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Abstract—In this paper, an overview of recent achievements
in the design and decoding of non-binary low-density parity-
check (LDPC) codes is provided. Non-binary constructions based
on ultra-sparse matrices are compared with binary low-density
parity-check codes and turbo codes from satellite communication
standards, to show that larger coding gains (outperforming the
binary competitors by at least 0.3 dB) can be achieved on the
AWGN channel, especially in the moderate/short block regimes.
Thanks to this excellent performance, non-binary LDPC codes
represent an appealing solution for space communications.

Index Terms—Belief propagation, non-binary LDPC codes,
space communications, satellite communications.

I. INTRODUCTION

Thanks to their excellent error correction capability

combined with the availability of low complexity encod-

ing/decoding algorithms, low-density parity-check (LDPC)

codes [1] have recently been included in several satellite com-

munications standards [2]–[5]. Their application ranges from

deep-space communications [2], [3] to satellite broadcasting

services [4] and up-link for interactive satellite systems [5].

In the past decade, LDPC code constructions were proposed

approaching the Shannon limit within few tens of dB for large

block lengths (n > 10000) [6], [7]. In the moderate block size

regime (1000 < n < 10000), structured constructions with low

error floors were proposed, for example, in [8]–[12]. These

constructions achieve low codeword error rates, e.g. ∼ 10−6,

within 0.5÷1 dB from the random coding bound (RCB)1 [14].

To enhance the code performance for short/moderate block

sizes, LDPC codes over non-binary Galois fields (GFs) were

proposed in [15]. The performance gain, however, has the

drawback of an increased decoding complexity. As for binary

LDPC codes, decoding is based belief propagation (BP), that

is on message passing (MP) along the edges of the Tanner

graph. The decoding complexity is dominated by the check

node (CN) operations and scales with O(q2), where q is the

order of the GF. However, the probability-domain decoding

algorithm can be simplified by using fast Fourier transforms

1In the moderate-block size regime we compare the code performance with
the RCB, rather than the Shannon limit, to take into account the block size.
Although the RCB is an upper bound on the performance achievable by a
(n, k) linear block code, for input block sizes k > 200 bits it is a valid
benchmark [13].

(FFTs) to perform the CN elaborations, reducing the com-

plexity to O(q log
2
(q)) [16]. Further complexity reductions

for non-binary LDPC decoders were achieved in [17], while

a construction technique for ultra-sparse non-binary LDPC

codes (i.e., LDPC codes with regular variable and check node

degrees (dv = 2, dc)) was proposed in [18], which is based on

the binary image of the parity-check equations for the selection

of the equation coefficients. The method in [18] is effective

in reducing the error floor of ultra-sparse non-binary LDPC

codes, even if for these LDPC code ensembles the minimum

distance grows sub-linearly with n.

Non-binary LDPC codes possess a large potential for

space/satellite communications systems. In particular, their

applicability seems to be tailored to:

∙ Deep-space communications down-links. Here, the typi-

cal data-rates are still moderate [2], reducing the impact

of a higher decoding complexity. Moreover, the decoder

is located in the ground station.

∙ Up-link in interactive satellite communications. In this

context short or moderate-size packets have to be sent by

fixed/mobile terminals to a gateway through a satellite

link. The terminals may have power constraints (due to

either regulatory issues / cost of amplifiers) and hence

large coding gains are essential for achieving reasonable

bandwidth efficiencies. The data rates are moderate, and

the decoder is located in the gateway.

In this paper, we provide an overview of recent achieve-

ments in the design/decoding of non-binary LDPC codes. We

also provide numerical evidence on the gain of non-binary

LDPC codes over both well-established and recently-proposed

binary LDPC counterparts. The work is organized as follows.

Reduced-complexity decoding for non-binary LDPC codes

is illustrated in Section II. Insights on the code design are

given in Section III, before presenting simulation results in

Section IV. Section V concludes the paper.

II. BELIEF PROPAGATION DECODING OF NON-BINARY

LDPC CODES

In this paper we always refer to GFs of order q = 2p, p > 1.

The parity-check matrix of a (n, k) LDPC code on GF(2p)
possesses N = n/p columns, M = (n − k)/p rows and
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each entry takes a value in GF(2p). The corresponding Tanner

graph is composed of a set {Vi}i=0,...,N−1 of N variable nodes

(VNs) and a set {Cj}j=0,...,M−1 of M CNs. A variable node

Vi is connected by an edge to the check node Cj iff ℎj,i ∕= 0,

i.e. if the corresponding element of H is non-zero.

Probability-domain BP decoding of non-binary LDPC codes

on the additive white Gaussian noise (AWGN) channel was

investigated in [15]. Due to a complexity scaling with O(q2),
GFs of order up to q = 16 were considered. A more efficient

approach based on the use of FFTs at the CNs was suggested

in [16], [19], [20], leading to a complexity scaling with

O(q log
2
(q)). A log-domain implementation of the algorithm

was proposed in [21].

Next, the probability-domain BP decoding algorithm is

reviewed. Apart from the initialization step, the decoding steps

are repeated until a valid codeword is found or a maximum

number of iterations (Imax) is reached. Each message is a

probability mass function (PMF) and consists of a vector of

q probabilities, one for each possible value of the codeword

symbol associated with the message.

A. Initialization

The first message vout

i,j from the VN Vi to the CN Cj

coincides with mi, a vector of the q symbol probabilities given

the observation from the channel. Assuming AWGN channel

and BPSK modulation, a codeword symbol ci ∈ GF(q) is

represented by a binary sequence ci = (ci,0, ci,1, . . . , ci,p−1)
of p bits. Each bit is mapped according to an antipodal

modulation, i.e. xi = 1 − 2ci, of which a noisy version

yi = xi+ni is received. Here, ni is a vector of p independent

and identically-distributed (i.i.d.) zero-mean Gaussian noise

samples, each with variance �2 = (2R ⋅Eb/N0)
−1, where Eb

is the energy per bit (associated with an information symbol),

N0 is the one-sided noise power spectral density and R = k/n
is the code rate. The wth element of mi, w ∈ {0, . . . , q−1}, is

the probability of ci being equal to the wth symbol in GF(q),
aw, given the received vector yi. It may be expressed as

mi,w = Pr(ci = aw ∣yi) =

p−1
∏

l=0

Pr(cw,l = aw,l ∣ yi,l) (1)

where cw,l is the lth bit of the binary representation ci of

ci and aw,l is the lth bit of the binary representation aw
of aw. Under the assumption that all symbols in GF(q) are

equiprobable, mi,w may be expressed as

mi,w =
exp

(

− ∣yi−x̃w∣2

2�2

)

∑q−1

w=0
exp

(

− ∣yi−x̃w∣2

2�2

) , (2)

where x̃w = 1− 2aw.

B. Permutation of Outgoing VN Messages

The entries ℎj,i of the parity-check matrix are elements of

GF(q). The jth parity check equation can be described as

N−1
∑

i=0

ℎj,ici = 0. (3)

The multiplication of ci with ℎj,i in (3) entails a permutation

of the entries of vout

i,j . For sake of clarification, let’s take a

non-zero entry ℎj,i and define zi = ℎj,ici. For the symbol

probabilities we obtain Pr(zi = aw) = Pr(ci = ℎ−1

j,i aw), where

ℎ−1

j,i is the multiplicative inverse of ℎj,i. This means that the

corresponding probabilities have to be mapped accordingly.

Following that, the permuted message form VN(i) to CN(j)
is given by

vΠ

i,j = vout

i,j ⋅Πj,i , (4)

where Πj,i is a q× q permutation matrix associated with ℎj,i.

C. CN Message Processing

Modeling each zi = ℎj,ici ∈ GF(q) as a discrete random

variable (RV) and under independence assumption, the left-

hand side in (3) is a RV whose PMF is given by the

convolution in GF(q) of the PMFs of the different zi. For

each CN Cj , define the set of indices of its neighboring VNs

as ℐj and the message outgoing towards the VN Vi as uout

j,i .

We then obtain

uout

j,i = ⊛l∈ℐj∖{i}
vΠ

l,j

where ⊛ denotes the convolution of the PMFs. By applying

the Hadamard transform (HT), ℋ{⋅}, the discrete convolution

turns into an element-wise multiplication. This yields to

ℋ{uout

j,i } =
∏

l∈ℐj∖{i}

ℋ{vΠ

l,j} . (5)

The right-hand side of (5) can be efficiently implemented via

the fast Hadamard transform (FHT) as a recursive application

of sums and differences. This allows lowering the complexity

of the CN elaboration to O(q log2(q)). Moreover, since the

Hadamard transform coincides with its inverse, we have

uout

j,i = ℋ

⎧

⎨

⎩

∏

l∈ℐj∖{i}

ℋ{vΠ

l,j}

⎫

⎬

⎭

.

D. De-permutation of outgoing CN messages

The output message uout

j,i has to be de-permuted, before it

can be passed to the VN Vi. In a similar way as (4) the de-

permutation may be written as

uΠ

j,i = uout

j,i ⋅Π−1

j,i .

Here, Π−1

j,i is a (q × q) permutation matrix related to ℎ−1

j,i .

E. VN Messages Processing

The generic VN Vi computes the outgoing message towards

its neighboring CN Cj by multiplying (element-wise) mi by

the product of all incoming messages (each of which consists

of a PMF) but the message from Cj . For a VN Vi, let us denote

as Ji the set of its neighboring CNs. Then, the message from

VN Vi to CN Cj is given by

vout

i,j = mi ⋅
∏

l∈Ji∖{j}

uΠ

l,i

where all multiplications are element-wise. After that, it is

necessary to normalize the elements of vout

i,j , so that they sum

to 1.
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F. Hard Decision and Stopping Criterion Step

The algorithm stops when a given maximum number Imax

of iterations is reached or if a codeword is found at the end

of any iteration. At the end of each iteration, the a posteriori

probabilies of symbol ci are obtained by multiplying element-

wise all messages incoming towards the VN Vi, including mi:

vi = mi ⋅
∏

l∈Ji

uΠ

l,i .

The message vi is a vector of q elements (one for each possible

value of ci) and provides an estimation of the a posteriori

probabilities Pr(ci = aw∣y), where y = (y1,y2, . . . ,yN ) is

the vector of all received soft values from the channel. The

decision on ci is given by ĉi = aŵ with ŵ = argmaxw vi,w,

where vi,w is the wth element of vi.

III. NON-BINARY LDPC CODE DESIGNS

The design of a non-binary LDPC code may be summarized

in three main steps:

1) Definition of the degree distribution pair to be used for

the parity-check matrix construction.

2) Construction of a parity-check matrix H whose Tanner

graph possesses a large girth.

3) Choice of the values of the non-zero entries of H.

The first step is rather unexplored in the non-binary LDPC

context. It is however established that regular distributions

with variable node degree dv = 2 provide an excellent

iterative decoding thresholds on the AWGN channel, espe-

cially for sufficiently large field orders. As an example, the

(2, 4)-regular ensemble over GF(256) exhibits a threshold at

Eb/N0 ≃ 0.45 dB, only 0.27 dB away from the Shannon

limit for rate-1/2 codes on the binary input AWGN channel.

This justifies the increasing attention recently gained by the

design of non-binary LDPC codes with ultra-sparse parity-

check matrices [18].

The second step can be tackled by using tools available from

the construction of binary LDPC codes. Hence, girth optimiza-

tion techniques such as the progressive edge growth (PEG)

algorithm [22] can be adopted for the matrix construction.

The third step may be pragmatically performed by selecting

the non-zero entries of H with uniform probability over GF(q).
This approach provides an acceptable performance in most

cases, especially for large Galois field orders. However, it has

been pointed out that ultra-sparse (dv = 2, dc) non-binary

LDPC code ensembles built with this approach tend to be

affected by an error floor already at moderate error rates [18].

This has to be related to the fact that their minimum distance

grows sub-linearly with n [1].

An efficient approach for selecting the non-zero entries is

proposed in [18]. The approach is based on the binary image

of the non-binary parity-check equations. Note in fact that

a degree-dc equation over GF(2p) is equivalent to p binary

equations involving pdc bits, and hence can be regarded as

(pdc, p(dc − 1)) binary linear block code. In this view, the

Tanner graph of a non-binary LDPC code can be described

in terms of a generalized LDPC (G-LDPC) code graph. By

judiciously selecting the equations coefficients, one can assure

that the corresponding binary linear block code representation

possesses a minimum distance larger than 2. If all the M non-

binary equations are designed in this manner, the overall result

is an increased minimum distance for the non-binary LDPC

code, and hence a lower error floor.

In [23] an approach for the design of low-rate non-binary

LDPC codes based on protographs [24], [25] is presented. In

particular, it is shown how an arbitrary low-rate non-binary

LDPC code can be obtained from an higher-rate one by

repeating the codeword symbols by means of a non-binary

repetition code (i.e., some codeword symbols are repeated and

the replicas are multiplied by non-zero Galois field elements).

This allows an excellent flexibility in the code construction,

supporting rate compatibility and maintaining the decoding

complexity of the mother (higher-rate) code, with performance

close to the theoretical bounds down to very low code rates

and short block sizes.

Next, we will show the performance of some non-binary

LDPC codes constructed by means of some of the techniques

mentioned above. We will focus on ultra-sparse matrices with

dv = 2. The matrices have been constructed using a circulant-

version of the PEG algorithm, starting from a small base

matrix (protograph) and performing protograph expansions by

means of circulant permutation matrices in either 2 or 3 stages.

The resulting parity-check matrices are in block circulant

form. This feature allows a compact description of the matrix

structure, facilitating the decoder implementations. The choice

of the non-zero coefficients has been performed according

to the criteria of [18]. For low-rate codes (R < 1/2), the

repetition-code-based approach of [23] has been adopted. The

protographs used for the code design, together with extensions

for achieving low-rates, are depicted in Fig. 1.
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a) Rate-1/2 protograph

b) Rate-1/3 protograph

A

D
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E

C

F

c) Low-rate protographs

Fig. 1. Protographs used for the code design. a) Rate-1/2 regular protograph.
b) Rate 1/3 regular protograph. c) Low-rate protographs obtained by multi-
plicative repetition of variable nodes [23]. A rate 1/4 protograph is obtained
by adding to the rate-1/3 protograph the VN type A. The rate can be lowered
to 1/6 by further adding VNs of type B and C. A rate 1/9 protograph if finally
given by adding the VNs of type D,E and F.
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IV. NUMERICAL RESULTS

The results presented in this section have been obtained

by Monte Carlo simulation on the AWGN channel with

Imax = 200 iterations. All simulated non-binary LDPC codes

have been constructed on GF(256). We provide a comparison

with binary codes and with the RCB, for the same (n, k)
parameters (in bits). We evaluated the codeword error rate

(CER) vs. Eb/N0 for non-binary protograph-based codes

and for binary irregular repeat accumulate (IRA) codes with

constant information node degree 4. This choice for IRA codes

is dictated by the need to trade-off the error floor and the

waterfall performance [8]. The RCB is provided as well.

Fig. 2 and Fig. 3 show the results for R = 1/2 codes with

information lengths k = 256 and k = 1024, respectively. At

CER = 10−5, the gap between the RCB and the LDPC codes

over GF(256) is less than 0.3 dB in both cases. By contrary

the IRA code shows a gap of 0.9 dB for k = 1024 and around

1.3 dB for k = 256.

Fig. 4 and Fig. 5 show the CER vs. Eb/N0 for R = 1/3
codes with k = 256 and k = 1024, respectively. The codes

under investigation are non-binary LDPC codes and (again)

IRA codes with information node degree 4. Similarly to R =
1/2 codes above, also for lower code rates the gap to the RCB

at CER = 10−5 is less than 0.3 dB for the non-binary codes,

whereas for the IRA codes its always greater than 1 dB.

Next, a comparison between non-binary LDPC codes and

state-of-the-art turbo codes (TCs) (specifically, TCs from the

DVB-RCS standard [26] and 3D-TCs [27]) is illustrated for

R = 1/2 and R = 1/4. In this latter low-rate case, TCs

usually express excellent performance. Due to construction

constraints, we have k = 456 for the TCs (and for the RCB),

while k = 448 for the LDPC codes (this is reflected in a

slightly shorter block length for n for the non-binary LDPC

codes). From Fig. 6 it can be seen that the non-binary LDPC

codes ouperform TCs at both code rates. At CER = 10−5, the

3D-TCs have a performance loss with respect to their LDPC

competitors of about 0.3÷ 0.4 dB.

V. CONCLUSIONS

In this paper, we provided an overview of recent achieve-

ments in the design and in the decoding of non-binary LDPC

codes. We compared non-binary constructions based on ultra-

sparse matrices with binary LDPC and turbo codes, showing

how remarkable coding gains can be achieved on the AWGN

channel, especially in the short block regime. The outcomes

presented within this paper are in particular interesting for

deep space communications, as well as satellite applications,

where the return link is targeted.
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Fig. 2. CER of GF(256) LDPC code, binary IRA code and RCB over
Eb/N0 with R = 1/2, k = 256.
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Eb/N0 with R = 1/2, k = 1024.
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