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Abstract: Algorithms for the simulation of sample paths of Gauss–Markov processes, 
restricted from below by particular time-dependent reflecting boundaries, are 
proposed. These algorithms are used to build the histograms of first passage time 
density through specified boundaries and for the estimation of related moments. 
Particular attention is dedicated to restricted Wiener and Ornstein–Uhlenbeck 
processes due to their central role in the class of Gauss–Markov processes.
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1. Introduction
Diffusion and Gauss–Markov processes in the presence of a reflecting boundary are widely used for 
modeling continuous time phenomena in many scientific fields, such as neurosciences, mathemati-
cal biology, finance, and queueing systems. In some instances, these processes are derived as ap-
proximations of discrete-state Markovian models which, although more appropriate in describing 
the behavior of the real system, are often hard to study from both analytical and computational 
points of view (cf., for instance, Chen & Whitt, 1993; Harrison, 1985; Kushner, 2001).

Typical situations arise in population dynamics with immigration in which the total number of in-
dividuals is bound to take non-negative values, so it is necessary to impose a reflection condition at 
zero state (cf. Renshaw, 2011; Ricciardi, 1986 and references therein).
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In heavy traffic conditions, the dynamic of a queue can be approximated by a diffusion process 
with a zero reflecting boundary (cf. Di Crescenzo, Giorno, Nobile, & Ricciardi, 2003; Di Crescenzo & 
Nobile, 1995; Iglehart & Whitt, 1970; Reiman, 1984; Ward & Glynn, 2005). In the financial applica-
tions, diffusion models have been used to capture the stochastic movement of the short-term inter-
est rate in the market, for which negative values are not allowed (cf. Cox, Ingersoll, & Ross, 1985; 
Goldstein & Keirstead, 1997; Han, Hu, & Lee, 2016; Linetsky, 2005).

In the neuronal context, the membrane potential can be modeled by diffusion or Gauss–Markov 
processes restricted by a lower reflecting boundary that can be interpreted as a neuronal reversal 
hyperpolarization potential (cf., for instance, Buonocore, Caputo, Nobile, & Pirozzi, 2014,2015; 
Ditlevsen & Lánský, 2006; Gerstner & Kistler, 2002; Giorno, Nobile, Pirozzi, & Ricciardi, 2003; Inoue & 
Doi, 2007; Lánský & Ditlevsen, 2008).

In the previous types of instances, the distribution of first passage times (FPT) is required to de-
scribe events such as the emptying of a queue, the breakdown of a device, the option pricing, and 
the firings of a neuron (see, Abrahams 1986; Blake & Lindsey, 1973; Buonocore, Caputo, Pirozzi, & 
Ricciardi, 2011; Darling & Siegert, 1953; Molini, Talkner, Katul, & Porporato, 2011). Despite the vast-
ness and the relevance of the applications of the FPT, explicit analytic solutions for the FPT densities 
are not known except for very few cases (see, Abundo, 2014; Borodin & Salminen, 2002; Buonocore 
et al., 2014; Cox & Miller, 1970; Di Crescenzo, Giorno, & Nobile, 2016; Giorno, Nobile, & Ricciardi, 
2011).

In diffusion and Gauss–Markov processes, restricted or not, the simulation plays an important role. 
Indeed, it allows to understand the basic properties of the models, to investigate the behavior of 
models under specific hypotheses, and to generate a random sample of data for parameter estima-
tions (cf. Asmussen, Glynn, & Pitman, 1995; Devroye, 2010; D’Onofrio & Pirozzi, 2016; Glasserman, 
2004; Higham, 2001; Iacus, 2008; Kloeden & Platen, 1999; Kroese, Taimre, & Botev, 2011; Lejay & 
Pichot, 2012; Tuerlinckx, Maris, Ratcliff, & De Boeck, 2001). A simulation approach is also required to 
construct the histogram of FPT pdf and estimates of the related moments (Giraudo, Sacerdote, & 
Zucca, 2001; Herrmann & Tanré, 2016; Taillefumier & Magnasco, 2010; Mousavi & Glynn, 2013).

In Buonocore et al. (2014), we have considered Gauss–Markov processes, restricted from below by 
particular time-dependent reflecting boundaries, and we have explicitly determined the transition 
probability density functions (pdf’s), the conditional mean, and the second-order conditional mo-
ment. Furthermore, in some special cases, the FPT density through a time-dependent threshold has 
been computed using both asymptotic methods either numerical or simulation techniques. Instead, 
in Buonocore et al. (2015), the restricted Gauss–Markov processes have been used to construct inho-
mogeneous leaky integrate-and-fire stochastic models for single neurons activity in the presence of 
a lower reflecting boundary and periodic input signal.

The present paper deals with various aspects of the simulation of the restricted Gauss–Markov 
processes considered in Buonocore et al. (2014). The paper is organized as follows. In Section 2, we 
start considering a Gauss–Markov process {Y(t), t ∈ T} conditioned on the initial state y at time � 
and we give an exact method for its simulation at desired time instants. In Section 3, we take into 
consideration the restricted stochastic process X(t), obtained considering Y(t) in the presence of a 
special time-dependent lower reflecting boundary. The reflecting boundary takes the form 
�(t) = m(t) + Ah1(t) + Bh2(t), where the real constants A and B are chosen in order to ensure that 
y ≥ �(�). Particular attention is dedicated to restricted Wiener and Ornstein–Uhlenbeck processes, 
in view of their potential interest in a wide variety of different applications domains (Di Crescenzo & 
Giorno, 2012; Giorno, Nobile, & di Cesare, 2012; Linetsky, 2005; Ricciardi & Sacerdote, 1987; Wonho, 
2009). In Section 4, we formulate two algorithms to simulate the sample paths of the process X(t), 
distinguishing the case in which A = 0 from the case A ≠ 0. When A = 0, it is easy to realize the 
sample paths of X(t), using a principle similar to that of reflection of Brownian motion. Instead, when 
A ≠ 0, a different algorithm has been implemented that constitutes an extension to the 
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Gauss–Markov processes of the one given in Asmussen et al. (1995) and Kroese et al. (2011) to simu-
late the sample paths of a reflected Wiener process with negative drift. Moreover, in Section 5, we 
use the algorithms proposed in Section 4 to construct the histogram of FPT density for the process 
X(t). Finally, the R codes to generate sample paths and to simulate the first passage times for Wiener 
and Ornstein–Uhlenbeck processes are listed in Appendix 1.

Throughout this paper, the symbol d= denotes equality in distribution.

2. Gauss–Markov processes conditioned on the initial state
Let m(t), h1(t), h2(t) be C1(T)-class functions, where C1(T) denotes the set of continuously differen-
tiable functions on T, with T continuous parameter set, such that h2(t) ≠ 0 and r(t) = h1(t)∕h2(t) is 
a non-negative and monotonically increasing function. Denoting by {W(t), t ≥ 0} a standard Wiener 
process, then [see, Abrahams and Thomas (1981), Di Nardo, Nobile, Pirozzi, and Ricciardi (2001), 
Mehr and McFadden (1965)]

is a Gauss–Markov process conditioned to start from y at time �. The pdf fY(x, t) of Y(t) is a normal 
density with mean and variance

for t, � ∈ T and 𝜏 < t, respectively. In the sequel, we denote by

the transition distribution function of Y(t), with Erf(x) = (2∕
√
�) ∫ x

0
e−z

2

dz.

In particular, hereafter, we consider the following Gauss–Markov process Y(t) with continuous pa-
rameter set T = (0, +∞):

• � Wiener process: Setting 

 from (1), one has: 

• � Ornstein-Uhlenbeck process: Setting 

 from (1), it results: 

(1)Y(t) = m(t) + [y −m(�)]
h2(t)

h2(�)
+ h2(t)W[r(t) − r(�)] (t ≥ �),

(2)

E[Y(t)] ≡ M(t|y, �) = m(t) +
h
2
(t)

h
2
(�)

[
y −m(�)

]
,

Var[Y(t)] ≡ V(t|�) = h
2
(t)

[
h
1
(t) −

h
2
(t)

h
2
(�)
h
1
(�)

]
,

(3)FY(x, t) = P{Y(t) < x} =
1

2

�
1 + Erf

�
x −M(t�y, 𝜏)√

2V(t�𝜏)

��

(4)m(t) = � t, h1(t) = �2 t, h2(t) = 1 (� ∈ ℝ, � ∈ ℝ
+),

(5)Y(t) = y + �(t − �) + �W(t − �) (t ≥ �).

(6)m(t) =
�

�

(
e� t − 1

)
, h1(t) =

�2

2�

(
e� t − e−� t

)
, h2(t) = e

� t (�, � ∈ ℝ, � ∈ ℝ
+),

(7)Y(t) = y e� (t−�) +
�

�

(
e� (t−�) − 1

)
+ �W

[
e2� (t−�) − 1

2�

]
(t ≥ �).
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2.1. Simulation of Gauss–Markov processes conditioned on the initial state
In this section, we first generate the sample paths of the conditioned Gauss–Markov process Y(t), 
according to the stochastic equation (1), using an exact simulation method (cf., for instance, Kroese 
et al., 2011). Let s and t be two time instants, such that t0 < s < t; by virtue of (1), we obtain the 
stochastic equation

We now note that W[r(t) − r(t0)] −W[r(s) − r(t0)] is characterized by a normal distribution with 
zero mean and variance r(t) − r(s), i.e. W[r(t) − r(t0)] −W[r(s) − r(t0)] ∼  (0, r(t) − r(s)). 
Hence, we can write

with �s, t ∼  (0, 1). Substituting (9) in (8), for t0 < s < t, one has:

By applying (10) at times s = tk−1 and t = tk for k = 1, 2, … , n, we get

where �1, �2, … , �n is a sequence of independent and identically distributed (iid) standard normal 
random variables due to the independence of the increments of a Brownian motion for non-overlap-
ping intervals.

In particular, by setting tk = � + k h, where h is the time discretization step, for the Wiener pro-
cess, Equation (11) becomes

whereas for the Ornstein–Uhlenbeck process Equation (11) is:

The above exact method for simulate Y(t) at the desired times t1, t2, … , tn can be formulated as 
follows.

In Buonocore et al. (2014), we have used the Algorithm 2.1 to generate sample paths of the mem-
brane potential in a neuronal model based on a time inhomogeneous Ornstein–Uhlenbeck process.

3. Restricted Gauss–Markov processes conditioned on the initial state
In this section, we recall some results obtained in Buonocore et al. (2014); they are the starting point 
for the development of the simulation techniques considered in the next sections.

(8)Y(t) − Y(s)
h2(t)

h2(s)
= m(t) −m(s)

h2(t)

h2(s)
+ h2(t)

{
W[r(t) − r(t0)] −W[r(s) − r(t0)]

}
.

(9)W[r(t) − r(t0)] −W[r(s) − r(t0)] =
√
r(t) − r(s) �s, t,

(10)Y(t) = m(t) +
h2(t)

h2(s)

�
Y(s) −m(s)

�
+ h2(t)

√
r(t) − r(s) �s, t.

(11)Y(tk) = m(tk) +
h2(tk)

h2(tk−1)

[
Y(tk−1) −m(tk−1)

]
+ h2(tk)

√
r(tk) − r(tk−1) �k,

(12)Y(tk) = Y(tk−1) + � h + �
√
h �k (k = 1, 2, … , n),

(13)Y(tk) = e
� h Y(tk−1) + �

e� h − 1

�
+ �

√
e2� h − 1

2�
�k (k = 1, 2, … , n).
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We denote by {X(t), t ∈ T} the stochastic process with state space [�(t), +∞), obtained by con-
sidering Y(t) in presence of a reflecting boundary

The choice of the real constants A and B depends on the functions m(t), h1(t), h2(t) and on the initial 
state y of the process Y(t) at time �; since �(t) is a lower reflecting boundary, the real constants A and 
B are chosen in order to ensure that the starting point y of the process X(t) is greater or equal to the 
reflecting boundary at the initial time �, i.e. y ≥ �(�). As proved in Buonocore et al. (2014), the pdf of 
the conditioned process {X(t), t ∈ T} is:

We recall that the normal pdf fY(x, t), with mean and variance (2), satisfies the Fokker–Planck equa-
tion, with drift and infinitesimal variance

respectively, and the delta initial condition (cf. Di Nardo et al., 2001). Hence, for x > 𝜈(t) and y > 𝜈(𝜏), 
the pdf fX(x, t), given in (15), satisfies the Fokker–Planck equation and the associated initial condition 
(see, Buonocore et al., 2014)

with the additional requirement that a reflecting condition is imposed on the boundary �(t), i.e.

where the drift A1(x, t) and the infinitesimal variance A2(t) are given in (16).

Since �(t) is a reflecting boundary, the total probability mass of X(t) is preserved in [�(t),+∞), i.e.

We remark that the boundary (14) includes several types of reflecting boundaries. In particular, for 
the Wiener process, from (4) and (14) one has

i.e. the reflecting boundary is linear. When A = 0, the angular coefficient of the reflection line coin-
cides with the drift � of the Wiener process. Instead, for the Ornstein–Uhlenbeck process, from (6) 
and (14) one obtains

i.e. the reflecting boundary is an hyperbolic function.

(14)�(t) = m(t) + Ah1(t) + Bh2(t) (A, B ∈ ℝ, t ∈ T).

(15)fX(x, t) = fY (x, t) −
�

�x

[
exp

{
−
2A

h
2
(t)

[x − �(t)]

}
P{Y(t) ≤ 2 �(t) − x}

]
, [x ≥ �(t)].

(16)A1(x, t) = m
�(t) + [x −m(t)]

h�2(t)

h2(t)
, A2(t) = h

2
2(t) r

�(t),

�fX(x, t)

�t
= −

�

�x
[A

1
(x, t) fX(x, t)] +

1

2

�2

�x2
[A

2
(t) fX(x, t)], limt↓�

fX(x, t) = �(x − y),

lim
x↓�(t)

{
A1(x, t)fX(x, t) −

A2(t)

2

�fX(x, t)

�x

}
− ��(t) fX[�(t), t] = 0,

+∞

�
�(t)

fX(x, t) dx = 1 [y ≥ �(�)].

(17)�(t) = (� + A �2) t + B (t ≥ �)

(18)�(t) = −
�

�
+

(
�

�
+
A �2

2 �
+ B

)
e� t −

A �2

2 �
e−� t (t ≥ �),
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4. Simulation of the restricted Gauss–Markov process
In this section, we formulate two different algorithms to simulate the sample paths of the process 
X(t) originated from y at time �, in the presence of the reflecting boundary �(t), given in (14), with 
y ≥ �(�).

If A = 0, the problem is simple because the principle of reflection can be used (see Borodin & 
Salminen, 2002 for Brownian motion).

Proposition 4.1  Let

For t ≥ � and y ≥ �(�), the stochastic process {Xs(t), t ∈ T}, with

is characterized by pdf:

Hence, Xs(t)
d
= X(t) for all t ∈ T, where X(t) is the Gauss–Markov process conditioned to start to y at 

time � and restricted to [�(t), +∞), with the reflecting boundary �(t) as in (19).

Proof  From (1) and (20) we first note that

so that, recalling that y ≥ �(�), it follows Xs(�) = y. For x ≥ �(t) and y ≥ �(�), one has

We now assume that h2(t) > 0, so that recalling (1) and (19), from (22) one has:

We note that limx→+∞
P{Xs(t) < x} = 1. Furthermore, recalling that

for a < b, from (23) and (24), one has:

(19)�(t) = m(t) + Bh2(t) (B ∈ ℝ, t ∈ T).

(20)Xs(t) =

{
2𝜈(t) − Y(t), Y(t) < 𝜈(t)

Y(t), Y(t) ≥ 𝜈(t)

(21)fXs
(x, t) = fY (x, t) + fY [2�(t) − x, t] [x ≥ �(t)].

Xs(𝜏) =

⎧⎪⎨⎪⎩

2 𝜈(𝜏) − y, y < 𝜈(𝜏)

y, y ≥ 𝜈(𝜏),

(22)
P{Xs(t) < x} = P

{
Xs(t) < x, Y(t) < 𝜈(t)

}
+ P

{
Xs(t) < x, Y(t) ≥ 𝜈(t)

}

= P
{
2𝜈(t) − x < Y(t) < 𝜈(t)

}
+ P{𝜈(t) ≤ Y(t) < x}.

(23)
P{Xs(t) < x} = P

{
B −

y −m(𝜏)

h2(𝜏)
≤W[r(t) − r(𝜏)] <

x −m(t)

h2(t)
−
y −m(𝜏)

h2(𝜏)

}

+ P

{
2B −

y −m(𝜏)

h2(𝜏)
−
x −m(t)

h2(t)
<W[r(t) − r(𝜏)] < B −

y −m(𝜏)

h2(𝜏)

}
.

(24)P{a <W[r(t) − r(𝜏)] < b} =

b

∫
a

1√
2𝜋[r(t) − r(𝜏)]

exp

�
−

z2

2[r(t) − r(𝜏)]

�
dz

(25)

fXs
(x, t) =

dP{Xs(t) < x}

dx
=

1√
2𝜋V(t�𝜏)

exp

�
−
[x −M(t�y, 𝜏)]2

2V(t�𝜏)

�

+
1√

2𝜋V(t�𝜏)
exp

�
−
[2𝜈(t) − x −M(t�y, 𝜏)]2

2V(t�𝜏)

�
(t ≥ 𝜏),
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where M(t|y, �) and V(t|�) are given in (2). Hence, (21) follows immediately from (25). Proceeding in 
a similar way for h2(t) < 0, relation (25) still holds. Since the right-hand side of (21) is equal to that of 
(15) with A = 0, then Xs(t)

d
= X(t) for all t ∈ T. � ✷

Proposition 4.1 shows that, for all t ≥ �, Xs(t) is identically distributed as X(t) originated at 
X(�) = y ≥ �(�) in the presence of the reflecting boundary (19). Hence, under the assumptions of 
Proposition 4.1, a method to simulate X(t) at the desired times t1, t2, … , tn can be expressed as follows.

In Buonocore et al. (2014), by means of the Algorithm 4.1, we have generated sample paths of the 
membrane potential in a neuronal model based on a special time inhomogeneous Ornstein–
Uhlenbeck process restricted by a lower reflecting boundary.

In Figure 1, we plot a simulated sample path (green) of the Wiener process Y(t) obtained with the 
Algorithm 2.1, by choosing � = −0.1 on the left (� = 0.1 on the right) and �2 = 1, y = 3, � = 0  
in (5). Furthermore, making use of the Algorithm 4.1, we also include in the Figure 1 a simulated 
sample path (red) of the related restricted process X(t) in [�(t), +∞), with �(t) = � t + 1.0 reflecting 
boundary. In this case, in (17), we set A = 0 and B = 1.0. The time discretization step is h = 10−3. 
The R code of Figure 1(a) is given in Appendix 1.

Furthermore, in Figure 2, we plot a simulated sample path (green) of the Ornstein–Uhlenbeck pro-
cess Y(t) obtained with the Algorithm 2.1, by choosing � = −0.5 on the left (� = 0.015 on the right), 
� = 1 and �2 = 1, y = 3, � = 0 in (7). Moreover, by virtue of the Algorithm 4.1, we also include in 
Figure 2 a simulated sample path (red) of the related restricted process X(t) in [�(t),+∞), with 
�(t) = �(e� t − 1)∕� reflecting boundary, obtained by setting A = B = 0 in (18). The time discretiza-
tion step is h = 10−3. The R code of Figure 2(a) is given in Appendix 1.

The Wiener process Y(t) and the related restricted process X(t) do not admit a steady-state density, 
as highlighted by the behavior of the trajectory in Figure 1. Instead, as it is also evident in Figure 2(a), 
when 𝛼 < 0, the Ornstein–Uhlenbeck process Y(t) and the related restricted process X(t) admit the 
following steady-state densities:

(26)Xs(tk) =

{
2𝜈(tk) − Y(tk), Y(tk) < 𝜈(tk)

Y(tk), Y(tk) ≥ 𝜈(tk).

Figure 1. Simulated sample paths 
of the Wiener process Y(t) (green) 
with m(t) = � t, h

1
(t) = �2 t, 

h
2
(t) = 1, y = 3, � = 0, and of the 

restricted process X(t) (red) in 
[�(t),+∞), with �(t) = � t + 1.0 
reflecting boundary.
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Indeed, when 𝛼 < 0, by virtue of (6), from (2) one has limt→+∞
E[Y(t)] = �∕|�|  

and limt→+∞
Var[Y(t)] = �2∕(2|�|), so that WY (x) = limt→+∞

fY (x, t) is a normal density  
with mean �∕|�| and variance �2∕(2|�|). Furthermore, recalling that A = 0 and 𝛼 < 0,  
from (18) one has limt→+∞

�(t) = �∕|�|, so that from (15) it follows 
WX(x) = limt→+∞

fX(x, t) = limt→+∞
[fY(x, t) + fY (2�(t) − x, t)] =WY (x) +WY (2�∕|�| − x) = 2WY (x) 

for x ≥ �∕|�|. Note that for the Ornstein–Uhlenbeck process, restricted or not, with 𝛼 > 0, no steady-
state densities exist (see Figure 2(b)).

If A ≠ 0, the problem is more complex since one cannot use, as in Proposition 4.1, the principle of 
reflection.

Proposition 4.2  We consider the stochastic process {Xs(t), t ∈ T}, such that

where

In (27) and (28), we assume that � = 1, Ã = −A, B̃ = B when h2(t) > 0 for all t ∈ T, whereas 
� = −1, Ã = A, B̃ = −B when h2(t) < 0 for all t ∈ T.

Hence, for all t ∈ T

Proof  We assume that h2(t) > 0 for all t ∈ T, so that � = 1, Ã = −A, B̃ = B. Then, making use of (27) 
and (28), for x ≥ �(t) and y ≥ �(�) one has:

WY (x) = lim
t→+∞

fY (x, t) =

√
|�|
�2�

exp

{
−
|�|
�2

(
x −

�

|�|
)2

}
(x ∈ ℝ),

WX(x) = lim
t→+∞

fX(x, t) = 2WY (x) (x ≥ �∕|�|).

(27)Xs(t) = m(t) + Ah1(t) + � h2(t)

[
Z[r(t)] +max

{
0, B̃ + sup

r(�)≤s≤r(t)
[−Z(s)]

}]

(28)Z[r(t)] = Ã [r(t) − r(�)] + �
y −m(�) − Ah1(�)

h2(�)
+W[r(t) − r(�)].

Xs(t)
d
=X(t).

(29)

P
{
Xs(t) < x

}

= P

{
Z[r(t)] +max

{
0, B + sup

r(𝜏)≤s≤r(t)
[−Z(s)]

}
<
x −m(t) − Ah1(t)

h2(t)

}
,

Figure 2. Simulated sample 
paths of the Ornstein–
Uhlenbeck process Y(t) (green) 
with m(t) = �(e� t − 1)∕�,  
h
1
(t) = �2(e� t − e−� t)∕(2�),  

h
2
(t) = e� t, y = 3, � = 0, and 

of the restricted process 
X(t) (red) in [�(t), +∞), with 
�(t) = �(e� t − 1)∕� reflecting 
boundary.
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where Z(t) denotes a Wiener process with drift −A and unitary infinitesimal variance, conditioned on 
z
�
= {y −m[r−1(�)] − Ah1[r

−1(�)]}∕h2[r
−1(�)] at time �. We now consider the process

conditioned on Ẑ(�) = z
�
≥ B (cf., for instance, Asmussen et al., 1995). For all t ≥ �, the distribution 

function of Ẑ(t) is:

We note that

where �(a, b, t) is the joint density of Z(t) and inf
�≤s≤t[Z(s)] (cf., for instance, Borodin & Salminen, 

2002):

From (31) and (32), one can derive the pdf of Ẑ(t):

(30)Ẑ(t) = Z(t) +max

{
0, B + sup

�≤s≤t
[−Z(s)]

}
(t ≥ �),

(31)
P
{
�Z(t) < z

}
= P

{
Z(t) < z, sup

𝜏≤s≤t
[−Z(s)] ≤ −B

}

+ P

{
Z(t) + B + sup

𝜏≤s≤t
[−Z(s)] < z, sup

𝜏≤s≤t
[−Z(s)] > −B

}
(z ≥ B).

(32)

P

{
Z(t) < z, sup

𝜏≤s≤t
[−Z(s)] ≤ −B

}
= P{Z(t) < z} − P

{
Z(t) < z, sup

𝜏≤s≤t
[−Z(s)] > −B

}

= P{Z(t) < z} − P
{
Z(t) < z, inf

𝜏≤s≤t[Z(s)] < B
}

= P{Z(t) < z} −

B

�
−∞

da

a

�
−∞

𝜑(a, b, t) db −

z

�
B

da

B

�
−∞

𝜑(a, b, t) db,

P

{
Z(t) + B + sup

𝜏≤s≤t
[−Z(s)] < z, sup

𝜏≤s≤t
[−Z(s)] > −B

}

= P
{
Z(t) + B − inf

𝜏≤s≤t[Z(s)] < z, inf𝜏≤s≤t[Z(s)] < B
}

=

z

�
−∞

da

a

�
a−z+B

𝜑(a, b, t) db −

z

�
B

da

a

�
B

𝜑(a, b, t) db,

�(a, b, t) =
2(a + z

�
− 2b)e−2A(b−z� )

(t − �)
√
2�(t − �)

exp

�
−
[a + z

�
− 2b + A(t − �)]2

2(t − �)

�
(b ≤ z

�
, a ≥ b).

(33)

f�Z(z, t) =
𝜕P

�
�Z(t) < z

�

𝜕z
= fZ(z, t) −

B

�
−∞

𝜑(z, b, t) db +

z

�
−∞

𝜑(a, a − z + B, t) da

=
1√

2𝜋(t − 𝜏)
exp

�
−
[z − z

𝜏
+ A(t − 𝜏)]2

2(t − 𝜏)

�

+
e2A(z𝜏−B)√
2𝜋(t − 𝜏)

exp

�
−
[z + z

𝜏
− 2B + A(t − 𝜏)]2

2(t − 𝜏)

�

+ Ae−2A(z−B)

�
1 − Erf

�
z + z

𝜏
− 2B − A(t − 𝜏)√
2(t − 𝜏)

��
(z ≥ B, z

𝜏
≥ B).
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The right-hand side of (33) identifies the transition density of a Wiener process Ŵ(t) with drift −A, 
unitary infinitesimal variance, restricted to the interval [B, +∞) with a reflecting boundary in B, con-
ditioned on z

�
≥ B at time � (cf., for instance, Cox & Miller, 1970). The distribution function of Ŵ(t) is

Now, recalling (34), Equation (29) becomes:

for x ≥ �(t) and y ≥ �(�), with M(t|y, �) and V(t|�) given in (2). The right-hand side of (35) identifies 
with the transition distribution function of the conditioned Gauss–Markov process X(t), restricted to 
[�(t), +∞) in the presence of the reflecting boundary �(t) as in (14). Hence, for h2(t) > 0, Xs(t)

d
= X(t) for 

all t ∈ T. This completes the proof in the case h2(t) > 0. The proof when h2(t) < 0 for all t ∈ T follows 
in a similar way.�  ✷

Proposition 4.2 allows to construct an exact algorithm for generating Xs(t) at the specified time 
instants. To this end, we assume that h2(t) > 0 for all t ∈ T. We set t = tk = � + k h

(k = 0, 1, … , n; h > 0), where h denotes the time discretization step, and let

Since r(t) is a non-negative and monotonically increasing function, we note that the following rela-
tion holds:

By setting t = tk = � + k h in (27), one has:

so that, making use of (37) in (38), one obtains:

where for k = 1, 2, … , n it results:

By virtue of (38), Mk−1 can be expressed in terms of Xs(tk−1) as:

(34)

P{�W(t) < z} =
1

2

�
1 + Erf

�
z − z

𝜏
+ A(t − 𝜏)√
2(t − 𝜏)

��

−
1

2
e−2A(z−B)

�
1 + Erf

�
2B − z + A(t − 𝜏) − z

𝜏√
2(t − 𝜏)

��
(z ≥ B).

(35)

P
�
Xs(t) < x

�
= P

�
�Z[r(t)] <

x −m(t) − Ah1(t)

h2(t)

�

=
1

2

�
1 + Erf

�
x −M(t�y, 𝜏)√

2V(t�𝜏)

��
−
1

2
exp

�
−
2A[x − 𝜈(t)]

h2(t)

�

×

�
1 + Erf

�
2𝜈(t) − x −M(t�y, 𝜏)√

2V(t�𝜏)

��
,

(36)Mk: = max

{
0, B + sup

r(�)≤s≤r(tk)
[−Z(s)]

}
(k = 0, 1, 2, … ,n).

(37)Mk = max

{
Mk−1,B + sup

r(tk−1)≤s≤r(tk)
[−Z(s)]

}
(k = 1, 2,… ,n).

(38)Xs(tk) = m(tk) + Ah1(tk) + h2(tk) Z[r(tk)] + h2(tk)Mk,

(39)Xs(tk) = max
{
m(tk) + Ah1(tk) + h2(tk) Z[r(tk)] + h2(tk)Mk−1, Sk

}
,

(40)Sk = m(tk) + Ah1(tk) + h2(tk)Z[r(tk)] + h2(tk)

{
B + sup

r(tk−1)≤s≤r(tk)
[−Z(s)]

}
.

(41)Mk−1 =
Xs(tk−1) −m(tk−1) − Ah1(tk−1) − h2(tk−1)Z[r(tk−1)]

h2(tk−1)
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for k = 1, 2, … , n. Substituting (28) with t = tk−1, � = 1 and Ã = −A in (41), the first term of the 
maximum in (39) becomes:

Now we want to simulate the random variable Sk that appears in (40). Let Z1(t) = −Z(t) for all 
t ∈ T, with Z(t) given in (28). Hence,

We now use the well-known result for the supremum of the Wiener process (cf. Borodin & 
Salminen, 2002) with drift �, infinitesimal variance �2, starting from z0 at time �0:

i.e. an exponential distribution that does not depend on �. Making use of (44) with � = A, �2 = 1, 
a = z, b = [x + h2(tk)z − �(tk)]∕h2(tk), z0 = Z1[r(tk−1)], � = r(tk) and �0 = r(tk−1), from (43) one 
obtains:

for x ≥ �(tk) and b ≥ z0. Let S̃k be the random variable obtained by conditioning Sk with the require-
ments that Z1[r(tk−1)] = z0 and Z1[r(tk)] = z. Hence, applying the inverse transform algorithm, we 
set

with Uk ∼  (0, 1), and solve for S̃k in terms of random variable Uk. Hence,

Since we have imposed that Z1[r(tk−1)] = z0 and Z1[r(tk)] = z, by virtue of (28), the value −(z − z0) 
in (46) can be obtained by simulation of the following random variable

where the last identity follows from (9), with �k ∼  (0, 1). Hence, making use of (46) and (47), the 
random variable Sk in (40) can be thus simulated as

(42)

m(tk) + Ah1(tk) + h2(tk) Z[r(tk)] + h2(tk)Mk−1

=
h2(tk)

h2(tk−1)
Xs(tk−1) +m(tk) −

h2(tk)

h2(tk−1)
m(tk−1)

+ h2(tk)
{
W[r(tk) − r(t0)] −W[r(tk−1) − r(t0)]

}
.

(43)

P
{
Sk ≤ x|Z1[r(tk)] = z}

= P

{
sup

r(tk−1)≤s≤r(tk)
[Z1(s)] ≤ x + h2(tk)z − �(tk)

h2(tk)
||Z1[r(tk)] = z

}
.

(44)P

{
sup
�0≤s≤�

Z(s) ≤ b|Z(�) = a} = 1 − exp

{
−
2(b − a)(b − z0)

�2(� − �0)

}
(a ≤ b, b ≥ z0),

(45)P
�
Sk ≤ x�Z1[r(tk)] = z� = 1 − exp

⎧⎪⎨⎪⎩
−2

x−�(tk)

h2(tk)

�
x+h2(tk)z−�(tk)

h2(tk)
− z0

�

r(tk) − r(tk−1)

⎫⎪⎬⎪⎭

1 − exp

{
−
2 [S̃k − �(tk)] [S̃k + h2(tk)z − �(tk) − z0 h2(tk)]

h22(tk)[r(tk) − r(tk−1)]

}
= Uk,

(46)S̃k = �(tk) + h2(tk)
−(z − z0) ±

√
(z − z0)

2 − 2 [r(tk) − r(tk−1)] ln(1 − Uk)

2
⋅

(47)

Z
1
[r(tk−1)] − Z1[r(tk)] = Z[r(tk)] − Z[r(tk−1)]

= −A [r(tk) − r(tk−1)] +W[r(tk) − r(�)] −W[r(tk−1) − r(�)]

=

√
r(tk) − r(tk−1)

[
−A

√
r(tk) − r(tk−1) + �k

]
,
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Since h2(t) > 0 for all t ∈ T, it ensures that Sk ≥ �(tk) is necessary to take the positive square root in 
(48). The case h2(t) < 0 for all t ∈ T follows in a similar way. Then, the following algorithm can be 
implemented:

where

with U1, U2, … , Un 
iid
=  (0, 1) and �1, �2, … , �n 

iid
=  (0, 1). In (49) and (50), we assume that 

� = 1, Ã = −A when h2(t) > 0 for all t ∈ T, whereas � = −1, Ã = A when h2(t) < 0 for all t ∈ T.

Note that, by virtue of (9), the first term of the maximum in (49) follows from (42). Furthermore, 
the second term of the maximum in (49) follows from (48).

We remark that the Algorithm 4.2 is a generalization to restricted Gauss–Markov processes of the 
simulation algorithm given in Asmussen et al. (1995) and Kroese et al. (2011) for a Brownian motion 
with a negative drift and unit infinitesimal variance in the presence of a reflecting boundary in zero 
state.

In Figure 3, we plot a simulated sample path of the Wiener process Y(t) obtained with Algorithm 
2.1, by choosing � = −1.0, �2 = 1.0, y = 3, � = 0 in (5), and a simulated sample path of the related 
restricted process X(t) in [�(t),+∞), with �(t) given in in (17). In Figure 3(a), we set A = 0.5 and 
B = 1.0, so that from (17) it follows that �(t) = −0.5 t + 1.0, whereas in Figure 3(b) we set A = 1.5 
and B = 1.0, so that from (17) one has �(t) = 0.5 t + 1.0. The sample path of X(t) is obtained with 
the Algorithm 4.2. The time discretization step is h = 10−3. The R code of Figure 3(a) is given in 
Appendix 1.

Furthermore, in Figure 4, we plot a simulated sample path of the Ornstein–Uhlenbeck process Y(t) 
achieved with Algorithm by choosing � = −0.5, � = 1.0, �2 = 1.0, y = 3, � = 0 in (7), and a simu-
lated sample path of the related restricted process X(t) in [�(t), +∞), with the reflecting boundary 
�(t) given in (18). In Figure 4(a), we set A = 0.35 and B = 1.35, so that from (18) it follows that 
�(t) = 2 − e−t∕2 + 0.35 et∕2; instead, in Figure 4(b) we set A = −0.01 and B = 2.19, so that from 
(18) one has �(t) = 2 + 0.2 e−t∕2 − 0.01 et∕2. The sample path of X(t) is obtained via the Algorithm 
4.2. The time discretization step is h = 10−3. The R code of Figure 4(a) is given in Appendix 1.

(48)

Sk = �(tk) + h2(tk)
�
r(tk) − r(tk−1)

×

−A
√
r(tk) − r(tk−1) + �k ±

��
−A

√
r(tk) − r(tk−1) + �k

�2
− 2 ln(1 − Uk)

2
.

(49)

Xs(tk) = max

{
h2(tk)

h2(tk−1)
Xs(tk−1) +m(tk) −

h2(tk)

h2(tk−1)
m(tk−1)

+� h2(tk)
√
r(tk) − r(tk−1) �k, �(tk) + � h2(tk)

√
r(tk) − r(tk−1)Hk

}
,

(50)
Hk =

Ã
√
r(tk) − r(tk−1) + �k +

��
Ã
√
r(tk) − r(tk−1) + �k

�2
− 2 ln(1 − Uk)

2
,
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In Figures 5 and 6, we show that, starting from the same realization of the Wiener and Ornstein–
Uhlenbeck processes Y(t) (green), respectively, Algorithms 4.1 and 4.2 provide for A = 0 and B = 0 
different trajectories for the processes X(t) (red). However, as proved in Propositions 4.1 and 4.2, the 
simulated restricted processes are characterized by the same pdf. We finally note that for A = 0, the 
Algorithm 4.2 has an higher computational cost than that of the Algorithm 4.1. Specifically, for the 
comparison of different numerical or simulation methods, the analysis of their accuracy as function 

Figure 3. Simulated sample 
paths of the Wiener process 
Y(t) (green) given in (5), with 
� = −1.0, �2 = 1.0, y = 3,  
� = 0, and of the restricted 
process X(t) (red) in [�(t), +∞),  
with �(t) = a t + 1.0 reflecting 
boundary.

Figure 4. Simulated sample 
paths of the Ornstein–
Uhlenbeck process Y(t) 
(green) given in (7) with 
� = −0.5, � = 1.0, �2 = 1.0, y = 3,  
� = 0, and of the restricted 
process X(t) (red) in [�(t),+∞),  
with the reflecting boundary 
�(t) = a e−t∕2 + b et∕2 + 2.

Figure 5. Simulated sample 
paths of the Wiener process 
Y(t) (green) given in (5) with 
� = 0, �2 = 1.0, y = 3, � = 0, 
and of the restricted process 
X(t) (red) in [0, +∞), with the 
reflecting boundary �(t) = 0, 
using Algorithm 4.1 on the left 
and Algorithm 4.2 on the right.
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of the discretization step, as well as the study of their numerical complexity, we refer to the books 
(Asmussen & Glynn, 2007; Kloeden & Platen, 1999; Kroese et al., 2011).

5. First passage time simulation of restricted Gauss–Markov process
In this section, we consider the first passage time problem for the Gauss–Markov process and for the 
related restricted process.

5.1. FPT simulation of the conditioned Gauss–Markov processes
For the process Y(t), the FPT problem through a boundary S(t) ∈ C1(T) can be considered. Let

be the random variable that denotes the FPT of the Gauss–Markov process Y(t) from Y(�) = y to the 
continuous boundary S(t). Let

denotes the FPT pdf. In order to simulate gY[S(t), t], we generate sample paths of the Gauss–Markov 
process Y(t) using the Algorithm 2.1. Then, the method for the simulation of FPT for the process Y(t) 
through S(t) can be made as follows:

By implementing the previous procedure for N times, one obtains a collection of N simulated first 
passage times of Y(t) through S(t). Hence, an estimation of the FPT pdf can be achieved by the histo-
gram of such first passage times.

5.2. FPT simulation of the restricted Gauss–Markov process
For the process X(t), restricted to [�(t), +∞) with the reflecting boundary �(t) given in (14), the FPT 
problem through a boundary S(t) > 𝜈(t) can be considered. To this purpose, let S(t) be a C1(T)-class 
function, such that S(t) > 𝜈(t) for all t ∈ T. For y ≥ �(�), we denote by

(51)Y = inft≥𝜏
{
t:Y(t) > S(t)

}
, Y(𝜏) = y < S(𝜏), 𝜏, t ∈ T

(52)gY [S(t), t] =
𝜕

𝜕t
P
(Y < t)

(53)
X = inft≥𝜏

{
t:X(t) > S(t)

}
, 𝜈(𝜏) ≤ X(𝜏) = y < S(𝜏), 𝜏, t ∈ T

Figure 6. Simulated sample 
paths of the Ornstein–
Uhlenbeck process Y(t) (green) 
given in (7) with � = −0.1,  
� = 0.0, �2 = 1.0, y = 3, � = 0,  
and of the restricted process 
X(t) (red) in [0, +∞), with the 
reflecting boundary �(t) = 0, 
using Algorithm 4.1 on the left 
and Algorithm 4.2 on the right.
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the random variable FPT of X(t) from X(�) = y to the boundary S(t). Further, let

be the FPT pdf.

As proved in Buonocore et al. (2014), if �(t) = m(t) + Bh2(t) and S(t) = m(t) + D h2(t), with 
B, D ∈ ℝ and (D − B)h2(𝜏) > 0, one has

where fY(x, t) is the pdf of Y(t). Furthermore, if A1(x, t), A2(t), �(t), and S(t) are not depend on time 
t, then the FPT moments through a constant boundary for the process X(t) can be obtained making 
use of the Siegert formula (cf. Ricciardi, Di Crescenzo, Giorno, & Nobile, 1999; Siegert, 1951). Indeed, 
setting A1(x, t) ≡ A1(x), A2(t) ≡ �2, �(t) = �, and S(t) = S(𝜈 ≤ y < S), one has:

with t0(S|y) = 1, and where

Explicit expressions of moments for the Ornstein–Uhlenbeck process with a constant reflecting 
boundary are given in Inoue, Sato, and Ricciardi (1997).

The sample paths of the restricted process X(t) are constructed taking into account the presence 
of the reflecting boundary �(t) given in (14), using one of the algorithms described in Section 4. Then, 
the method for the simulation of FPT for the restricted process X(t) through S(t) can be carried out as 
follows:

By implementing the previous procedure for N times, one obtains a collection of N simulated first 
passage times X(t) through S(t). Hence, an estimation of the FPT pdf can be achieved by the histo-
gram of such first passage times.

(54)gX[S(t), t] =
𝜕

𝜕t
P
(X ≤ t) [𝜈(𝜏) ≤ y < S(𝜏)]

(55)

gX[S(t), t] =
S(𝜏) − y

r(t) − r(𝜏)

h2(t)

h2(𝜏)

dr(t)

dt
fY [S(t), t]

×

{
1 + 2

+∞∑
n=1

(−1)n exp

{
−
2(D − B)2n2

r(t) − r(𝜏)

}[
cosh

(
2n(D − B)

r(t) − r(𝜏)

S(𝜏) − y

h2(𝜏)

)

−
2n (D − B)h2(𝜏)

S(𝜏) − y
sinh

(
2n(D − B)

r(t) − r(𝜏)

S(𝜏) − y

h2(𝜏)

)]}
[𝜈(𝜏) ≤ y < S(𝜏)],

(56)
tn(S|y): =

+∞

∫
0

tn gX(S, t|y, 0) dt = n
S

∫
y

dz h(z)

z

∫
�

s(u) tn−1(S|u) du

(n = 1, 2, …)

h(x) = exp

⎧⎪⎨⎪⎩
−
2

�2

x

∫ A1(z) dz
⎫⎪⎬⎪⎭
, s(x) =

2h−1(x)

�2
⋅
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For the restricted Wiener process X(t), with � = 0, �2 = 1.0, y = 3.0, � = 0, in Figure 7 we plot the 
histograms of a collection of N = 5000 simulated FPT through the boundary S = 4.5, obtained mak-
ing use of Algorithm 4.1 on the left and of Algorithm 4.2 on the right; in this case, we set A = 0 and 
B = 0 in (17). In Figure 7, the histograms of the FPT densities are compared with the exact FPT den-
sity (red curve), obtained via (55). It appears from Figure 7 that the FPT histograms fit the exact FPT 
density reasonably well. Furthermore, in Table 1, we compare the FPT mean t1(S|y), the FPT variance 
V(S|y) = t2(S|y) − [t1(S|y)]2, and the FPT coefficient of variation C(S�y) = √

V(S�y)∕t1(S�y), de-
rived from (56), with the sample mean, variance, and coefficient of variation obtained from the col-
lection of N = 5000 simulated FPT of Figure 7. The R codes of Figure 7(a) and (b) are given in 
Appendix 1.

For the restricted Ornstein–Uhlenbeck process X(t), with � = −0.1, � = 0.0, �2 = 1.0, y = 3.0, 
� = 0, in Figure 8 we plot the histograms of the FPT pdf through the boundary S = 4.5 obtained mak-
ing use of Algorithm 4.1 on the left and of Algorithm 4.2 on the right; furthermore, note that 
A = B = 0 in (18). We have considered a collection of N = 5000 simulated FPT. In this case, there is 
no closed-form expression for the FPT density and the simulation tool is necessary. Furthermore, the 
FPT mean t1(S|y), the FPT variance V(S|y), and the FPT coefficient of variation C(S|y) can be obtained 
from (56). Hence, in Table 2 are reported t1(S|y), V(S|y), and C(S|y) and the related sample values, 
obtained from the collection of N = 5000 simulated FPT of Figure 8.

Figure 7. Histograms of FPT pdf 
through the boundary S = 4.5 
for the Wiener process X(t) with 
� = 0, �2 = 1.0, y = 3.0, � = 0 
restricted to [0, +∞), with the 
reflecting boundary in zero, 
simulated using Algorithm 4.1 
on the left and Algorithm 4.2 
on the right. The exact FPT 
density (red curve), obtained 
via (55), is superimposed on the 
histograms.

Table 1. For the restricted Wiener process X(t) of Figure 7, the values of t
1
(S|y), V(S|y), and 

C(S|y) are compared with the related simulated estimated values
t
1
(S|y) V(S|y) C(S|y)

Exact values 11.25 219.375 1.31656

Algorithm 4.1 11.34716 214.6468 1.291145

Algorithm 4.2 11.54748 230.397 1.314471

Table 2. For the restricted Ornstein–Uhlenbeck process X(t) of Figure 8, the exact values of 
t
1
(S|y), V(S|y), and C(S|y) are compared with the related simulated estimated values

t
1
(S|y) V(S|y) C(S|y)

Exact values 33.6361 1670.25 1.21502

Algorithm 4.1 34.68059 1785.15 1.21829

Algorithm 4.2 33.47736 1577.127 1.186266
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6. Concluding remarks
In conclusion, we propose algorithms for the simulation of the Gauss–Markov processes conditioned to 
start to y at time � and restricted to [�(t),+∞] with the time-dependent lower reflecting boundary 
�(t) = m(t) + Ah1(t) + Bh2(t), where the real constants A and B are chosen in order to ensure that 
y ≥ �(�). Specifically, we formulate two algorithms to simulate the sample paths of the process X(t) for 
both cases A = 0 and A ≠ 0. When A = 0, the sample paths of the restricted Gauss–Markov processes 
are obtained using a reflection principle type (see Algorithm 4.1), whereas if A ≠ 0, the sample paths 
are constructed via Algorithm 4.2. Finally, we use the algorithms proposed to construct the histogram 
of FPT density for the restricted process. Particular attention has been dedicated to restricted Wiener 
and Ornstein–Uhlenbeck processes for their central role in the class of Gauss–Markov processes.
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Appendix 1

We now list the R codes used in the previous sections to generate the sample paths and to simulate 
the first passage times for Wiener and Ornstein–Uhlenbeck processes.
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