 from the original grid is 
optimized to build a TIN model and not to apply a multi-
resolution interpolation. At present, an optimized criterion for 
the automatic activation of the splines is under study. 
Moreover, new decimation algorithms will be applied. 
To honestly compare the storage size required by different 
models, they should have the same accuracy. Except for the 
POL interpolation, all the final DTMGRID's interpolated from 
TR1 are more accurate than DTMMR(TR1). In the storage 
comparison, coarser DTMGRID have been chosen, with 
accuracies similar to that provided by our approach. Even the 
final DTMGRID's interpolated from TR2 have better accuracies 
than DTMMR(TR2) but, in this case, the coarser grids are 
worse. Therefore, for DTMMR(TR2) and DTMMR(TR5) the 
storage requirements are compared with the grids of Table 3, 
for DTMMR(TR1) with the grids reported in Table 5. The 
comparisons, in term of storage saving, are reported in Table 6.  
At the end, our approach has been compared also with the 
Multilevel B Spline Approximation, that represents a different 
multi-resolution interpolation approach by bicubic splines (Lee 
et al., 1997). To make the comparisons (Tab. 7), the lower level 
of MBA whose accuracies are similar to our approach has been 
chosen: also the storage requirements of MBA are significantly 
bigger than those of our approach. 
 

TR 
[S(DTMMR) / S(DTMGRID)] (%) [S(DTMMR) / 

S(DTMTIN)] (%)IDW POL CRS SWT TPS 

1m 1,9% 0,2% 3,4% 3,4% 1,9% 6,9% 

2m 1,7% 0,1% 1,7% 1,7% 1,1% 5,2% 

5m 1,3% 0,8% 1,3% 1,0% 1,3% 3,1% 
Table 6. Storage size comparisons between DTMMR and 

DTMGRID, DTMTIN 

 
TR ResObs(m) ResCheck(m) TotCff S (KB) R (%)

 M RMSE M RMSE 
1m 0.0 0.90 -0.0 1.50 1.5 106 11019 0.5 
2m -0.0 1.22 -0.0 1.76 3.5 105 2779 0.6 
5m 0.0 3.66 0.1 2.99 2.3 104 183 1.6 

Table 7. Analysis of MBA. TR: interpolated dataset. ResObs, 
ResCheck: MBA statistics of the residuals on the used 
observations and the check points. M: mean. RMSE: root mean 
square error. TotCff: total number of coefficients of MBA. S: 
MBA storage size. R: ratio between the storage requirements of 
our algorithm and MBA. 

 
4. CONCLUSIONS 

 
In this paper a new approach has been presented to interpolate 
and store a DTM, aimed at saving storing size without losing in 
accuracy with respect to classical models. Multi-resolution 
bilinear splines are adopted to interpolate the observations and 
their coefficients are stored, instead of the interpolated heights. 
The coefficients can then be used to reconstruct the height at 
any point. The model is defined analytical instead of data 
based.  
The classical models have been compared with our approach, 
considering accuracy and storage requirements. An original 
grid has been sampled to produce three TINs with tolerances of 
one, two and five meters respectively. Then, the TINs vertices 
have been interpolated by different deterministic techniques to 
produce grids at different spatial resolutions and the grids have 
been compared with the original data. Synthetically, different 
interpolation techniques provide similar results and the 
accuracy of the grids increases with their resolution: in 
particular, accuracies of one, two and five meters are obtained 

respectively with one, five and ten meters of spatial resolution. 
At present, our approach reaches an accuracy slightly worse 
than the accuracies provided by the finest grids: this problem is 
probably due to a particular interpolation choice that still needs 
to be deeply analyzed and optimized. However, for similar 
accuracies, our approach allows a significant storage saving 
with respect to the classical models: indeed, its storage size is 
about 2% of the grids size and 5% of the TINs. 
The results are quite satisfactory and justify further studies 
finalized to define a complete scheme for the managing of the 
data in the server, for their transmission and for their use by the 
clients. 
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