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With regard to the transmission of a thermomechanical signal on extremely short temporal and spatial scales, which represents an
issue particularly important dealing with micro- and nanosized electromechanical systems, it is well known that the so-called non-
Fourier effects become not negligible. In addition, it has to be considered that the interaction among multiple energy carriers
has, as a direct consequence, the involvement of high-order terms in the time-differential formulation of the dual-phase lag
heat conduction constitutive equation linking the heat flux vector with the temperature variation gradient. Accepting that the
deformations caused by the temperature variations are small enough to be modeled under the assumptions typical of the linear
thermoelasticity, in the present article we take into account the highest Taylor expansion orders able to guarantee (under appropriate
assumptions) stability conditions, thermodynamic consistency, and at the same time the existence of an influence domain of the
external data linked to the energy transmission as thermal waves. To this aim, a cylindrical domain filled by an anisotropic and
inhomogeneous thermoelastic material is investigated, although the results obtained will be independent from the considered
geometry: for such a reason, we will be able to consider as illustrative examples some simulations referred to single-layer graphene
and to show how the expansion orders selected strongly influence the domain of influence depth.

1. Introduction

It is well known that the Fourier heat conduction equation
leads to a diffusivemodel which predicts that a thermal signal
can propagate infinitely fast through the medium under
investigation. Likewise, it is now clear that it turns out to be
not applicable to ultrafast and ultrasmall contexts: dealing,
for example, with micro- and nanosized electromechanical
systems the so-called non-Fourier effects involving the cou-
pled diffusion and the wavelike heat propagation become
not negligible [1]. In this connection the phonon-electron
coupling factor and, by extension, the related phase lags can
represent thermophysical properties able to take into account
also the microstructural interaction effects (see [2], Chapters
1, 5). Therefore, a deep understanding of the heat exchange
mechanisms at micro-/nanoscales is today more than ever a
topic of great technological interest: it is sufficient to think
about its impact on the correct design of MEMS (microelec-
tromechanical systems) and NEMS (nanoelectromechanical
systems) or even, in general, to the continuous need for

sensors and actuators miniaturization and to the growing
interest in controlling the related heat transfer processes.

In this regard, we are convinced that the dual-phase lag
(DPL) model, together with its time-differential formulation,
turned out to be particularly suited to respond to this kind of
needs, having its features in fact already deepened in a very
wide number of works, of which [3–14] and the references
therein just represent a selection also accounting for high
expansion orders in thermoelasticity. The DPL constitutive
equation puts in relation the temperature variation gradient𝑇,𝑖 at a certain time 𝑡 + 𝜏𝑇 with the heat flux vector 𝑞𝑖 at a
different time 𝑡 + 𝜏𝑞. To the delay/relaxation times or phase
lags involved 𝜏𝑞 (heat flux vector delay time) and 𝜏𝑇 (temper-
ature variation gradient delay time), respectively, it is possible
to give the following physical interpretations: 𝜏𝑞 is connected
to the fast-transient effects of thermal inertia, while 𝜏𝑇 is
able to take account of microstructural interactions such as
phonon scattering or phonon-electron interactions. Specifi-
cally within the context of the time-differential formulation
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for the DPL constitutive law, it is then possible to consider
high-order effects by stopping at appropriate Taylor series
expansion orders 𝑛 and 𝑚 the following relation between the
heat flux vector and the temperature variation gradient (the
reader can refer, for instance, to [2], eq. (2.115) page 103, or
even to [12], page 930):

𝑞𝑖 (x, 𝑡) + 𝜏𝑞1! 𝜕𝑞𝑖𝜕𝑡 (x, 𝑡) + ⋅ ⋅ ⋅ + 𝜏𝑛𝑞𝑛! 𝜕𝑛𝑞𝑖𝜕𝑡𝑛 (x, 𝑡) = −𝑘𝑖𝑗 (x)
⋅ [𝑇,𝑗 (x, 𝑡) + 𝜏𝑇1!

𝜕𝑇,𝑗𝜕𝑡 (x, 𝑡) + ⋅ ⋅ ⋅ + 𝜏𝑚𝑇𝑚!
𝜕𝑚𝑇,𝑗𝜕𝑡𝑚 (x, 𝑡)] ,

(1)

𝑘𝑖𝑗 being the conductivity tensor. It is also worth emphasizing
that, dealing with micro-/nanosystems, it seems more than
reasonable to assume that the deformations caused by the
temperature variations are small enough to bemodeled under
the assumptions typical of the linear thermoelasticity: such
an observation makes therefore particularly fitting to the
framework above described the studies reported in [10, 12–
14] about the well-posedness question as well as the spatial
behavior of the solutions for different linear thermoelastic
models founded on constitutive equation (1).

Considering in more detail the possible choices of the
Taylor series expansion orders 𝑛 and𝑚, we recall that Chiriţă
et al. [11] showed very interesting results about some limita-
tions in the application of constitutive equation (1), having
proved in fact that for 𝑛 ≥ 5 or 𝑚 ≥ 5 the corresponding
models unavoidably lead to instable mechanical systems;
conversely, when the expansion orders are lower than or
equal to four, the related models can be thermodynamically
compatible, provided that suitable assumptions are made
upon the delay times. This is the reason why in [12–14] the
selection of the expansion orders has concerned the following
choices: (𝑎) 𝑛 = 4, 𝑚 = 3, (𝑏) 𝑛 = 3, 𝑚 = 2, and (𝑐) 𝑛 =𝑚 = 3. Moreover, in order to capture the second sound effect
for the heat propagation at the micro-/nanoscale, and with
reference to the selections just cited 𝑎, 𝑏, and 𝑐, we notice
that only the choices 𝑎 and 𝑏 lead to models that can express
a wavelike behavior, whereas 𝑐 depicts a diffusive behavior.
However, all of these expansion orders are able to account
for the high-order effects in 𝜏𝑞 and 𝜏𝑇 linked to the thermal
lagging phenomena and are closely related to the number of
heat carriers involved (see again [2], p. 442).

Through this contribution we want to move forward
and complete the study on the penetration depth of a
thermomechanical signal in a micro-/nanosized deformable
thermal conductor, considering the relationship between heat
flux vector 𝑞𝑖 and temperature variation gradient 𝑇,𝑖 given
by (1) considered under the assumption 𝑎. This actually
represents an advancement, since the corresponding study
related to the comparison between the orders selection 𝑏 and
its counterpart 𝑛 = 2, 𝑚 = 1 has already been investigated
in [14], showing unequivocally the depth increase of the
thermoelastic signal with the rise of the expansion orders
(provided that the condition 𝑛 = 𝑚 + 1, able to guarantee
the identification of an influence domain, is fulfilled). We
take into account a cylindrical domain filled by an anisotropic
and inhomogeneous thermoelasticmaterial, althoughwewill
prove that the results obtained are valid regardless of the

geometry considered: this feature will allow us to apply our
analytical results to some simulations referred to single-
layer graphene, showing that also in this case the influence
of the expansion orders selected on the signal’s depth is
evident. An external disturbance is simulated through the
application on the lower base of the cylinder of specific
thermal and mechanical actions defined from the outside,
and a suitable initial-boundary value problem is implemented
and investigated in order to show the spatial behavior of the
solution in terms of existence and extension of an influence
domain of the assigned data.

2. A Suitably Defined Initial-Boundary Value
Problem P̂

Emphasizing once again that our results will be shown to
be independent of the shape of the region considered, we
take into consideration a right cylinder 𝐵 of base 𝐷(0) and
height 𝐿 and choose the referring axes system 𝑂𝑥1𝑥2𝑥3
in such a way that 𝑥3 ∈ (0, 𝐿) and that the base 𝐷(0)
lies on the coordinate plane 𝑂𝑥1𝑥2. We denote by 𝐷(𝑥3)
the plane cross section at distance 𝑥3 from the base of
the cylinder, assuming it smooth enough in order to allow
the application of the divergence theorem; moreover, 𝐵(𝑥3)
denotes the portion of 𝐵 comprised between the parallel
cross sections 𝐷(𝑥3) and 𝐷(𝐿). The cylinder is intended to
be subjected to null initial conditions and null body force
and heat supply, and also the boundary data are assumed
null except for some prescribed nonzero actions insisting
from the outside on the base 𝐷(0): specifically, they are able
to simulate the external thermomechanical perturbation of
which the propagation depth will be estimated. Starting from
an appropriately defined initial-boundary value problem, for
which uniqueness and continuous dependence results from
the given data have already been proved in [12, 13], we are
able to show the spatial behavior of the solution with respect
to the distance 𝑥3 from the perturbed base 𝐷(0).

For the investigation at issue, we consider it unnecessary
to propose here a series of preliminary considerations already
explained in [12, 13], but rather we start directly from
a suitably transformed initial-boundary value problem P̂
(inferable indifferently from the aforementioned articles)
assuming for it null initial data, null body force and heat sup-
ply, and null boundary data, except for the abovementioned
nonzero external actions insisting on the base 𝐷(0) of the
cylinder. The definitive formulation of our initial-boundary
value problem is obtained through the ℎ𝑎𝑡 integral operator
defined, for any continuous function 𝑔(𝑡), as follows:

𝑔 (𝑡) = ∫𝑡
0
∫𝑠
0
∫𝑧
0

∫𝑟
0
𝑔 (𝜉) 𝑑𝜉 𝑑𝑟 𝑑𝑧 𝑑𝑠

+ 𝜏𝑞 ∫𝑡
0
∫𝑠
0
∫𝑧
0

𝑔 (𝑟) 𝑑𝑟 𝑑𝑧 𝑑𝑠
+ 𝜏2𝑞2 ∫𝑡

0
∫𝑠
0
𝑔 (𝑧) 𝑑𝑧 𝑑𝑠 + 𝜏3𝑞6 ∫𝑡

0
𝑔 (𝑠) 𝑑𝑠

+ 𝜏4𝑞24𝑔 (𝑡) ,

(2)



Mathematical Problems in Engineering 3

and that for the sake of brevity and with an obvious meaning
of the Roman superscripts involved is shortened as

𝑔 (𝑡) = 𝑔𝐼𝑉 (𝑡) + 𝜏𝑞𝑔𝐼𝐼𝐼 (𝑡) + 𝜏2𝑞2 𝑔𝐼𝐼 (𝑡) + 𝜏3𝑞6 𝑔𝐼 (𝑡)
+ 𝜏4𝑞24𝑔 (𝑡) .

(3)

In order to clarify the origin and significance of (3) and of
its previous extended form (2), we believe it is appropriate
to direct the reader towards [12], Section 3 Description of
the investigation strategy. We recall that this kind of integral
operator has been employed to obtain a number of results in
terms of well-posedness and spatial behavior of the solutions
formodels based on the dual-phase lag as well as on the three-
phase lag constitutive law (see at this regard, in addition to the
articles already cited, also [15–17]).

By resorting to the linear thermoelastic theory under
inhomogeneous and anisotropic assumptions, we recall that
the convention for which a comma stands for partial differ-
entiationwith respect to the corresponding Cartesian coordi-
nate will be employed, together with the following notations
and properties: 𝑡𝑗𝑖 are the components of the stress tensor, 𝜌 is
the mass density, 𝑢𝑖 are the components of the displacement
vector, 𝑇 is the temperature variation from the constant
ambient temperature 𝑇0 (with 𝑇0 strictly positive), 𝜂 is the
entropy per unit mass, 𝑞𝑖 are the components of the heat flux
vector, 𝜀𝑖𝑗 are the components of the strain tensor, and 𝐶𝑖𝑗𝑘𝑙,𝛽𝑖𝑗, 𝑘𝑖𝑗 (𝑘𝑖𝑗, as already highlighted, represents the conductivity
tensor), and 𝑎 are constitutive tensors depending only on
the spatial variable x and are characterized by the following
symmetries:

𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑗𝑖𝑘𝑙 = 𝐶𝑘𝑙𝑖𝑗,
𝛽𝑖𝑗 = 𝛽𝑗𝑖,
𝑘𝑖𝑗 = 𝑘𝑗𝑖.

(4)

As anticipated, null initial conditions are assumedwhile, with
regard to the boundary conditions, we set for any 𝑡 ≥ 0 the
following:

(i) The lateral boundary conditions, i.e., when (𝑥1, 𝑥2) ∈𝜕𝐷(𝑥3) with 𝑥3 ∈ (0, 𝐿):
𝑡𝛼𝑖 (𝑥1, 𝑥2, 𝑥3, 𝑡) 𝑛𝛼 = 0
or 𝑢𝑖 (𝑥1, 𝑥2, 𝑥3, 𝑡) = 0,
𝑞𝛼 (𝑥1, 𝑥2, 𝑥3, 𝑡) 𝑛𝛼 = 0
or 𝑇 (𝑥1, 𝑥2, 𝑥3, 𝑡) = 0

(5)

(ii) The upper end boundary conditions, i.e., when(𝑥1, 𝑥2) ∈ 𝐷(𝐿):
𝑡3𝑖 (𝑥1, 𝑥2, 𝐿, 𝑡) = 0

or 𝑢𝑖 (𝑥1, 𝑥2, 𝐿, 𝑡) = 0,

𝑞3 (𝑥1, 𝑥2, 𝐿, 𝑡) = 0
or 𝑇 (𝑥1, 𝑥2, 𝐿, 𝑡) = 0

(6)

(iii) The lower base boundary conditions assimilable to
appropriate actions insisting on 𝐷(0), i.e., when(𝑥1, 𝑥2) ∈ 𝐷(0):

𝑡3𝑖 (𝑥1, 𝑥2, 0, 𝑡) = 𝑡𝑖 (𝑥1, 𝑥2, 𝑡)
or 𝑢𝑖 (𝑥1, 𝑥2, 0, 𝑡) = V𝑖 (𝑥1, 𝑥2, 𝑡) , (7)

𝑞3 (𝑥1, 𝑥2, 0, 𝑡) = 𝑄3 (𝑥1, 𝑥2, 𝑡)
or 𝑇 (𝑥1, 𝑥2, 0, 𝑡) = Θ (𝑥1, 𝑥2, 𝑡) (8)

where the functions 𝑡𝑖(𝑥1, 𝑥2, 𝑡), V𝑖(𝑥1, 𝑥2, 𝑡),𝑄3(𝑥1, 𝑥2, 𝑡), andΘ(𝑥1, 𝑥2, 𝑡) are assumed to be prescribed and sufficiently
smooth on 𝐷(0).

The initial-boundary value problem P̂ (we recall,
deduced indifferently from [12] or [13]) object of investigation
is structured as follows:

The transformed equations of motion

𝑡̂𝑗𝑖,𝑗 (𝑡) = 𝜌𝜕2𝑢̂𝑖𝜕𝑡2 (𝑡) in 𝐵 × (0, +∞) (9)

The transformed equation of energy

𝜌𝑇0 𝜕𝜂𝜕𝑡 (𝑡) = −𝑞𝑖,𝑖 (𝑡) in 𝐵 × (0, +∞) (10)

The transformed constitutive equations

𝑡̂𝑖𝑗 (𝑡) = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙 (𝑡) − 𝛽𝑖𝑗𝑇̂ (𝑡) in 𝐵 × [0, +∞) , (11)

𝜌𝜂 (𝑡) = 𝛽𝑖𝑗𝜀𝑖𝑗 (𝑡) + 𝑎𝑇̂ (𝑡) in 𝐵 × [0, +∞) , (12)
𝑞𝑖 (𝑡)
= −𝑘𝑖𝑗 (𝑇𝐼𝑉,𝑗 (𝑡) + 𝜏𝑇𝑇𝐼𝐼𝐼,𝑗 (𝑡) + 𝜏2𝑇2 𝑇𝐼𝐼,𝑗 (𝑡) + 𝜏3𝑇6 𝑇𝐼,𝑗 (𝑡))

in 𝐵 × [0, +∞)
(13)

The transformed geometrical equations

𝜀𝑖𝑗 (𝑡) = 12 (𝑢̂𝑖,𝑗 (𝑡) + 𝑢̂𝑗,𝑖 (𝑡)) in 𝐵 × [0, +∞) (14)

The ordered array Ŝ(x, 𝑡) = {𝑢̂𝑖, 𝑇̂, 𝜀𝑖𝑗, 𝑡̂𝑖𝑗, 𝜂, 𝑞𝑖} (x, 𝑡) defined
in 𝐵 × [0, +∞) and associated with the set of transformed
and nontrivial given data D̂ = {𝑡̂𝑖, V̂𝑖, 𝑄3, Θ̂} is identified as
the (unique (see [12])) solution of the initial-boundary value
problem P̂.

3. The Domain of Influence Theorem

Referring to the above defined three-dimensional region𝐵(𝑥3) and using (9)-(12) and (14) togetherwith the divergence
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theorem and the null upper end and lateral boundary condi-
tions, we get

𝑑𝑑𝑡 ∫
𝐵(𝑥3)

12 (𝜌𝜕𝑢̂𝑖𝜕𝑡 𝜕𝑢̂𝑖𝜕𝑡 + 𝐶𝑖𝑗𝑘𝑙𝜀𝑖𝑗𝜀𝑘𝑙 + 𝑎𝑇̂2)𝑑V
= ∫
𝐷(𝑥3)

( 1𝑇0 𝑞3𝑇̂ − 𝑡̂3𝑖 𝜕𝑢̂𝑖𝜕𝑡 ) 𝑑𝑎 + 1𝑇0 ∫𝐵(𝑥3) 𝑞𝑖𝑇̂,𝑖𝑑V,
(15)

and multiplying (15) by 𝑒−𝛿𝑡 we receive
𝑑𝑑𝑡 ∫
𝐵(𝑥3)

𝑒−𝛿𝑡2 (𝜌𝜕𝑢̂𝑖𝜕𝑡 𝜕𝑢̂𝑖𝜕𝑡 + 𝐶𝑖𝑗𝑘𝑙𝜀𝑖𝑗𝜀𝑘𝑙 + 𝑎𝑇̂2)𝑑V
+ 𝛿∫
𝐵(𝑥3)

𝑒−𝛿𝑡2 (𝜌𝜕𝑢̂𝑖𝜕𝑡 𝜕𝑢̂𝑖𝜕𝑡 + 𝐶𝑖𝑗𝑘𝑙𝜀𝑖𝑗𝜀𝑘𝑙 + 𝑎𝑇̂2)𝑑V

= ∫
𝐷(𝑥3)

𝑒−𝛿𝑡 ( 1𝑇0 𝑞3𝑇̂ − 𝑡̂3𝑖 𝜕𝑢̂𝑖𝜕𝑡 ) 𝑑𝑎
+ 1𝑇0 ∫𝐵(𝑥3) 𝑒

−𝛿𝑡𝑞𝑖𝑇̂,𝑖𝑑V.
(16)

The next step is to make explicit, with the aid of (3) and (13),
the last integral term of (16) through suitable handling of
the partial differentiations with respect to the time variable
and an appropriate manipulation of the coefficients. The aim
is to obtain an expression in which only products between
temperature variation gradients characterized by common
superscripts are present and, as highlighted in [13], this will
result in the emergence of time derivatives up to the order
four:

1𝑇0 ∫𝐵(𝑥3) 𝑒
−𝛿𝑡𝑞𝑖𝑇̂,𝑖𝑑V = − 𝜏4𝑞48𝑇0

𝑑4𝑑𝑡4 ∫𝐵(𝑥3) 𝑒
−𝛿𝑡𝑘𝑖𝑗𝑇𝐼𝑉,𝑗 𝑇𝐼𝑉,𝑖 𝑑V

− ( 𝜏4𝑞12𝑇0 𝛿 + 𝜏3𝑇 + 𝜏3𝑞12𝑇0 ) 𝑑3𝑑𝑡3 ∫𝐵(𝑥3) 𝑒
−𝛿𝑡𝑘𝑖𝑗𝑇𝐼𝑉,𝑗 𝑇𝐼𝑉,𝑖 𝑑V − 𝜏𝑇𝜏4𝑞48𝑇0

𝑑3𝑑𝑡3 ∫𝐵(𝑥3) 𝑒
−𝛿𝑡𝑘𝑖𝑗𝑇𝐼𝐼𝐼,𝑗 𝑇𝐼𝐼𝐼,𝑖 𝑑V

− ( 𝜏4𝑞8𝑇0 𝛿
2 + 𝜏3𝑇 + 𝜏3𝑞4𝑇0 𝛿 + 𝜏2𝑇 + 𝜏2𝑞4𝑇0 ) 𝑑2𝑑𝑡2 ∫𝐵(𝑥3) 𝑒

−𝛿𝑡𝑘𝑖𝑗𝑇𝐼𝑉,𝑗 𝑇𝐼𝑉,𝑖 𝑑V

− ( 𝜏𝑇𝜏4𝑞16𝑇0 𝛿 + 𝜏𝑇𝜏3𝑞 + 𝜏3𝑇𝜏𝑞12𝑇0 − 𝜏4𝑞12𝑇0)
𝑑2𝑑𝑡2 ∫𝐵(𝑥3) 𝑒

−𝛿𝑡𝑘𝑖𝑗𝑇𝐼𝐼𝐼,𝑗 𝑇𝐼𝐼𝐼,𝑖 𝑑V − 𝜏2𝑇𝜏4𝑞96𝑇0
𝑑2𝑑𝑡2 ∫𝐵(𝑥3) 𝑒

−𝛿𝑡𝑘𝑖𝑗𝑇𝐼𝐼,𝑗 𝑇𝐼𝐼,𝑖 𝑑V

− ( 𝜏4𝑞12𝑇0 𝛿
3 + 𝜏3𝑇 + 𝜏3𝑞4𝑇0 𝛿2 + 𝜏2𝑇 + 𝜏2𝑞2𝑇0 𝛿 + 𝜏𝑇 + 𝜏𝑞2𝑇0 ) 𝑑𝑑𝑡 ∫

𝐵(𝑥3)
𝑒−𝛿𝑡𝑘𝑖𝑗𝑇𝐼𝑉,𝑗 𝑇𝐼𝑉,𝑖 𝑑V

− ( 𝜏𝑇𝜏4𝑞16𝑇0 𝛿
2 + 𝜏𝑇𝜏3𝑞 + 𝜏3𝑇𝜏𝑞 − 𝜏4𝑞6𝑇0 𝛿 + 𝜏𝑇𝜏2𝑞 + 𝜏2𝑇𝜏𝑞4𝑇0 − 𝜏3𝑇 + 𝜏3𝑞4𝑇0 ) 𝑑𝑑𝑡 ∫

𝐵(𝑥3)
𝑒−𝛿𝑡𝑘𝑖𝑗𝑇𝐼𝐼𝐼,𝑗 𝑇𝐼𝐼𝐼,𝑖 𝑑V

− ( 𝜏2𝑇𝜏4𝑞48𝑇0 𝛿 + 𝜏2𝑇𝜏3𝑞 + 𝜏3𝑇𝜏2𝑞24𝑇0 − 𝜏𝑇𝜏4𝑞16𝑇0)
𝑑𝑑𝑡 ∫
𝐵(𝑥3)

𝑒−𝛿𝑡𝑘𝑖𝑗𝑇𝐼𝐼,𝑗 𝑇𝐼𝐼,𝑖 𝑑V − 𝜏3𝑇𝜏4𝑞288𝑇0
𝑑𝑑𝑡 ∫
𝐵(𝑥3)

𝑒−𝛿𝑡𝑘𝑖𝑗𝑇𝐼,𝑗𝑇𝐼,𝑖𝑑V

− ( 𝜏4𝑞48𝑇0 𝛿
4 + 𝜏3𝑇 + 𝜏3𝑞12𝑇0 𝛿3 + 𝜏2𝑇 + 𝜏2𝑞4𝑇0 𝛿2 + 𝜏𝑇 + 𝜏𝑞2𝑇0 𝛿 + 1𝑇0)∫

𝐵(𝑥3)
𝑒−𝛿𝑡𝑘𝑖𝑗𝑇𝐼𝑉,𝑗 𝑇𝐼𝑉,𝑖 𝑑V

− ( 𝜏𝑇𝜏4𝑞48𝑇0 𝛿
3 + 𝜏𝑇𝜏3𝑞 + 𝜏3𝑇𝜏𝑞 − 𝜏4𝑞12𝑇0 𝛿2 + 𝜏𝑇𝜏2𝑞 + 𝜏2𝑇𝜏𝑞 − 𝜏3𝑇 − 𝜏3𝑞4𝑇0 𝛿 + 𝜏𝑇𝜏𝑞𝑇0 − 𝜏2𝑇 + 𝜏2𝑞2𝑇0 )∫

𝐵(𝑥3)
𝑒−𝛿𝑡𝑘𝑖𝑗𝑇𝐼𝐼𝐼,𝑗 𝑇𝐼𝐼𝐼,𝑖 𝑑V

− ( 𝜏2𝑇𝜏4𝑞96𝑇0 𝛿
2 + 2𝜏2𝑇𝜏3𝑞 + 2𝜏3𝑇𝜏2𝑞 − 3𝜏𝑇𝜏4𝑞48𝑇0 𝛿 + 𝜏2𝑇𝜏2𝑞4𝑇0 + 𝜏4𝑞24𝑇0 −

𝜏𝑇𝜏3𝑞 + 𝜏3𝑇𝜏𝑞6𝑇0 )∫
𝐵(𝑥3)

𝑒−𝛿𝑡𝑘𝑖𝑗𝑇𝐼𝐼,𝑗 𝑇𝐼𝐼,𝑖 𝑑V

− ( 𝜏3𝑇𝜏4𝑞288𝑇0 𝛿 + 𝜏3𝑇𝜏3𝑞36𝑇0 −
𝜏2𝑇𝜏4𝑞48𝑇0)∫

𝐵(𝑥3)
𝑒−𝛿𝑡𝑘𝑖𝑗𝑇𝐼,𝑗𝑇𝐼,𝑖𝑑V.

(17)

At this point, in order to proceed, we need to set a threshold
value for the parameter 𝛿, which we select as follows:

𝛿 = 2𝑀 = 4max{𝜏𝑇 + 𝜏𝑞𝜏𝑇𝜏𝑞 − 2𝜏𝑇 + 𝜏𝑞 ,
3𝜏𝑇} . (18)
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It is fundamental to underline that 𝛿, chosen in this way, not
only results to be strictly positive but also makes the right-
hand side of (17) nonpositive. Then (as already mentioned in
[14] for the corresponding case relative to the orders selection𝑛 = 3, 𝑚 = 2, and confirming once again the validity of the
model) we underline that the above threshold value (18) able
to guarantee the nonpositivity of the RHS of (17) coincides

with what was found for the present model 𝑛 = 4, 𝑚 = 3
in [13], p. 837, investigating the corresponding continuous
dependence issue.

We insert now relation (17) into (16) and then, in view
of the null initial conditions, it is sufficient to integrate the
expression obtained four times with respect to the time
variable to get

∫𝑡
0
∫𝑠
0
∫𝑧
0

∫
𝐵(𝑥3)

𝑒−𝛿𝑟2 (𝜌𝜕𝑢̂𝑖𝜕𝑟 𝜕𝑢̂𝑖𝜕𝑟 + 𝐶𝑖𝑗𝑘𝑙𝜀𝑖𝑗𝜀𝑘𝑙 + 𝑎𝑇̂2)𝑑V 𝑑𝑟 𝑑𝑧 𝑑𝑠
+ ∫𝑡
0
∫𝑠
0
∫𝑧
0

∫𝑟
0
∫
𝐵(𝑥3)

𝛿𝑒−𝛿𝜉2 (𝜌𝜕𝑢̂𝑖𝜕𝜉 𝜕𝑢̂𝑖𝜕𝜉 + 𝐶𝑖𝑗𝑘𝑙𝜀𝑖𝑗𝜀𝑘𝑙 + 𝑎𝑇̂2)𝑑V 𝑑𝜉 𝑑𝑟 𝑑𝑧 𝑑𝑠 + 𝜏4𝑞48𝑇0 ∫𝐵(𝑥3) 𝑒
−𝛿𝑡𝑘𝑖𝑗𝑇𝐼𝑉,𝑗 𝑇𝐼𝑉,𝑖 𝑑V

+ ( 𝜏4𝑞12𝑇0 𝛿 + 𝜏3𝑇 + 𝜏3𝑞12𝑇0 )∫𝑡
0
∫
𝐵(𝑥3)

𝑒−𝛿𝑠𝑘𝑖𝑗𝑇𝐼𝑉,𝑗 𝑇𝐼𝑉,𝑖 𝑑V 𝑑𝑠 + 𝜏𝑇𝜏4𝑞48𝑇0 ∫
𝑡

0
∫
𝐵(𝑥3)

𝑒−𝛿𝑠𝑘𝑖𝑗𝑇𝐼𝐼𝐼,𝑗 𝑇𝐼𝐼𝐼,𝑖 𝑑V 𝑑𝑠

+ ( 𝜏4𝑞8𝑇0 𝛿
2 + 𝜏3𝑇 + 𝜏3𝑞4𝑇0 𝛿 + 𝜏2𝑇 + 𝜏2𝑞4𝑇0 )∫𝑡

0
∫𝑠
0
∫
𝐵(𝑥3)

𝑒−𝛿𝑧𝑘𝑖𝑗𝑇𝐼𝑉,𝑗 𝑇𝐼𝑉,𝑖 𝑑V 𝑑𝑧 𝑑𝑠

+ ( 𝜏𝑇𝜏4𝑞16𝑇0 𝛿 + 𝜏𝑇𝜏3𝑞 + 𝜏3𝑇𝜏𝑞12𝑇0 − 𝜏4𝑞12𝑇0)∫𝑡
0
∫𝑠
0
∫
𝐵(𝑥3)

𝑒−𝛿𝑧𝑘𝑖𝑗𝑇𝐼𝐼𝐼,𝑗 𝑇𝐼𝐼𝐼,𝑖 𝑑V 𝑑𝑧 𝑑𝑠 + 𝜏2𝑇𝜏4𝑞96𝑇0 ∫
𝑡

0
∫𝑠
0
∫
𝐵(𝑥3)

𝑒−𝛿𝑧𝑘𝑖𝑗𝑇𝐼𝐼,𝑗 𝑇𝐼𝐼,𝑖 𝑑V 𝑑𝑧 𝑑𝑠

+ ( 𝜏4𝑞12𝑇0 𝛿
3 + 𝜏3𝑇 + 𝜏3𝑞4𝑇0 𝛿2 + 𝜏2𝑇 + 𝜏2𝑞2𝑇0 𝛿 + 𝜏𝑇 + 𝜏𝑞2𝑇0 )∫𝑡

0
∫𝑠
0
∫𝑧
0

∫
𝐵(𝑥3)

𝑒−𝛿𝑟𝑘𝑖𝑗𝑇𝐼𝑉,𝑗 𝑇𝐼𝑉,𝑖 𝑑V 𝑑𝑟 𝑑𝑧 𝑑𝑠

+ ( 𝜏𝑇𝜏4𝑞16𝑇0 𝛿
2 + 𝜏𝑇𝜏3𝑞 + 𝜏3𝑇𝜏𝑞 − 𝜏4𝑞6𝑇0 𝛿 + 𝜏𝑇𝜏2𝑞 + 𝜏2𝑇𝜏𝑞4𝑇0 − 𝜏3𝑇 + 𝜏3𝑞4𝑇0 )∫𝑡

0
∫𝑠
0
∫𝑧
0

∫
𝐵(𝑥3)

𝑒−𝛿𝑟𝑘𝑖𝑗𝑇𝐼𝐼𝐼,𝑗 𝑇𝐼𝐼𝐼,𝑖 𝑑V 𝑑𝑟 𝑑𝑧 𝑑𝑠

+ ( 𝜏2𝑇𝜏4𝑞48𝑇0 𝛿 + 𝜏2𝑇𝜏3𝑞 + 𝜏3𝑇𝜏2𝑞24𝑇0 − 𝜏𝑇𝜏4𝑞16𝑇0)∫𝑡
0
∫𝑠
0
∫𝑧
0

∫
𝐵(𝑥3)

𝑒−𝛿𝑟𝑘𝑖𝑗𝑇𝐼𝐼,𝑗 𝑇𝐼𝐼,𝑖 𝑑V 𝑑𝑟 𝑑𝑧 𝑑𝑠

+ 𝜏3𝑇𝜏4𝑞288𝑇0 ∫
𝑡

0
∫𝑠
0
∫𝑧
0

∫
𝐵(𝑥3)

𝑒−𝛿𝑟𝑘𝑖𝑗𝑇𝐼,𝑗𝑇𝐼,𝑖𝑑V 𝑑𝑟 𝑑𝑧 𝑑𝑠

+ ( 𝜏4𝑞48𝑇0 𝛿
4 + 𝜏3𝑇 + 𝜏3𝑞12𝑇0 𝛿3 + 𝜏2𝑇 + 𝜏2𝑞4𝑇0 𝛿2 + 𝜏𝑇 + 𝜏𝑞2𝑇0 𝛿 + 1𝑇0)∫𝑡

0
∫𝑠
0
∫𝑧
0

∫𝑟
0
∫
𝐵(𝑥3)

𝑒−𝛿𝜉𝑘𝑖𝑗𝑇𝐼𝑉,𝑗 𝑇𝐼𝑉,𝑖 𝑑V 𝑑𝜉 𝑑𝑟 𝑑𝑧 𝑑𝑠

+ ( 𝜏𝑇𝜏4𝑞48𝑇0 𝛿
3 + 𝜏𝑇𝜏3𝑞 + 𝜏3𝑇𝜏𝑞 − 𝜏4𝑞12𝑇0 𝛿2 + 𝜏𝑇𝜏2𝑞 + 𝜏2𝑇𝜏𝑞 − 𝜏3𝑇 − 𝜏3𝑞4𝑇0 𝛿 + 𝜏𝑇𝜏𝑞𝑇0 − 𝜏2𝑇 + 𝜏2𝑞2𝑇0 )

× ∫𝑡
0
∫𝑠
0
∫𝑧
0

∫𝑟
0
∫
𝐵(𝑥3)

𝑒−𝛿𝜉𝑘𝑖𝑗𝑇𝐼𝐼𝐼,𝑗 𝑇𝐼𝐼𝐼,𝑖 𝑑V 𝑑𝜉 𝑑𝑟 𝑑𝑧 𝑑𝑠

+ ( 𝜏2𝑇𝜏4𝑞96𝑇0 𝛿
2 + 2𝜏2𝑇𝜏3𝑞 + 2𝜏3𝑇𝜏2𝑞 − 3𝜏𝑇𝜏4𝑞48𝑇0 𝛿 + 𝜏4𝑞24𝑇0 +

𝜏2𝑇𝜏2𝑞4𝑇0 − 𝜏𝑇𝜏3𝑞 + 𝜏3𝑇𝜏𝑞6𝑇0 )
× ∫𝑡
0
∫𝑠
0
∫𝑧
0

∫𝑟
0
∫
𝐵(𝑥3)

𝑒−𝛿𝜉𝑘𝑖𝑗𝑇𝐼𝐼,𝑗 𝑇𝐼𝐼,𝑖 𝑑V 𝑑𝜉 𝑑𝑟 𝑑𝑧 𝑑𝑠

+ ( 𝜏3𝑇𝜏4𝑞288𝑇0 𝛿 + 𝜏3𝑇𝜏3𝑞36𝑇0 −
𝜏2𝑇𝜏4𝑞48𝑇0)∫𝑡

0
∫𝑠
0
∫𝑧
0

∫𝑟
0
∫
𝐵(𝑥3)

𝑒−𝛿𝜉𝑘𝑖𝑗𝑇𝐼,𝑗𝑇𝐼,𝑖𝑑V 𝑑𝜉 𝑑𝑟 𝑑𝑧 𝑑𝑠
= ∫𝑡
0
∫𝑠
0
∫𝑧
0

∫𝑟
0
∫
𝐷(𝑥3)

𝑒−𝛿𝜉 ( 1𝑇0 𝑞3𝑇̂ − 𝑡̂3𝑖 𝜕𝑢̂𝑖𝜕𝜉 ) 𝑑𝑎 𝑑𝜉 𝑑𝑟 𝑑𝑧 𝑑𝑠.

(19)
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Subsequently, to the unique solution Ŝ(x, 𝑡) of the initial-
boundary value problem P̂ we associate, for every possible
value of the variable 𝑥3, the following functionalJ𝛿(𝑥3, 𝑡):
J𝛿 (𝑥3, 𝑡)
= −∫𝑡
0
∫𝑠
0
∫𝑧
0

∫𝑟
0
∫
𝐷(𝑥3)

𝑒−𝛿𝜉 (𝑡̂3𝑖 𝜕𝑢̂𝑖𝜕𝜉 − 1𝑇0 𝑞3𝑇̂) 𝑑𝑎 𝑑𝜉 𝑑𝑟 𝑑𝑧 𝑑𝑠
∀𝑡 ≥ 0.

(20)

Some important features of the above functionalJ𝛿(𝑥3, 𝑡)
can then be easily shown.

Lemma 1. Under the hypotheses 𝜌, 𝑎 > 0, 𝐶𝑖𝑗𝑘𝑙, 𝑘𝑖𝑗 positive
definite tensors and selecting for 𝛿 the threshold value defined in
(18),J𝛿(𝑥3, 𝑡) is not increasing with respect to the 𝑥3 variable,
or in other words 𝜕J𝛿/𝜕𝑥3 ≤ 0. Moreover, J𝛿(𝑥3, 𝑡) can be
identified as a measure for the (unique) solution Ŝ(x, 𝑡) of the
initial-boundary value problem P̂, in the sense that it turns
out to be not negative for every possible value of the variables𝑥3 and 𝑡.
Proof. In order to prove that 𝜕J𝛿/𝜕𝑥3 ≤ 0, it is sufficient to
remember how the volume 𝐵(𝑥3) is structured and evaluate,
starting from (19), the partial derivative of J𝛿(𝑥3, 𝑡) with
respect to the 𝑥3 variable: it is therefore evident that, under
the hypotheses at issue, 𝜕J𝛿/𝜕𝑥3 is not positive. Conse-
quently, in view of the null upper end boundary conditions
and of definition (20) ofJ𝛿(𝑥3, 𝑡) we have

J𝛿 (𝑥3, 𝑡) ≥ J𝛿 (𝐿, 𝑡) = 0, (21)

for every possible value of 𝑥3 and 𝑡. Specifically, it is easy to
prove that the condition J𝛿(𝑥3, 𝑡) = 0 necessarily correlates
to a null solution for the considered initial-boundary value
problem.

The following theorem can then be proved, concerning
the solution S(x, 𝑡) of the initial-boundary value problemP

(no ℎ𝑎𝑡) from which the problem P̂ derives, in view of the
considered hypothesis of linearity (see again [12] or [13] for
details).

Theorem2 (existence of a domain of influence). LetS(x, 𝑡) ={𝑢𝑖, 𝑇, 𝜀𝑖𝑗, 𝑡𝑖𝑗, 𝜂, 𝑞𝑖} (x, 𝑡) be the solution of the initial-boundary
value problem P. Let 𝜌 and 𝑎 be greater than zero, let 𝐶𝑖𝑗𝑘𝑙
and 𝑘𝑖𝑗 be positive definite tensors, and let 𝛿 be identified with
the threshold value (18). Moreover, suppose that the cylinder𝐵 is subjected on its lower base 𝐷(0) to the external actions
described through (7) and (8). Then there exists a positive
constant 𝜎, dimensionally expressed by a speed, such that

S (x, 𝑡) = {𝑢𝑖, 𝑇, 𝜀𝑖𝑗, 𝑡𝑖𝑗, 𝜂, 𝑞𝑖} (x, 𝑡) = 0
for every x ∈ 𝐵 such that 𝑥3 ≥ 𝜎𝑡; (22)

i.e., the whole activity in the cylinder 𝐵 due to the presence of
the assigned data acting on its base 𝐷(0) vanishes at distances
from 𝐷(0) greater than or equal to 𝜎𝑡.
Proof. Avoiding, just for reasons of synthesis, reporting the
explicit expression of 𝜕J𝛿/𝜕𝑥3, anyway easily obtainable
from (19), let us estimate instead the partial derivative of
J𝛿(𝑥3, 𝑡) with respect to the time variable 𝑡. To do this, we
recall that

2𝑎𝑏 ≤ 𝜀𝑎2 + 1𝜀 𝑏2 ∀𝑎, 𝑏 ∈ R, ∀𝜀 > 0, (23)

and, thus, from the definition (20) we get

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜕𝜕𝑡J𝛿 (𝑥3, 𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤
12 ∫𝑡
0
∫𝑠
0
∫𝑧
0

∫
𝐷(𝑥3)

𝑒−𝛿𝑟 [𝜀1𝜌 𝑡̂3𝑖 𝑡̂3𝑖 + 𝜌𝜀1
𝜕𝑢̂𝑖𝜕𝑟 𝜕𝑢̂𝑖𝜕𝑟 + 𝜀2𝑎𝑇20 𝑞

2
3 + 𝑎𝜀2 𝑇̂

2]𝑑𝑎 𝑑𝑟 𝑑𝑧 𝑑𝑠 ∀𝜀1, 𝜀2 > 0. (24)

In order to estimate the right-hand side of (24) (in particular,
the terms containing 𝑡̂3𝑖 𝑡̂3𝑖 and 𝑞23) we first take into account
constitutive equation (11) and denote by 𝜇𝑀, positive and
constant, the greatest elastic modulus of the constitutive
tensor 𝐶𝑖𝑗𝑘𝑙 such that for every 𝜉𝑖𝑗 it is 𝐶𝑖𝑗𝑘𝑙𝜉𝑖𝑗𝜉𝑘𝑙 ≤ 𝜇𝑀𝜉𝑖𝑗𝜉𝑖𝑗.
In view of the arithmetic-geometric mean inequality, the
following relation is valid:

𝑡̂3𝑖 𝑡̂3𝑖 ≤ 𝑡̂𝑖𝑗 𝑡̂𝑖𝑗 ≤ (1 + 𝜀) 𝜇𝑀𝐶𝑖𝑗𝑘𝑙𝜀𝑖𝑗𝜀𝑘𝑙 + (1 + 1𝜀 ) 𝐵2𝑇̂2,
∀𝜀 > 0 and where 𝐵2 = 𝛽𝑖𝑗𝛽𝑖𝑗 > 0.

(25)

On the other side, recalling constitutive equation (13), dis-
tributing (−𝑘𝑖𝑗𝑞𝑖) with respect to the terms of the sum, and
then applying the Cauchy-Schwarz inequality we can write

𝑞𝑖𝑞𝑖 = −𝑘𝑖𝑗𝑞𝑖 (𝑇𝐼𝑉,𝑗 (𝑡) + 𝜏𝑇𝑇𝐼𝐼𝐼,𝑗 (𝑡) + 𝜏2𝑇2 𝑇𝐼𝐼,𝑗 (𝑡)
+ 𝜏3𝑇6 𝑇𝐼,𝑗 (𝑡)) ≤ (𝑘𝑟𝑠𝑘𝑟𝑠)1/2 (𝑇𝐼𝑉,𝑗 𝑞𝑖𝑇𝐼𝑉,𝑗 𝑞𝑖)1/2

+ (𝜏2𝑇𝑘𝑟𝑠𝑘𝑟𝑠)1/2 (𝑇𝐼𝐼𝐼,𝑗 𝑞𝑖𝑇𝐼𝐼𝐼,𝑗 𝑞𝑖)1/2 + (𝜏4𝑇4 𝑘𝑟𝑠𝑘𝑟𝑠)
1/2

⋅ (𝑇𝐼𝐼,𝑗 𝑞𝑖𝑇𝐼𝐼,𝑗 𝑞𝑖)1/2 + (𝜏6𝑇36𝑘𝑟𝑠𝑘𝑟𝑠)
1/2 (𝑇𝐼,𝑗𝑞𝑖𝑇𝐼,𝑗𝑞𝑖)1/2

= (𝑞𝑖𝑞𝑖)1/2 [(𝑘𝑟𝑠𝑘𝑟𝑠)1/2 (𝑇𝐼𝑉,𝑗 𝑇𝐼𝑉,𝑗 )1/2

+ 𝜏𝑇 (𝑘𝑟𝑠𝑘𝑟𝑠)1/2 (𝑇𝐼𝐼𝐼,𝑗 𝑇𝐼𝐼𝐼,𝑗 )1/2
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+ 𝜏2𝑇2 (𝑘𝑟𝑠𝑘𝑟𝑠)1/2 (𝑇𝐼𝐼,𝑗 𝑇𝐼𝐼,𝑗 )1/2

+ 𝜏3𝑇6 (𝑘𝑟𝑠𝑘𝑟𝑠)1/2 (𝑇𝐼,𝑗𝑇𝐼,𝑗)1/2] ,
(26)

and then through squaring we get

𝑞23 ≤ 𝑞𝑖𝑞𝑖 ≤ 4 [𝑘𝑟𝑠𝑘𝑟s (𝑇𝐼𝑉,𝑗 𝑇𝐼𝑉,𝑗 ) + 𝜏2𝑇𝑘𝑟𝑠𝑘𝑟𝑠 (𝑇𝐼𝐼𝐼,𝑗 𝑇𝐼𝐼𝐼,𝑗 )
+ 𝜏4𝑇4 𝑘𝑟𝑠𝑘𝑟𝑠 (𝑇𝐼𝐼,𝑗 𝑇𝐼𝐼,𝑗 ) + 𝜏6𝑇36𝑘𝑟𝑠𝑘𝑟𝑠 (𝑇𝐼,𝑗𝑇𝐼,𝑗)] .

(27)

In addition, identifyingwith 𝑘𝑚 the smallest (and strictly pos-
itive) eigenvalue of the conductivity tensor 𝑘𝑖𝑗, the following
relations are valid:

𝑇𝐼𝑉,𝑗 𝑇𝐼𝑉,𝑗 ≤ 1𝑘𝑚 𝑘𝑖𝑗𝑇
𝐼𝑉
,𝑗 𝑇𝐼𝑉,𝑖 ,

𝑇𝐼𝐼𝐼,𝑗 𝑇𝐼𝐼𝐼,𝑗 ≤ 1𝑘𝑚 𝑘𝑖𝑗𝑇
𝐼𝐼𝐼
,𝑗 𝑇𝐼𝐼𝐼,𝑖 ,

𝑇𝐼𝐼,𝑗 𝑇𝐼𝐼,𝑗 ≤ 1𝑘𝑚 𝑘𝑖𝑗𝑇
𝐼𝐼
,𝑗 𝑇𝐼𝐼,𝑖 ,

𝑇𝐼,𝑗𝑇𝐼,𝑗 ≤ 1𝑘𝑚 𝑘𝑖𝑗𝑇
𝐼
,𝑗𝑇𝐼,𝑖 ,

(28)

and so from (24) it follows that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜕𝜕𝑡J𝛿 (𝑥3, 𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤
12 ∫𝑡
0
∫𝑠
0
∫𝑧
0

∫
𝐷(𝑥3)

𝑒−𝛿𝑟 { 𝜌𝜀1
𝜕𝑢̂𝑖𝜕𝑟 𝜕𝑢̂𝑖𝜕𝑟

+ 𝜀1 (1 + 𝜀) 𝜇𝑀𝜌 𝐶𝑖𝑗𝑘𝑙𝜀𝑖𝑗𝜀𝑘𝑙 + [ 1𝜀2 +
𝐵2𝜀1𝑎𝜌 (1 + 1𝜀 )]

⋅ 𝑎𝑇̂2 + (4𝜀2𝑇0
𝑘𝑟𝑠𝑘𝑟𝑠𝑎𝑘𝑚 )( 1𝑇0 𝑘𝑖𝑗𝑇

𝐼𝑉
,𝑗 𝑇𝐼𝑉,𝑖

+ 𝜏2𝑇𝑇0 𝑘𝑖𝑗𝑇
𝐼𝐼𝐼
,𝑗 𝑇𝐼𝐼𝐼,𝑖 + 𝜏4𝑇4𝑇0 𝑘𝑖𝑗𝑇

𝐼𝐼
,𝑗 𝑇𝐼𝐼,𝑖

+ 𝜏6𝑇36𝑇0 𝑘𝑖𝑗𝑇
𝐼
,𝑗𝑇𝐼,𝑖)}𝑑𝑎𝑑𝑟 𝑑𝑧 𝑑𝑠

∀𝜀, 𝜀1, 𝜀2 > 0.
(29)

Assuming again for 𝛿 the threshold value (18) and recon-
sidering the partial derivative 𝜕J𝛿/𝜕𝑥3, but retaining this
time only the terms with a number of integrals equal to that
characterizing (29), we reach the following estimate:

− 𝜕𝜕𝑥3J𝛿 (𝑥3, 𝑡) ≥ 12 ∫𝑡
0
∫𝑠
0
∫𝑧
0

∫
𝐷(𝑥3)

𝑒−𝛿𝑟 {𝜌𝜕𝑢̂𝑖𝜕𝑟 𝜕𝑢̂𝑖𝜕𝑟
+ 𝐶𝑖𝑗𝑘𝑙𝜀𝑖𝑗𝜀𝑘𝑙 + 𝑎𝑇̂2 + [𝜏4𝑞6 𝛿3 + 𝜏3𝑇 + 𝜏3𝑞2 𝛿2

+ (𝜏2𝑇 + 𝜏2𝑞) 𝛿 + 𝜏𝑇 + 𝜏𝑞] 1𝑇0 𝑘𝑖𝑗𝑇
𝐼𝑉
,𝑗 𝑇𝐼𝑉,𝑖 + (𝜏𝑇𝜏4𝑞8 𝛿2

+ 𝜏𝑇𝜏3𝑞 + 𝜏3𝑇𝜏𝑞 − 𝜏4𝑞3 𝛿 + 𝜏𝑇𝜏2𝑞 + 𝜏2𝑇𝜏𝑞2 − 𝜏3𝑇 + 𝜏3𝑞2 )

⋅ 1𝑇0 𝑘𝑖𝑗𝑇
𝐼𝐼𝐼
,𝑗 𝑇𝐼𝐼𝐼,𝑖 + (𝜏2𝑇𝜏4𝑞24 𝛿 + 𝜏2𝑇𝜏3𝑞 + 𝜏3𝑇𝜏2𝑞12

− 𝜏𝑇𝜏4𝑞8 ) 1𝑇0 𝑘𝑖𝑗𝑇
𝐼𝐼
,𝑗 𝑇𝐼𝐼,𝑖 + 𝜏3𝑇𝜏4𝑞144 1𝑇0

⋅ 𝑘𝑖𝑗𝑇𝐼,𝑗𝑇𝐼,𝑖}𝑑𝑎𝑑𝑟 𝑑𝑧 𝑑𝑠 ≥ 0.

(30)

At this point it is sufficient to define

Ψ = max
{{{

12
2𝜏4𝑞𝛿3 + 6 (𝜏3𝑇 + 𝜏3𝑞) 𝛿2 + 12 (𝜏2𝑇 + 𝜏2𝑞) 𝛿 + 12 (𝜏𝑇 + 𝜏𝑞) ,

24𝜏2𝑇3𝜏𝑇𝜏4𝑞𝛿2 + 8 (𝜏𝑇𝜏3𝑞 + 𝜏3𝑇𝜏𝑞 − 𝜏4𝑞) 𝛿 + 12 (𝜏𝑇𝜏2𝑞 + 𝜏2𝑇𝜏𝑞 − 𝜏3𝑇 − 𝜏3𝑞) , 6𝜏4𝑇𝜏2𝑇𝜏4𝑞𝛿 + 2 (𝜏2𝑇𝜏3𝑞 + 𝜏3𝑇𝜏2𝑞) − 3𝜏𝑇𝜏4𝑞 ,
4𝜏3𝑇𝜏4𝑞

}}}
sup
𝐷(𝑥3)

𝑘𝑟𝑠𝑘𝑟𝑠𝑎𝑘𝑚
(31)

and to impose the equality between the following coefficients,
which is a consequence of the comparison between the esti-
mates involving the partial derivatives ofJ𝛿(𝑥3, 𝑡)with respect
to 𝑥3 and 𝑡. We denote them by 𝜎 (strictly positive) and set

1𝜀1 = 𝜀1 (1 + 𝜀) 𝜇𝑀𝜌 = 1𝜀2 +
𝐵2𝜀1𝑎𝜌 (1 + 1𝜀 ) = 4𝜀2𝑇0 Ψ

= 𝜎.
(32)
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Figure 1: The behavior of the parameter 𝜎 with respect to both the relaxation times 𝜏𝑇 and 𝜏𝑞.

It follows that

𝜀1 = √ 𝜌(1 + 𝜀) 𝜇𝑀 ,

𝜀2 = 𝑇04Ψ√ (1 + 𝜀) 𝜇𝑀𝜌 ,
(33)

𝜀 being the positive root of the algebraic equation
𝜀2 + (1 − 𝑇0𝐵2 + 4𝜌𝑎Ψ𝑎𝑇0𝜇𝑀 ) 𝜀 − 𝐵2𝑎𝜇𝑀 = 0. (34)

With these choices, comparing relations (29) and (30)
we reach the following differential inequality, valid for all(𝑥3, 𝑡) ∈ (0, 𝐿) × (0,∞):

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜕𝜕𝑡J𝛿 (𝑥3, 𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 + 𝜎 𝜕𝜕𝑥3J𝛿 (𝑥3, 𝑡) ≤ 0. (35)

Such a differential inequality can be integrated, for example,
as in [17] in order to easily deduce that

J𝛿 (𝑥3, 𝑡) = 0 for every (𝑥3, 𝑡) ∈ (𝜎𝑡, 𝐿) × (0,∞) , (36)

a condition that evidently completes the proof of the theorem.
The existence of an influence domain of the external datawith
respect to the 𝑥3 coordinate remains therefore proved.

4. Final Remarks and Illustrative Simulations

It is worth noting that the investigation techniques used
in this article, although deriving from the classical linear
thermoelasticity, turn out to be particularly suitable for
the handling of innovative thermomechanical models such
as the one here treated: in this regard it is not trivial to
underline that, again in the linear thermoelastic field, there

are numerous examples in the literature concerning the study
of mixed initial-boundary value problems also involving very
peculiar material structures (see, for instance, [18, 19]). We
also report that, with reference to the investigation of the
spatial behavior of the solutions for time-differential DPL
deformable thermal conductors, the analysis proposed in this
article has been further deepened in [20], currently in press.

In order to provide useful elements for a complete
understanding of the heat exchange mechanisms able to
take into account also elastic deformations on the micro-
/nanoscale, the influence of the DPL high-order effects up
to 𝑛 = 4, 𝑚 = 3 (directly related to the number of heat
carriers) on the depth of the influence domain has been taken
into account with the aid of a properly formulated initial-
boundary value problem. To this aim a cylindrical domain𝐵 has been considered, although the resulting parameter 𝜎
(to be understood as the signal transmission speed) able
to completely describe the abovementioned domain depth
results indeed to be

(i) independent of the shape of the region 𝐵
(ii) depending only on the features of the selected mate-

rial, among which there are the constitutive coeffi-
cients and tensors and the relaxation times

Imagining the lower base of the deformable, anisotropic,
and inhomogeneous cylinder 𝐵 excited by an appropriate
thermomechanical perturbation, the spatial behavior of the
solution in terms of existence and extension of an influence
domain has been investigated.

In the attempt to apply the result obtained to a concrete
estimate, and in continuity with what was done in [14], a
homogeneous and isotropic single-layer graphene sheet at the
temperature of 300 𝐾 has been considered, showing a first
graphic simulation in which the signal transmission speed 𝜎
is given with respect to both the relaxation times 𝜏𝑞 and 𝜏𝑇
(Figure 1).Thematerial features of the considered single-layer
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Figure 2: The behavior of the parameter 𝜎 for the expansion orders 4, 3 (continuous red line) with respect to the relaxation time 𝜏𝑞, having
selected 𝜏𝑇 = 2 × 10−11𝑠, in comparison with the expansion orders 3, 2 (dash-dot green line) and 2, 1 (dashed blue line).
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Figure 3: The behavior of the parameter 𝜎 for the expansion orders 4, 3 (continuous red line) with respect to the relaxation time 𝜏𝑇, having
selected 𝜏𝑞 = 2 × 10−11𝑠, in comparison with the expansion orders 3, 2 (dash-dot green line) and 2, 1 (dashed blue line).

graphene are summarized in Table 1 (in this regard, the reader
can refer to [21] and to the references therein).

In order to integrate and facilitate a direct comparison
with the results shown in [14], the same significant combi-
nation of intervals has been considered for 𝜏𝑞 and for 𝜏𝑇:

1.0 × 10−12 𝑠 ≤ 𝜏𝑞 ≤ 1.0 × 10−11 𝑠, 1.0 × 10−10 𝑠 ≤ 𝜏𝑇 ≤1.0 × 10−9 𝑠. Subsequently, in Figures 2 and 3 the value of 𝜎 is
given separately with respect to 𝜏𝑞 and 𝜏𝑇, showing in parallel
also the homologous behaviors obtained in [14] relative to the
expansion orders 𝑛 = 3, 𝑚 = 2 and 𝑛 = 2, 𝑚 = 1. The value



10 Mathematical Problems in Engineering

Table 1

Mass density 2.35 × 103 𝑘𝑔 𝑚−3
Thermal conductivity 3.10 × 103𝑊 𝑚−1𝐾−1
Specific heat capacity 7.70 × 102 𝐽 𝑘𝑔−1𝐾−1
Elastic modulus 1.05 × 1012𝑁 𝑚−2
Shear modulus 4.45 × 1011𝑁 𝑚−2
Thermal expansion coefficient −4.00 × 10−6𝐾−1

2 × 10−11𝑠 has been selected to fix, alternately, 𝜏𝑇 and 𝜏𝑞 in
Figures 2 and 3, being possible to appreciate how the depth of
the signal is further increased if 𝑛 = 4, 𝑚 = 3 are selected as
done in the present article.

Again as highlighted in [14] for the model 𝑛 = 3, 𝑚 =2, but in this case even more markedly, we can observe in
Figure 1 that, for increasing values of 𝜏𝑇, a significantly shorter
relaxation time 𝜏𝑞 makes the penetration depth of the signal
extremely wide: also in this case, in fact, in view of the
expansion orders involved, a suitable combination of values
for the phase lags makes the model tend to assume almost
a diffusive behavior. For the fixed value of 𝜏𝑇 (Figure 2) a
sudden enlargement of the amplitude of the influence domain
for decreasing values of 𝜏𝑞 is detectable. We recall that this is
due to the fact that the transmission speed becomes extremely
high, bringing the behavior of the model very close to the
classical thermoelasticity (let us recall the paradox of the
infinite propagation speed). Also in Figure 3, after having
selected 𝜏𝑞 = 2 × 10−11 𝑠, the direct proportionality between𝜎 and 𝜏𝑇 is preserved.

In conclusion, we have proved that the latter feature
highlighted by Tzou in [2] (Chapter 12) up to the orders
selection 𝑛 = 2, 𝑚 = 1 “As a general trend, the high-order
waves and diffusion (corresponding to higher-order effects in𝜏𝑇 and 𝜏𝑞) gradually increase the temperature level in the heat-
affected zone. When thermal waves are activated [as in the
case here considered] . . . the physical domain of the heat-
affected zone gradually increases as well” is preserved also
in the context of the linear thermoelasticity if we cross the
sequence of expansion orders 𝑛 = 2,𝑚 = 1; 𝑛 = 3,𝑚 = 2; 𝑛 =4, 𝑚 = 3. We also specify that all the proposed simulations,
performed throughWolframMathematica 9, were conducted
under the assumption of flux-precedence.
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[15] S. Chiriţă, C. D’Apice, and V. Zampoli, “The time differential
three-phase-lag heat conduction model:Thermodynamic com-
patibility and continuous dependence,” International Journal of
Heat and Mass Transfer, vol. 102, pp. 226–232, 2016.

[16] C. D’Apice, S. Chirita, and V. Zampoli, “On the well-posedness
of the time differential three-phase-lag thermoelasticitymodel,”
Archives of Mechanics, vol. 68, no. 5, pp. 371–393, 2016.



Mathematical Problems in Engineering 11

[17] V. Zampoli and A. Landi, “A domain of influence result about
the time differential three-phase-lag thermoelastic model,”
Journal of Thermal Stresses, vol. 40, no. 1, pp. 108–120, 2017.

[18] M.Marin, “Cesaromeans in thermoelasticity of dipolar bodies,”
Acta Mechanica, vol. 122, no. 1-4, pp. 155–168, 1997.
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