
Hindawi Publishing Corporation
Advances in Software Engineering
Volume 2010, Article ID 729826, 21 pages
doi:10.1155/2010/729826

Research Article

An Empirical Study of Social Networks Metrics in
Object-Oriented Software

Giulio Concas, Michele Marchesi, Alessandro Murgia, and Roberto Tonelli

Department of Electrical and Electronic Engineering, University of Cagliari, 09123 Cagliari, Italy

Correspondence should be addressed to Roberto Tonelli, roberto.tonelli@dsf.unica.it

Received 14 April 2010; Accepted 13 August 2010

Academic Editor: Ewan Tempero

Copyright © 2010 Giulio Concas et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We study the application to object-oriented software of new metrics, derived from Social Network Analysis. Social Networks
metrics, as for instance, the EGO metrics, allow to identify the role of each single node in the information flow through the
network, being related to software modules and their dependencies. These metrics are compared with other traditional software
metrics, like the Chidamber-Kemerer suite, and software graph metrics. We examine the empirical distributions of all the metrics,
bugs included, across the software modules of several releases of two large Java systems, Eclipse and Netbeans. We provide analytical
distribution functions suitable for describing and studying the observed distributions. We study also correlations among metrics
and bugs. We found that the empirical distributions systematically show fat-tails for all the metrics. Moreover, the various metric
distributions look very similar and consistent across all system releases and are also very similar in both the studied systems. These
features appear to be typical properties of these software metrics.

1. Introduction

Measuring software to get information about its properties
and quality is one of the main issues in modern software
engineering. Limiting ourselves to object-oriented (OO)
software, one of the first works dealing with this problem is
the one by Chidamber and Kemerer (CK), who introduced
the popular CK metrics suite for OO software systems [1].
Other OO metrics have been also proposed, like MOOD
[2] and the Lorenz and Kidd metric suite [3], but the CK
suite remains by far the most widely used. In fact, different
empirical studies showed significant correlations between
some of CK metrics and bug-proneness [4–7].

Modern software systems are made of many elementary
units (software modules) interconnected in order to cooper-
ate to perform specific tasks. In particular, in OO systems the
units are the classes, which are in turn interconnected with
each other by relationships like inheritance and dependency.
Recently, it has been shown how these software systems
may be analyzed using complex network theory [8–10].
In software networks, the classes are the nodes and the
relationships among classes are the edges. This property
opens the perspective to analyze software networks using

metrics taken from other disciplines, like Social Network
Analysis (SNA) [11]. These SNA metrics can be used together
with more traditional product metrics, like class LOCS,
number of Bugs, or the CK suite, to gain a deeper insight
into the properties of software systems. Recent studies
showed the importance of SNA metrics in measuring the
interactions among software modules [12], and in particular
how centrality measures are useful to identify software hubs,
which show higher defect-proneness.

Considering software systems as graphs is not a new
approach, and different authors have already investigated
some of their properties, like the distribution of Fan-
in or Fan-out of network nodes [8, 13], finding features
characteristic of complex networks, like for instance, the
presence of power-laws in the tail of the distributions of these
metrics.

Only recently, SNA has been applied to the study of
software systems. Zimmermann and Nagappan used SNA
metrics to investigate a network of binary dependencies [12].
With regard to the study of OO software systems, only Tosun
et al., to the authors’ knowledge, applied SNA metrics to OO
source code to assess defect prediction performance of these
metrics [14]. In particular, there are no studies investigating



2 Advances in Software Engineering

the relationships and the correlations among SNA metrics,
traditional metrics, and Bugs metrics, and the corresponding
statistical distributions. It must be noted that, when the
measures are distributed according to power-laws, or other
leptokurtotic distributions, traditional quantities like average
or standard deviation may lose their meaning, and may not
be characterizing measures anymore [15]. Knowledge of the
overall statistical distribution is needed for characterizing the
system properties. In particular, they are needed in order to
obtain estimates of the metrics values for the future software
releases.

In this paper, we study a set of releases of two large Open
Source OO systems, Eclipse [16] and NetBeans [17], from
the software network perspective, and compute the observed
complementary cumulative distribution functions (CCDF)
[15] of several metrics including SNA metrics. We study these
systems because both the source code of several versions
and complete data about Bugs and Issues of their software
modules are available.

We study the relationships between these metrics and
software fault-proneness—measured as the number of Bugs
affecting software modules—and between them and more
traditional software metrics. We also study the possibility of
estimating the metric features for the future releases. For all
the observed distributions, we performed best fits, finding
analytical distributions able to model the system.

The systems analyzed are written in Java. All their classes
are contained in Java source files, called Compilation Units
(CU). A CU generally contains just one class, but less
frequently it may contain two or more classes. We extracted
the Bugs affecting files merging information found in bug-
tracking repositories, specifically Bugzilla [18] and Issuezilla
[19], with information taken from source code repositories,
namely, Concurrent Versioning System (CVS) [20]. The
information about Bugs and software changes (commit logs)
is reported at CU level, and not at class level. Therefore, we
extended the concept of software graph to CU level, building
a graph in which nodes are Compilation Units and edges
are the relationships between these CU’s, extracted from
the classes belonging to each CU. We used this graph for
computing all the metrics analyzed as well as for computing
the Bug distributions.

We found that most of the studied metrics are distributed
according to the Yule-Simon distribution [21, 22], to a
high degree of accuracy, and show a persistent or universal
character across all different releases, for both systems
analyzed. The high degree of accuracy of the analytical fitting
distributions and their persistent character allowed us to
estimate metrics values for the subsequent releases.

The paper is organized as follows. In Sections 2 and
3, we present related works and the research questions.
In Section 4, we describe the software network obtained
considering Compilation Units as nodes and redefine the CK
metric suite for this case. Section 5 defines the SNA metrics
analyzed. In Section 6, we discuss the process of Bug recovery
and how to assign a Bug to the proper CU. In Section 7, we
present the analytical distribution functions used to describe
the empirical data and provide the main results. Section 8
analyses correlations between metrics and between metrics

and Bugs. Section 9 shows how it is possible to use the results
of previous sections to provide estimate for the feature of
future releases. In Section 10, we discuss our finding and
present the conclusions.

2. Related Work

Product metrics, extracted by analyzing static code of soft-
ware, have been used to build models that relate these metrics
to failure-proneness [4–7, 23]. Among these, the CK [24]
suite is historically the most adopted and validated to analyze
bug-proneness of software systems [4–7]. CK suite was
adopted by practitioners [4] and is also incorporated into
several industrial software development tools. Based on the
study of eight medium-sized systems developed by students,
Basili et al. [5] were among the first to find that OO metrics
are correlated to defect density. Considering industry data
from software developed in C++ and Java, Subramanyam
and Krishnan [6] showed that CK metrics are significantly
associated with defects. Among others, Gyimóthy et al. [7],
studying an Open Source system, validated the usefulness of
these metrics for fault-proneness prediction.

CK metrics are intended to measure the degree of
coupling and cohesion of classes in OO software contexts.
However, the studies using CK metrics do not consider the
amount of “information” passing through a given module
of the software network. Social Network Analysis (SNA) fills
this gap, providing a set of metrics able to extract a new, dif-
ferent kind of information from software projects. Recently,
this ability of SNA metrics was successfully employed to
study software systems. Zimmermann and Nagappan [12]
showed that network measures derived from dependency
graphs are able to identify critical binaries of a complex
system that are missed by complexity metrics. However, their
results are obtained considering only one industrial product
(Windows Server 2003). Tosun et al. [14] reproduced the
previous work [12] extending the network analysis in order
to validate and/or refute its results. They show that network
metrics are important indicators of defective modules in
large and complex systems. On the other hand, they argue
that these metrics do not have significant effects on small
scale projects. Both previous studies [12, 14] did not consider
mutual relationships among SNA metrics and complexity
metrics; therefore, they did not show if SNA metrics carry
new information with respect to CK suite. Our work, instead,
computes the correlation matrix among SNA metrics and CK
metrics, considering also mutual correlations with respect to
Issue, Bug, LOC, Fan-out and Fan-in.

3. Research Questions

The Pareto principle (80–20 rule) and the presence of power-
laws in the tail of the distributions of many properties
of software systems, including Bugs, have already been
observed [9, 25, 26]. In [27], a high-order statistic coeffi-
cient was proposed to analyze software metrics exhibiting
highly skewed statistical distributions, that was efficient in
observing changes in software systems and in monitoring the
development process.



Advances in Software Engineering 3

We investigate if the new proposed SNA metrics possess
the same properties and have similar empirical distributions.
Moreover, the new metrics might possibly show correlations
with Bugs and/or with other metrics and properties. Thus, it
is desirable to study these correlations.

We also investigate if there are analytical distribution
functions which may be used to describe such empirical
distributions and possibly to forecast future properties of the
software systems.

Consequently, our research questions are the following.

(i) RQ1: Are there analytical distribution functions
describing the empirical data? Have these functions
power-law behavior in their tails? What is the sig-
nificance level of fitting empirical data with these
distributions?

(ii) RQ2: Are these distributions similar in all the releases
and in different systems, or tend to vary significantly?

(iii) RQ3: Is it possible to use these distributions to
estimate the metrics values in subsequent releases?

(iv) RQ4: Are there SNA metrics significantly correlated
with software Bugs, and to which extent?

(v) RQ5: Are there SNA metrics significantly correlated
to traditional CK metrics, and to which extent?

4. CU Software Networks and CU-CK Metrics

An oriented graph can be associated to an OO software
system, whose nodes are classes and interfaces, and whose
edges are the relationships between classes, namely, inher-
itance, composition, and dependence. This approach has
already been used in the literature. In [28] complex software
networks were analyzed with nodes representing software
entities at any level, and links representing syntactical rela-
tionships between modules, subprograms, and instructions.
In [13] software is seen as a network of interconnected and
cooperating components, choosing modules of varying size
and functionalities, where the links connecting the modules
are given by their dependencies. In [12] nodes are binaries,
and edges are dependencies among binary pieces of code.
In [29] interclass relationships were examined in three Java
systems, and in [30] the same analysis was replicated on
the source code of 56 Java applications. Object graphs were
analyzed in [10] in order to reveal scale-free geometry of
object-oriented programs, where the objects were the nodes
and the links among objects were the network edges.

All these studies were devoted to exploit general depen-
dencies among pieces of code in different software modules.
With the same aim, in our study we do not distinguish
between the various possibilities of software relationships,
and with regard to SNA metrics, for simplicity, we do not
even consider edges orientation, which would imply the
construction of different EGO networks for the different
kinds of links. Ours is a static analysis. Furthermore, since
our software nodes are CUs, as explained later, many
relationships among Java classes lose their original meaning
at this granularity level. Our purpose is to focus on the role
of the interactions among the software elements.

The number and orientation of edges allow to study
the coupling between nodes, that is between classes. In this
graph, the in-degree of a class, or Fan-in, is the number of
edges directed toward the class. It measures how much this
class is used by other classes of the system. The out-degree
of a class, or Fan-out, is the number of edges leaving the
class. It represents the level of usage the class makes of other
classes in the system. Besides Fan-in and Fan-out metrics, we
computed also, for each class, four CK metrics which were
observed to be significantly correlated with the number of
Bugs. They are as follows.

(i) Weighted Methods per Class (WMC). A weighted
sum of all the methods defined in a class. We set the
weighting factor to one, to simplify our analysis.

(ii) Coupling Between Objects (CBO). The counting of
the number of classes which a given class is coupled
to.

(iii) Response For a Class (RFC). The sum of the number
of methods defined in the class, and the cardinality of
the set of methods called by them and belonging to
external classes.

(iv) Lack of Cohesion of Methods (LCOM). The differ-
ence between the number of noncohesive method
pairs and the number of cohesive pairs.

We also computed the lines of code of the class (LOC),
excluding blanks and comment lines. This is useful to keep
track of the class size, because it is known that a “big” class is
more difficult to maintain than a smaller class.

Every class is contained in a Java file, called CU. While
most files include just one class, there are files including two
or more classes. In Eclipse, about 10% of CUs host more than
one class, whereas in Netbeans this percentage is about 30%.

While OO metrics and class graphs are usually referred
to classes, Bugs and Issues are typically associated to CUs,
because the logs of coding efforts aimed to fix Bugs are
associated to changes to the source code, which are made to
files (the CUs). Since the number of Bugs is of paramount
importance to define software quality, to make Issue tracking
consistent with source code we decided to base our analysis
on CUs. Consequently, we extended CK metrics from classes
to CUs. CUs represent therefore the main element of our
study.

We defined a CU graph, whose nodes are the CUs of the
system. Two nodes, A and B, are connected with an edge
directed from A to B if at least one class inside the CU
represented by A has a dependency relationship with one
class inside the CU represented by B. Referring to this graph,
we can compute In-links and Out-links of a CU-node. We
reinterpreted LOC and CK metrics for this CU-graph:

(i) CU LOC is the sum of the LOCS of the classes
contained in the CU;

(ii) CU CBO is the number of out-links of each node,
excluding those representing inheritance. This defini-
tion is consistent with that of CBO metrics for classes;



4 Advances in Software Engineering

(iii) CU LCOM and CU WMC are the sum of LCOM
and WMC metrics of the classes contained in the CU,
respectively;

(iv) CU RFC is the sum of weighted out-links of each
node, each out-link being multiplied by the num-
ber of specific distinct relationships between classes
belonging to the CUs connected to the related edge.

For each, CU we have thus a set of 7 metrics: In-links (Fan-
in), Out-links (Fan-out), CU-LOCS, CU-LCOM, CU-WMC,
CU-RFC, and CU-CBO. These metrics were computed for
CUs of all versions of Eclipse and Netbeans.

5. SNA Metrics

Once the CU software graph is defined, we can compute on
this graph the metrics used in Social Network Analysis. We
restricted ourselves to the subset of SNA metrics that were
found most correlated to software quality [12, 31]. Some
of these metrics are the so-called “EGO metrics”. For every
node in the graph, there exists a subgraph composed by
the node itself, called “EGO” (from the Latin word “ego”,
meaning “I”), and its immediate neighbors. Such subgraph
is called the EGO Network associated to the node. The
analysis of the EGO-networks gives information about the
role of the “EGO” inside the entire network. In particular,
EGO-network metrics provide insights on the extent each
CU is connected to the entire system, and on the flow
of information. In the definition of the EGO network, we
considered the graph links as undirected links.

Other SNA metrics we considered, not directly related
to the EGO network, are some centrality metrics, deter-
mining how important a given node/edge is relative to
other nodes/edges in the network. Overall, we consider the
following SNA metrics.

(i) Size: size of the EGO-network related to the consid-
ered node (i.e., Compilation Unit); it is the number
of the nodes of the EGO-network.

(ii) Ties: number of edges of the EGO-network related to
the node.

(iii) Brokerage: the number of pairs not directly con-
nected in the EGO network, excluding the EGO node.

(iv) Eff-size: effective size of the EGO network; the
number of nodes in the EGO network minus one,
minus the average number of ties that each node has
to other nodes of the EGO network.

(v) Nweak-comp: normalized Number of Weak Com-
ponents; the number of disjoint sets of nodes in
the EGO network without EGO node and the edges
connected to it, divided by Size.

(vi) Reach-Efficiency; the percentage of nodes within
two-step distance from a node, divided by Size.

(vii) Closeness; the sum of the lengths of the shortest paths
from the node to all other nodes.

(viii) Information Centrality: the harmonic mean of the
length of paths starting from all nodes of the network
and ending at the node.

(ix) DwReach: the sum of all nodes of the network that
can be reached from the node, each weighted by the
inverse of its geodesic distance. The weights are thus
1/1, 1/2, 1/3, and so on.

All previous metrics are computed on the CU graph
and are among those studied in [12]. It is useful to shortly
describe how these SNA metrics may be relevant to software
systems, namely, what they try to measure. The first five
are strictly EGO metrics and describe the software neigh-
borhood of a CU. Size measures the CU directly connected
to a given CU while Ties, measured on such neighborhood,
measures how dense are the software connections in this local
network. Brokerage measures for how many couples of CU
the given node acts like a broker, bridging the information
flow among couples. Eff-size measures the redundancy of the
connections in the EGO network, reducing the CU Size by an
amount proportional to the local average Ties. If the average
Ties is high, the local network has in fact redundant channels
available for the information flow. The role of the EGO CU in
the information exchange is then reduced. It must be noted
that the average Ties refers only to the local network, and not
to the global network, where, as we will see in the following,
the distribution of Ties among all the nodes presents a fat tail.
Nweak-comp measures how much the CU is needed to keep
connected the other software units. The remainings are not
EGO-metrics and are all centrality metrics. They measure if,
in the global software network, the CU plays a peripheral
rather than a central role.

We analyze the correlations among all of these metrics,
as well as with the other metrics and with Bugs. For
some metrics, we analyzed the statistical distributions and
performed best fits with analytical distribution functions.

6. Issues Extraction

Bug Tracking Systems (BTSs) are commonly used to keep
track of Bugs, enhancements, and features—called with the
common term “Issues”—of software systems. The open
source systems studied, Eclipse and Netbeans, make use of
BTS Bugzilla and Issuezilla, respectively.

Each Issue inside a BTS is univocally identified by a
positive integer number, the Issue-ID. BTS store, for each
tracked Issue, its characteristics, life-cycle, software releases
where it appears, and other data. In Bugzilla, a valid
Bug is an Issue with a resolution of “fixed”, a status of
“closed”, “resolved”, or “verified”, and a severity that is not
“enhancement”, as pointed out in Eaddy et al. [32]. Thus,
Bugs are a subset of Issues. For Issuezilla, it is possible to
adopt an equivalent definition: a Bug is an Issue with a
resolution and status as above, and with type “defect”.

Software configuration management systems like CVS
(Concurrent Version System) keep track of all mainte-
nance operations on software systems. These operations
are recorded inside CVS in an unstructured way; it is
not possible, for instance, on query CVS to know which
operations were done to fix Bugs, or to introduce a new
feature or enhancement. In order to identify Issues (Bugs)



Advances in Software Engineering 5

Table 1: Number of CUs of Eclipse for each release.

Release 2.0 2.1 3.0 3.1 3.2 3.3 3.4

Number of CU 6391 7545 10288 11854 14138 15439 17387

Release date 06-2002 03-2003 06-2004 06-2005 06-2006 06-2007 05-2008

Table 2: Number of CUs of Netbeans for each release.

Release 3.2 3.3 3.4 4.0 6.0 6.1

Number of CU 3346 4383 6264 9317 31425 35034

Release date 04-2001 11-2001 08-2002 12-2004 12-2007 04-2008

affecting systems CUs, we had to match data stored in BTS
with other data recorded in CVS of Eclipse and Netbeans.

All commit operations are committed to the CVS log
messages as single entries. Each entry contains various
data—among which the date, the developer who made the
changes, a text message referring to the reasons of the
commit, and the list of CU’s interested by the commit. To
obtain a correct mapping between Issue(s) and the related
CU(s), the only way is to analyze the CVS log messages, to
identify commits associated to maintenance operation where
Issues are fixed. If a maintenance operation is done on a CU
to address an Issue, we consider the CU as affected by this
Issue.

In our approach, we first analyzed the text of com-
mit messages, looking for Issue-IDs. In fact, in commit
messages, there may be strings such as “Fixed 141181”
or “bug no. 141181”, but sometimes only the Issue-ID is
reported. Unfortunately, every positive integer number is
a potential Issue-ID, but sometimes numbers can refer to
maintenance operations not related to Issue-ID resolution,
such as branching, data, number of release, and copyright
updating.

To avoid wrong mappings between Issue-IDs and CUs,
we applied the following strategies.

(i) For each release, a CU can be hit only by Issues which
are referred to in the BTS belonging to the same
release.

(ii) We did not consider some numeric intervals particu-
larly prone to host false positive Issue-IDs.

The latter condition is not particularly restrictive in our
study, because we did not consider the first releases of the
studied projects, where Issues with “low” ID appear. All IDs
not filtered out are considered Issues and associated to the
addition or modification of one ore more CUs, as reported in
the commit logs. This method might not completely address
the problems in the mapping between bugs and CUs [33]. In
any case, we checked manually

- 10% of CU-bug(s) associations (randomly chosen) for
each release,

- each CU-bug association for 6 subprojects (3 for Eclipse
and 3 for Netbeans) without finding any error. A bias may
still remain due to lack of information on CVS [33].

The total number of Issues affecting a CU in each release
constitutes the Issue-metric we consider in this study, while

the subset of Issues satisfying the conditions as in Eaddy et
al. is the Bug-metric [32]. Clearly, not all source modules
changed due to a Bug are to be considered “faulty”. Some
changes can happen to realign a correct piece of code with
another piece of code that was modified to fix the Bug. So,
what we measure is to what extent a Bug hits one, some, or
many CUs, and not whether they were really faulty.

7. Empirical Results Regarding Metric
Distributions

We systematically analyzed several main releases of Eclipse
and Netbeans projects, namely, releases from 2.0 to 3.4 of
Eclipse and releases from 3.2 to 6.1 of Netbeans. For each
release, we computed the class graph and the consequent CU
graph, and computed all the above quoted metrics at CU
level. We analyzed the statistical distributions of the metrics
among the systems CU’s, which are our graph nodes, as well
as the Bugs and Issues distributions. Note that we used CU
metrics to be able to study more easily their relationships
with Bugs and Issues. However, we verified that the behavior
of CU metrics is absolutely similar to the behavior of the
corresponding class metrics, for all considered metrics.

Tables 1 and 2 show the number of CUs in the various
releases considered of Eclipse and Netbeans, respectively,
together with their release date. Both the size and the release
date of the considered systems vary considerably. The sizes—
in number of CUs—vary of one order of magnitude in
Netbeans, and about three times in Eclipse.

In the following figures, we systematically report the
experimental CCDF (Complementary Cumulative Distribu-
tion Function) in log-log scale, as well as the best-fitting
curves in many cases. This is convenient because, if the
PDF (probability distribution function) has a power-law
in the tail, the log-log plot displays a straight line for the
raw data. This is a necessary but by no means a sufficient
condition for power-law behavior. Thus we used log-log
plots only for convenience of graphical representation, but
all our calculations (CDF, CCDF, best fit procedures and the
same analytical distribution functions we use) are always in
normal scale.

The problems with representing the experimental PDF
are that it is sensitive to the binning of the histogram
used to calculate the frequencies of occurrence, and that
bins with very few elements are very sensitive to statistical



6 Advances in Software Engineering

noise. This causes a noisy spread of the points in the
tail of the distribution, where the most interesting data
lie. Furthermore, because of the binning, the information
relative to each single data is lost. All these aspects make
difficult to verify the power-law behavior in the tail. Thus,
we adopted the CCDF representation, which presents various
advantages. With this representation, there is no dependence
on the binning, nor artificial statistical noise added to the
tail of the data. If the PDF exhibits a power-law, so does the
CCDF, with an exponent increased by one. Fitting the tail of
the CCDF, or even the entire distribution, results in a major
improvement in the quality of fit. An exhaustive discussion
of all these issues may be found in [15].

We were able to obtain high quality best fits using three
different distribution functions, all compatible with a power-
law behavior in the tail. This approach has already been
proposed in the literature to explain the power-law in the
tail of various software properties [9, 13]. In our study, we
are actually interested in answering our research questions,
and the power-law behavior in the tail for the distribution
of the studied metrics is only a side information, related to
the best fitting distribution functions which may eventually
best approximate the empirical data. With the best fitting
proposed analytical distribution functions, we then try to
predict some values for the metrics in the future releases.

The CCDF is defined as 1 − CDF, where the CDF
(Cumulative Distribution Function) is the integral of the
PDF. Denoting by p(x) the probability distribution function,
by P(x) the CDF, and by G(x) the CCDF, we have

G(x) = 1− P(x),

P(x) = p(X ≤ x) =
∫ x
−∞

p(x′)dx′

G(x) = p(X ≥ x) =
∫∞
x
p(x′)dx′.

(1)

The distributions we study are a straight power-law—also
called Pareto distribution—a log-normal, and a Yule-Simon
distribution [21, 34]. The power-law is mathematically for-
mulated as p(x) � x−α, where α is the power-law exponent,
the only parameter which characterizes the distribution,
besides a normalization factor. Since for α ≥ 1 the function
diverges in the origin, it cannot represent real data for its
entire range of values. A lower cut-off, generally indicated
x0, has to be introduced, and the power-law holds above
x0. Thus, when fitting real data, this cut-off acts as a
second parameter to be adjusted for best fitting purposes.
Consequently, the data distribution is said to have a power-
law in the tail, namely, above x0.

The log-normal distribution has been also proposed in
the literature to explain different software properties [13, 22,
30]. Mathematically it is expressed by

p(x) = 1
x
√

2πσ2
e(ln x−μ)2/2σ2

. (2)

It exhibits a quasi-power-law behavior for a range of
values and provides high quality fits for data with power-
law distribution with a final cut-off. Since in real data largest

values are always limited and cannot actually tend to infinity,
the log-normal is a very good candidate for fitting power-
laws distributed data with a finite-size effect. Furthermore, it
does not diverge for small values of the variable, and thus
may also fit well the bulk of the distribution in the small
values range.

The Yule-Simon distribution is expressed through the
Euler Gamma function and has two parameters:

p(x) = p0
B(x + c,α)
B(h0 + c,α)

,

B(a, b) = Γ(a)Γ(b)
Γ(a + b)

,

(3)

where parameters c and α are derived from the Yule model
of the growth of Genera and Species in nature [15, 21, 34].
It produces a distribution with a power-law in the tail with
exponent α.

We started the analysis by computing the empirical
CCDF’s of the software network metrics for the various
system studied. The empirical distributions of all considered
SNA metrics show the same shape for all releases,both in
Eclipse and Netbeans.Therefore,we show only the figures for
some selected metrics for the last considered releases of the
studied systems, namely, Eclipse-3.4 and Netbeans-6.0.

Figure 1 shows graph and SNA metrics for Eclipse 3.4. All
CCDF are reported for convenience in log-log plots. Most
CCDF show a small cut-off in the extreme tail, which is
typically due to the finite size of the sample. Figure 2 shows
the same data for Netbeans 6.0. The behavior of Netbeans
metrics is very similar to Eclipse’s, with smaller cut-off in the
extreme tail, perhaps owing to the higher numbers of CUs.

In order to compare the empirical distributions across
the releases, we show in the same plot two SNA metrics,
Effective Size and Brokerage, for both Eclipse and Netbeans,
to highlight their overlap. Figure 3 shows the persistence
of the distributions of these metrics across three different
releases, starting from the earliest to the most recent. In
Eclipse, the curves slightly differ only in the tail, while in
Netbeans they are almost coincident.

The empirical distributions of all considered metrics
highly preserve the same shape, meaning that, for each
specific metric, a single distribution function may account
for the empirical data for all the system releases. Moreover,
the distributions of the same metric look also very similar in
Eclipse and Netbeans releases. Thus, once this distribution is
known for one metric in one release, it is possible to infer the
properties of the same metric in other releases, provided that
the number of CUs is known.

Regarding what specific distribution function can best
fit our empirical data, we experimented with the three
distributions cited above—power-law, lognormal, and Yule
Simon distributions. Figure 4 shows Fan-in, Fan-out, LOC,
Size, and Ties, together with best-fit functions, for Eclipse-
3.1. For the LOC metric, only the data with the Yule-Simon
best-fit curve is shown, while for the other metrics data and
best-fits with all the three distribution functions are shown
in two different figures.



Advances in Software Engineering 7

Eclipse 3.4-brokerage

10−5

10−4

10−3

10−2

10−1

100

P
r(
X
≥
x)

100 101 102 103 104 105 106 107

x

Eclipse 3.4-effsize

10−5

10−4

10−3

10−2

10−1

100

P
r(
X
≥
x)

100 101 102 103 104

x

Eclipse 3.4-fan-in

10−5

10−4

10−3

10−2

10−1

100

P
r(
X
≥
x)

100 101 102 103 104

x

Eclipse 3.4-fan-out

10−5

10−4

10−3

10−2

10−1

100
P

r(
X
≥
x)

100 101 102 103

x

Eclipse 3.4-size

10−5

10−4

10−3

10−2

10−1

100

P
r(
X
≥
x)

100 101 102 103 104

x

Eclipse 3.4-ties

10−5

10−4

10−3

10−2

10−1

100

P
r(
X
≥
x)

100 101 102 103 104 105

x

Figure 1: CCDF of SNA metrics for Eclipse 3.4 release. The name of the metrics is in the top of the box. The power-law behavior in the tail
is patent for all metrics.



8 Advances in Software Engineering

Netbeans 6-brokerage

10−5

10−4

10−3

10−2

10−1

100

P
r(
X
≥
x)

100 101 102 103 104 105 106 107 108

x

Netbeans 6-effsize

10−5

10−4

10−3

10−2

10−1

100

P
r(
X
≥
x)

100 101 102 103 104

x

Netbeans 6-fan-in

10−5

10−4

10−3

10−2

10−1

100

P
r(
X
≥
x)

100 101 102 103 104

x

Netbeans 6-fan-out

10−5

10−4

10−3

10−2

10−1

100
P

r(
X
≥
x)

100 101 102 103

x

Netbeans 6-size

10−5

10−4

10−3

10−2

10−1

100

P
r(
X
≥
x)

100 101 102 103 104

x

Netbeans 6-ties

10−5

10−4

10−3

10−2

10−1

100

P
r(
X
≥
x)

100 101 102 103 104 105

x

Figure 2: CCDF of SNA metrics for Netbeans 6.0 release. The name of the metrics is in the top of the box.



Advances in Software Engineering 9

Effective-size

10−5

10−4

10−3

10−2

10−1

100

P
r(
X
≥
x)

100 101 102 103 104

x

Eclipse 2
Eclipse 3.3
Eclipse 3.4

Brokerage

Eclipse 3.4
Eclipse 2
Eclipse 3.3

10−5

10−4

10−3

10−2

10−1

100

P
r(
X
≥
x)

100 101 102 103 104 105 106 107

x

Effective-size

10−5

10−4

10−3

10−2

10−1

100

P
r(
X
≥
x)

100 101 102 103 104

x

Netbeans 3.3
Netbeans 6
Netbeans 6.1

Brokerage

10−5

10−4

10−3

10−2

10−1

100

P
r(
X
≥
x)

100 102 104 106 108

x

Netbeans 3.3
Netbeans 6
Netbeans 6.1

Figure 3: CCDF of EffSize and Brokerage metrics for various Eclipse and Netbeans releases. A very similar behavior is patent for all metrics
and across all releases of the same system.

The fit using a truncated power-law is almost always very
good. Note, however, that this fit is made starting from a
minimum value x0, denoting the value from which the power
law tail is apparent. This makes easier to get good fits. The fit
with a lognormal is usually the poorest.

This distribution is able to fit very well the bulk of the
samples with small values, but in general it tends to zero
too quickly with respect to empirical data. The fit with Yule-
Simon distribution is sometimes very good, both for small
values and in the tails. Other times, it fails to get a good fit in
the tail.

In order to evaluate fit accuracy, we used the determina-
tion coefficient R2, defined by R2 = 1− SE/ST, with

SE =
∑
i

(
fi − yi

)2,

ST =
∑
i

(
y − yi

)2,

(4)

where yi are the empirical CCDF values and fi the cor-
responding best fitting values. All the fits have very high
determination coefficients, sometimes up to 0.999 (Table 3).



10 Advances in Software Engineering

Fan-in

10−5

10−4

10−3

10−2

10−1

100

P
r(
X
≥
x)

100 101 102 103 104

x

Yule
Data

Fan-in

10−4

10−3

10−2

10−1

100

P
r(
X
≥
x)

100 101 102 103 104

x

Data
Pareto
Lognorm

Fan-out

10−5

10−4

10−3

10−2

10−1

100

P
r(
X
≥
x)

100 101 102 103

x

Yule
Data

Fan-out

10−4

10−3

10−2

10−1

100

P
r(
X
≥
x)

100 101 102 103

x

Data
Pareto
Lognorm

Locs

10−5

10−4

10−3

10−2

10−1

100

P
r(
X
≥
x)

100 101 102 103 104

x

Yule
Data

Size

10−6

10−5

10−4

10−3

10−2

10−1

100

P
r(
X
≥
x)

100 101 102 103 104

x

Yule
Data

Size

10−5

10−4

10−3

10−2

10−1

100

P
r(
X
≥
x)

100 101 102 103 104

x

Data
Pareto
Lognorm

Ties

10−5

10−4

10−3

10−2

10−1

100

P
r(
X
≥
x)

100 101 102 103 104 105

x

Yule
Data

Ties

10−5

10−4

10−3

10−2

10−1

100

P
r(
X
≥
x)

100 101 102 103 104 105

x

Data
Pareto
Lognorm

Figure 4: Empirical CCDFs of various metrics in Eclipse 3.1, with their best-fit theoretical distributions. Yule-Simon fit is shown separately.

Table 3: Determination coefficients for the three distribution
functions (Eclipse-3.1).

R2 Yule-Simon Lognormal Power-law

Fan-in 0.999 0.971 0.998

Fan-out 0.995 0.989 0.997

Size 0.987 0.999 0.998

Ties 0.998 0.999 0.999

Table 4: Determination coefficients for the three distribution
functions (Netbeans-3.2).

R2 Yule-Simon Lognormal Power-law

Fan-in 0.999 0.978 0.998

Fan-out 0.998 0.982 0.996

Size 0.980 0.995 0.998

Ties 0.999 0.998 0.999



Advances in Software Engineering 11

Fan-in

10−4

10−3

10−2

10−1

100

P
r(
X
≥
x)

100 101 102 103

x

Fan-in

10−4

10−3

10−2

10−1

100

P
r(
X
≥
x)

100 101 102 103

x

Fan-out

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

P
r(
X
≥
x)

100 101 102 103

x

Fan-out

10−4

10−3

10−2

10−1

100

P
r(
X
≥
x)

100 101 102

x

Size

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

P
r(
X
≥
x)

100 101 102 103

x

Yule
Data

Size

10−4

10−3

10−2

10−1

100

P
r(
X
≥
x)

100 101 102 103

x

Data
Pareto
Lognorm

Figure 5: Continued.



12 Advances in Software Engineering

Ties

10−5

10−4

10−3

10−2

10−1

100

P
r(
X
≥
x)

100 101 102 103 104

x

Yule
Data

Ties

10−4

10−3

10−2

10−1

100

P
r(
X
≥
x)

100 101 102 103 104

x

Data
Pareto
Lognorm

Figure 5: Empirical CCDFs of various metrics in Netbeans 3.2, with their best-fit theoretical distributions. Yule-Simon fit is shown
separately.

This suffices to answer to our research questions. It is in
fact known that when experimental data are roughly power-
law distributed, it is in general extremely difficult to assess
the difference among a true power-law and other fat-tail
distributions, since typically any statistical test does not rule
out one or the other distribution function. In fact, they are
often compatible with many different distribution functions
[35].

Our purpose in this paper is, on the contrary, to provide
a reasonable statistical description of the empirical data, and
to find the analytical distribution function with the best fit.
This allows us to make statistically reliable forecasts on the
value assumed by some metrics in the future system releases.
In our case, power-law is not in principle more interesting
than the log-normal or Yule-Simon distributions, as long as
these provide reliable estimates and good descriptions of the
empirical data. Any other statistical speculation in order to
discriminate among power-law or other distributions is out
of our purposes.

Note that the determination coefficients are evaluated
on the linear scale, whereas all the figures are in a log-
log scale. In this scale, the discrepancy between best fitting
curves and empirical curves is visually enhanced, especially
in the tail, whereas in the original scale the fitting curves and
the empirical ones visually overlap. On the other hand, our
fitting procedure does not rely on any log-log representation
of the data.

Figure 5 shows the corresponding data and best fits for
Netbeans 3.2. Also for this system the curves provide a very
good fitting of empirical data, for the various releases and for
the different metrics. Again the coefficient of determination
is always close to one (Table 4). The power-law provides an
excellent approximation for the data in the tail above the

x0 cut-off, whose value depends on the metrics and on the
system version.

The empirical studies presented above answer our first
two research questions.

R1: are there analytical distribution functions describing
the empirical data? Have these functions power-law behavior
in their tails? What is the significance level of fitting empirical
data with these distributions?

We definitely found that all studied metrics, traditional
OO, network-based, and derived from Social Network
Analysis, tend to follow precise analytical distributions to
a high degree of significance level, according to our best-
fitting criteria. These distributions are power-law—from a
minimum value of data, x0—lognormal and Yule-Simon
distributions. All three distributions are compatible with a
power-law behavior in their tail—regarding the lognormal
distribution; this is true for datasets of finite size.

The fit using a truncated power-law are always very good.
However, they depend on an ad hoc setting of the value x0,
and the power-law regards only the samples whose value
x ≥ x0. Lognormal distribution shows good fits, according
to the value of the determination coefficients, but not as
good as power-law. Yule-Simon distribution, on the other
hand, shows determination coefficients very similar to those
of power-law, but the fit is over all the range of values. So, in
general Yule-Simon distribution can be considered the best
for most considered metrics.

R2: are these distributions similar in all the releases and in
different systems, or tend to vary significantly?

We found that all considered metrics have a very
consistent statistical behavior across all the releases of the
same system, even when these releases span over years and
have very different numbers of classes (and CUs).



Advances in Software Engineering 13

Bugs

10−6

10−5

10−4

10−3

10−2

10−1

100

P
r(
X
≥
x)

100 101 102 103

x

Bugs

10−4

10−3

10−2

10−1

100

P
r(
X
≥
x)

100 101 102

x

Issues

10−6

10−5

10−4

10−3

10−2

10−1

100

P
r(
X
≥
x)

100 101 102 103

x

Yule
Data

Issues

10−4

10−3

10−2

10−1

100

P
r(
X
≥
x)

100 101 102

x

Data
Pareto
Lognorm

Figure 6: Empirical CCDFs of Bugs and Issues in Eclipse 3.3, with their best-fit theoretical distributions. Yule-Simon fit is shown separately.

For completeness, we studied also other Java systems,
belonging to the Qualitas Corpus [36] and found that the
considered metrics, in systems with over one thousand
classes, show behaviors very similar to those reported in this
paper for Eclipse and Netbeans.

Next, we analyzed also the metrics related to Issues and
Bugs. We found that also the distributions of Bugs and Issues
follow similar patterns, in both Eclipse and Netbeans. In
Figures 6 and 7, we show the empirical distributions of Issues
and Bugs, for the releases 3.3 of Eclipse and 6.0 of Netbeans,
together with the best fitting curves of the three considered
distribution functions. All Issues and Bugs distributions are
very similar throughout all Eclipse and Netbeans releases, so
these figures can be considered typical.

The distributions of these metrics are well fitted by the
simple power-law, according to the determination coeffi-
cient, above a threshold x0, which depends on the particular

data, and very well fitted by the Yule-Simon distribution
since the beginning of the data. The log-normal distribution
provides a worse fit, even if the determination coefficients
R2 are always above 0.94. Note again that the log-log scale
enhances visually the distances in the tail, but the absolute
values of the difference among fitting curves and empirical
distributions are very small.

8. Correlations

In this section, we report the correlations among SNA met-
rics, CK metrics, and Bugs. Since the empirical distributions
of all metrics are strongly not normal, correlations are better
described using the Spearman coefficient. In our study, we
computed also Pearson correlations, which are reported only
in one case, for comparison. Our considerations, however,



14 Advances in Software Engineering

Bugs

10−5

10−4

10−3

10−2

10−1

100

P
r(
X
≥
x)

100 101 102 103

x

Bugs

10−4

10−3

10−2

10−1

100

P
r(
X
≥
x)

100 101 102

x

Issues

10−5

10−4

10−3

10−2

10−1

100

P
r(
X
≥
x)

100 101 102 103

x

Yule
Data

Issues

10−4

10−3

10−2

10−1

100

P
r(
X
≥
x)

100 101 102

x

Data
Pareto
Lognorm

Figure 7: Empirical CCDFs of Bugs and Issues in Netbeans 6.0, with their best-fit theoretical distributions. Yule-Simon fit is shown
separately.

will refer only to Spearman correlation. Using the latter, data
must be ranked, with the correlation coefficient being given
by

ρSP = 1− 6
∑

i d
2
i

n(n2 − 1)
, (5)

where di are the differences among the ranks of each
observation.

We report the correlations only for Eclipse-2.1 and for
Netbeans-3.2, as representative of all the other releases.
Tables 5 and 6 report correlation data for Eclipse-2.1, using
Pearson and Spearman coefficients, respectively. Table 7
reports Spearman coefficients for Netbeans-3.2. The corre-
lation coefficients in all other releases of the same system are
substantially similar to those reported here, for both Eclipse
and Netbeans.

The higher correlations are among Issues and Bugs, as it
is natural, being one a subset of the other. This means that
nodes having a high number of Issues also tend to have a
high number of Bugs. In other words, the number of Bugs
is always about the same fraction of Issues. Thus only one of
them will be included in the subsequent analysis.

We computed the correlation matrix among Issue, Bug,
CK metrics, LOC, Fan-out, Fan-in, and EGO-metrics. Corre-
lations are almost the same in each release, with fluctuations
generally below 10%.

In Eclipse, CK metrics, LOCS, Fan-Out, and EGO
metrics generally show a moderate correlation with respect
to Issues (Bug). In Netbeans, we have similar correlations,
though usually slightly smaller. In both cases, the predictive
power of these metrics is similar for the same software
system. In both systems, LOC metric is the most correlated



Advances in Software Engineering 15

T
a

bl
e

5:
E

cl
ip

se
2.

1.
Pe

ar
so

n
co

rr
el

at
io

n
am

on
g

m
et

ri
cs

.

N
u

m
.

is
su

e
N

u
m

.
bu

g
LO

C
S

W
M

C
R

FC
LC

O
M

C
B

O
Fa

n
-i

n
Fa

n
-o

u
t

R
ea

ch
effi

ci
en

cy
E

ff
.s

iz
e

C
lo

se
n

es
s

D
w

re
ac

h
In

fo
ce

n
-

tr
al

it
y

Si
ze

T
ie

s
N

w
ea

k-
co

m
p

N
u

m
bu

g
97

%
∗∗

—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

LO
C

S
53

%
∗∗

53
%
∗∗

—
—

—
—

—
—

—
—

—
—

—
—

—
—

W
M

C
49

%
∗∗

48
%
∗∗

57
%
∗∗

—
—

—
—

—
—

—
—

—
—

—
—

—
—

R
FC

58
%
∗∗

59
%
∗∗

68
%
∗∗

92
%
∗∗

—
—

—
—

—
—

—
—

—
—

—
—

—

LC
O

M
32

%
∗∗

30
%
∗∗

19
%
∗∗

79
%
∗∗

62
%
∗∗

—
—

—
—

—
—

—
—

—
—

—
—

C
B

O
54

%
∗∗

55
%
∗∗

65
%
∗∗

41
%
∗∗

70
%
∗∗

11
%
∗∗

—
—

—
—

—
—

—
—

—
—

—

Fa
n

in
18

%
∗∗

17
%
∗∗

62
%
∗∗

30
%
∗∗

26
%
∗∗

26
%
∗∗

4%
∗∗

—
—

—
—

—
—

—
—

—
—

Fa
n

ou
t

51
%
∗∗

52
%
∗∗

62
%
∗∗

30
%
∗∗

58
%
∗∗

3%
∗∗

94
%
∗∗

−1
%

—
—

—
—

—
—

—
—

—

R
ea

ch
effi

ci
en

cy
0%

1%
4%

∗∗
−4

%
∗∗

−1
%

−3
%
∗∗

9%
∗∗

−1
4%

∗∗
14

%
∗∗

—
—

—
—

—
—

—
—

E
ff

si
ze

30
%
∗∗

29
%
∗∗

25
%
∗∗

36
%
∗∗

40
%
∗∗

26
%
∗∗

29
%
∗∗

96
%
∗∗

26
%
∗∗

−1
0%

∗∗
—

—
—

—
—

—
—

C
lo

se
n

es
s

−2
%

−2
%

−1
%

−1
%
∗∗

−2
%

0%
−3

%
−1

%
−3

%
∗

−5
%
∗∗

−2
%
∗

—
—

—
—

—
—

D
w

re
ac

h
27

%
∗∗

27
%
∗∗

23
%
∗∗

17
%
∗∗

29
%
∗∗

4%
∗∗

46
%
∗∗

19
%
∗∗

50
%
∗∗

44
%
∗∗

32
%
∗∗

−1
8%

∗∗
—

—
—

—
—

In
fo

ce
n

tr
al

it
y

−2
%
∗

−2
%
∗

−2
%

−2
%

−3
%
∗

0%
−4

%
∗∗

−1
%

−5
%
∗∗

−6
1%

∗∗
−2

%
∗

94
%
∗∗

−2
5%

∗∗
—

—
—

—

Si
ze

32
%
∗∗

31
%
∗∗

28
%
∗∗

38
%
∗∗

42
%
∗∗

26
%
∗∗

32
%
∗∗

95
%
∗∗

29
%
∗∗

−1
0%

∗∗
10

0%
∗∗

−2
%

34
%
∗∗

−3
%
∗

—
—

—

T
ie

s
32

%
∗∗

31
%
∗∗

27
%
∗∗

43
%
∗∗

45
%
∗∗

37
%
∗∗

27
%
∗∗

87
%
∗∗

23
%
∗∗

−9
%
∗∗

89
%
∗∗

−1
%

21
%
∗∗

−2
%

89
%
∗∗

—
—

N
w

ea
kc

om
p

−2
3%

∗∗
−2

3%
∗∗

−2
7%

∗∗
−1

8%
∗∗

−2
8%

∗∗
−2

%
∗

−3
9%

∗∗
−1

4%
∗∗

−4
0%

∗∗
−2

%
∗∗

−2
1%

∗∗
4%

∗∗
−1

5%
∗∗

5%
∗∗

−2
5%

∗∗
−2

2%
∗∗

—

B
ro

ke
ra

ge
16

%
∗∗

15
%
∗∗

9%
∗∗

30
%
∗∗

26
%
∗∗

35
%
∗∗

8%
∗∗

85
%
∗∗

3%
∗

−5
%
∗∗

83
%
∗∗

0%
12

%
∗∗

−1
%

82
%
∗∗

88
%
∗∗

−7
%
∗∗

∗∗
C

or
re

la
ti

on
is

si
gn

ifi
ca

n
t

at
th

e
0.

01
le

ve
l.
∗

C
or

re
la

ti
on

is
si

gn
ifi

ca
n

t
at

th
e

0.
05

le
ve

l.



16 Advances in Software Engineering

T
a

bl
e

6:
E

cl
ip

se
2.

1.
Sp

ea
rm

an
co

rr
el

at
io

n
am

on
g

m
et

ri
cs

.

N
u

m
.

is
su

e
N

u
m

.
bu

g
LO

C
S

W
M

C
R

FC
LC

O
M

C
B

O
Fa

n
-i

n
Fa

n
-o

u
t

R
ea

ch
effi

ci
en

cy
E

ff
si

ze
C

lo
se

n
es

s
D

w
re

ac
h

In
fo

ce
n

-
tr

al
it

y
Si

ze
T

ie
s

N
w

ea
k-

co
m

p

N
u

m
bu

g
95

%
∗∗

—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

LO
C

S
46

%
∗∗

46
%
∗∗

—
—

—
—

—
—

—
—

—
—

—
—

—
—

W
M

C
38

%
∗∗

38
%
∗∗

84
%
∗∗

—
—

—
—

—
—

—
—

—
—

—
—

—
—

R
FC

46
%
∗∗

46
%
∗∗

90
%
∗∗

89
%
∗∗

—
—

—
—

—
—

—
—

—
—

—
—

—

LC
O

M
34

%
∗∗

34
%
∗∗

66
%
∗∗

85
%
∗∗

74
%
∗∗

—
—

—
—

—
—

—
—

—
—

—
—

C
B

O
45

%
∗∗

45
%
∗∗

78
%
∗∗

61
%
∗∗

86
%
∗∗

50
%
∗∗

—
—

—
—

—
—

—
—

—
—

—

Fa
n

in
8%

∗∗
7%

∗∗
7%

∗∗
26

%
∗∗

7%
∗∗

26
%
∗∗

−1
4%

∗∗
—

—
—

—
—

—
—

—
—

—

Fa
n

ou
t

44
%
∗∗

44
%
∗∗

77
%
∗∗

60
%
∗∗

84
%
∗∗

51
%
∗∗

95
%
∗∗

−1
5%

∗∗
—

—
—

—
—

—
—

—
—

R
ea

ch
effi

ci
en

cy
16

%
∗∗

16
%
∗∗

29
%
∗∗

17
%
∗∗

35
%
∗∗

13
%
∗∗

48
%
∗∗

−2
9%

∗∗
52

%
∗∗

—
—

—
—

—
—

—
—

E
ff

si
ze

41
%
∗∗

41
%
∗∗

59
%
∗∗

59
%
∗∗

68
%
∗∗

56
%
∗∗

63
%
∗∗

45
%
∗∗

66
%
∗∗

21
%
∗∗

—
—

—
—

—
—

—

C
lo

se
n

es
s

38
%
∗∗

39
%
∗∗

51
%
∗∗

45
%
∗∗

59
%
∗∗

42
%
∗∗

62
%
∗∗

14
%
∗∗

66
%
∗∗

63
%
∗∗

72
%

—
—

—
—

—
—

D
w

re
ac

h
40

%
∗∗

40
%
∗∗

54
%
∗∗

48
%
∗∗

62
%
∗∗

45
%
∗∗

66
%
∗∗

15
%
∗∗

70
%
∗∗

68
%
∗∗

76
%
∗∗

96
%
∗∗

—
—

—
—

—

In
fo

ce
n

tr
al

it
y

−3
3%

∗∗
−3

4%
∗∗

−4
5%

∗∗
−3

5%
∗∗

−4
8%

∗∗
−3

5%
∗∗

−5
3%

∗∗
−2

%
∗

−5
5%

∗∗
−5

1%
∗∗

−5
9%

∗
−7

9%
∗∗

−8
3%

∗∗
—

—
—

—

Si
ze

43
%
∗∗

42
%
∗∗

63
%
∗∗

62
%
∗∗

71
%
∗∗

58
%
∗∗

66
%
∗∗

46
%
∗∗

69
%
∗∗

22
%
∗∗

98
%
∗∗

72
%
∗∗

76
%
∗∗

−5
9%

∗∗
—

—
—

T
ie

s
42

%
∗∗

42
%
∗∗

64
%
∗∗

60
%
∗∗

69
%
∗∗

56
%
∗∗

65
%
∗∗

41
%
∗∗

67
%
∗∗

17
%
∗∗

17
%
∗∗

65
%
∗∗

69
%
∗∗

−6
5%

∗∗
94

%
∗∗

—
—

N
w

ea
kc

om
p

−2
8%

∗∗
−2

8%
∗∗

−4
8%

∗∗
−4

1%
∗∗

−4
7%

∗∗
−3

7%
∗∗

−4
4%

∗∗
−2

3%
∗∗

−4
4%

∗∗
−3

%
∗∗

−4
2%

∗∗
−3

1%
∗∗

−3
4%

∗∗
51

%
∗∗

−5
2%

∗∗
−7

1%
∗∗

—

B
ro

ke
ra

ge
42

%
∗∗

42
%
∗∗

61
%
∗∗

60
%
∗∗

69
%
∗∗

57
%
∗∗

65
%
∗∗

45
%
∗∗

67
%
∗∗

21
%
∗∗

10
0%

∗∗
73

%
∗∗

76
%
∗∗

−5
9%

∗∗
99

%
∗∗

91
%
∗∗

—
∗∗

C
or

re
la

ti
on

is
si

gn
ifi

ca
n

t
at

th
e

0.
01

le
ve

l.
∗

C
or

re
la

ti
on

is
si

gn
ifi

ca
n

t
at

th
e

0.
05

le
ve

l.



Advances in Software Engineering 17

T
a

bl
e

7:
N

et
be

an
s

3.
2.

Sp
ea

rm
an

co
rr

el
at

io
n

am
on

g
m

et
ri

cs
.

N
u

m
.

is
su

e
N

u
m

.
bu

g
LO

C
S

W
M

C
R

FC
LC

O
M

C
B

O
Fa

n
-i

n
Fa

n
-o

u
t

R
ea

ch
effi

ci
en

cy
E

ff
si

ze
C

lo
se

n
es

s
D

w
re

ac
h

In
fo

ce
n

-
tr

al
it

y
Si

ze
T

ie
s

N
w

ea
k-

co
m

p

N
u

m
bu

g
98

%
∗∗

—
—

—
—

—
—

—
—

—
—

—
—

—
—

—
—

LO
C

S
47

%
∗∗

46
%
∗∗

%
∗∗

—
—

—
—

—
—

—
—

—
—

—
—

—
—

W
M

C
44

%
∗∗

42
%
∗∗

87
%
∗∗

—
—

—
—

—
—

—
—

—
—

—
—

—
—

R
FC

44
%
∗∗

42
%
∗∗

87
%
∗∗

95
%
∗∗

—
—

—
—

—
—

—
—

—
—

—
—

—

LC
O

M
41

%
∗∗

39
%
∗∗

70
%
∗∗

87
%
∗∗

81
%
∗∗

—
—

—
—

—
—

—
—

—
—

—
—

C
B

O
33

%
∗∗

32
%
∗∗

58
%
∗∗

53
%
∗∗

71
%
∗∗

43
%
∗∗

—
—

—
—

—
—

—
—

—
—

—

Fa
n

in
13

%
∗∗

12
%
∗∗

19
%
∗∗

34
%
∗∗

30
%
∗∗

31
%
∗∗

13
%
∗∗

—
—

—
—

—
—

—
—

—
—

Fa
n

ou
t

45
%
∗∗

44
%
∗∗

65
%
∗∗

58
%
∗∗

68
%
∗∗

54
%
∗∗

71
%
∗∗

3%
∗∗

—
—

—
—

—
—

—
—

—

R
ea

ch
effi

ci
en

cy
17

%
∗∗

16
%
∗∗

18
%
∗∗

14
%
∗∗

18
%
∗∗

15
%
∗∗

18
%
∗∗

−1
9%

∗∗
49

%
∗∗

—
—

—
—

—
—

—
—

E
ff

si
ze

38
%
∗∗

36
%
∗∗

52
%
∗∗

58
%
∗∗

62
%
∗∗

54
%
∗∗

53
%
∗∗

56
%
∗∗

70
%
∗∗

20
%
∗∗

—
—

—
—

—
—

—

C
lo

se
n

es
s

38
%
∗∗

36
%
∗∗

43
%
∗∗

43
%
∗∗

46
%
∗∗

43
%
∗∗

38
%
∗∗

14
%
∗∗

70
%
∗∗

73
%
∗∗

61
%
∗∗

—
—

—
—

—
—

D
w

re
ac

h
37

%
∗∗

35
%
∗∗

45
%
∗∗

45
%
∗∗

48
%
∗∗

44
%
∗∗

40
%
∗∗

17
%
∗∗

73
%
∗∗

77
%
∗∗

66
%
∗∗

94
%
∗∗

—
—

—
—

—

In
fo

ce
n

tr
al

it
y
−2

6%
∗∗

−2
5%

∗∗
−3

0%
∗∗

−2
3%

∗∗
−2

3%
∗∗

−2
4%

∗∗
−1

4%
∗∗

9%
∗∗

−3
8%

∗∗
−3

7%
∗∗

−2
6%

∗∗
−5

4%
∗∗

−6
0%

∗∗
—

—
—

—

Si
ze

39
%
∗∗

38
%
∗∗

55
%
∗∗

61
%
∗∗

65
%
∗∗

57
%
∗∗

56
%
∗∗

57
%
∗∗

73
%
∗∗

23
%
∗∗

98
%
∗∗

64
%
∗∗

69
%
∗∗

−2
8%

∗∗
—

—
—

T
ie

s
39

%
∗∗

37
%
∗∗

54
%
∗∗

57
%
∗∗

60
%
∗∗

53
%
∗∗

50
%
∗∗

48
%
∗∗

65
%
∗∗

10
%
∗∗

83
%
∗∗

52
%
∗∗

57
%
∗∗

−4
7%

∗∗
88

%
∗∗

—
—

N
w

ea
kc

om
p

−2
6%

∗∗
−2

5%
∗∗

−3
7%

∗∗
−3

2%
∗∗

−3
2%

∗∗
−3

1%
∗∗

−2
3%

∗∗
−1

6%
∗∗

−3
0%

∗∗
12

%
∗∗

−2
5%

∗∗
−1

7%
∗∗

−2
0%

∗∗
60

%
∗∗

−3
6%

∗∗
−6

3%
∗∗

—

B
ro

ke
ra

ge
38

%
∗∗

37
%
∗∗

53
%
∗∗

59
%
∗∗

63
%
∗∗

55
%
∗∗

54
%
∗∗

56
%
∗∗

71
%
∗∗

21
%
∗∗

10
%
∗∗

62
%
∗∗

67
%
∗∗

−2
8%

∗∗
99

%
∗∗

84
%
∗∗

−3
0%

∗∗
∗∗

C
or

re
la

ti
on

is
si

gn
ifi

ca
n

t
at

th
e

0.
01

le
ve

l.
∗

C
or

re
la

ti
on

is
si

gn
ifi

ca
n

t
at

th
e

0.
05

le
ve

l.



18 Advances in Software Engineering

with Issues. This is expected, because bigger files have a larger
chance to produce Issues and Bugs. However, other good
predictors of Issues—comparable with LOC—are RFC, Fan-
out, Size and, to a lesser extent, LCOM, Ties and Brokerage.
In general, we observe that many SNA metrics are quite
correlated with the number of Issues (and Bugs), showing
the importance of considering these metrics.

In both Eclipse and Netbeans, Fan-in always shows a
small—though significant—correlations with Issues. The
different correlation between Fan-in and Fan-out with
respect to Issues, indicates that to identify a fault-prone node
it is important to take into account not only the number
of links but also their direction. An Out-link directed from
a compilation unit A to a compilation unit B may be
considered like a channel easing the propagation of defects
from B to A, but not vice versa. This fact highlights the
importance of an analysis of a software system as an oriented
graph.

CK and LOC metrics correlations with Issues are in line
with results previously shown in [5]. In Eclipse, correlations
between CK metrics and Eff-Size, Closeness, Size, Ties,
brokerage are quite large. Correlations with Nweak-comp,
Infocentrality, Dwreach, and Closeness are smaller. Only a
minor correlation exists between CK metrics and Reach-
Efficiency.

In Netbeans, correlations between CK metrics and Eff-
Size, Size, Ties, Brokerage are also large. Smaller correlations
hold between CK metrics and Closeness, Nweakcomp,
Dwreach. Only minor correlations, like in Eclipse, exist
between CK metrics, Reach-Efficiency, and Info-Centrality.

In both Eclipse and Netbeans, the only metrics that are
anticorrelated with the number of Issues are Info-Centrality
and Nweak-Comp, suggesting that it is better for a CU to
have a high Information Centrality and Normalized number
of Weak Components, to be less prone to get Issues and Bugs.

Most Eclipse and Netbeans EGO metrics are not strongly
correlated with each other. For example, Reach-Efficiency
has small correlation with Eff-Size, Size, and Brokerage,
and no correlation with Nweakcomp. Size metric is the
most correlated with the others EGO-metrics and shows
an almost perfect correlation with Eff-Size and Brokerage.
Consequently, it is clearly needed to consider just one of these
metrics. We suggest to use Size, which is easier to compute
and, at least in the considered systems, looks slightly better
correlated to Issues.

These findings related to correlations answer our last two
research questions.

R4: are there SNA metrics significantly correlated with
software Bugs, and to which extent?

The data reported, and data very similar to them related
to all other considered releases of Eclipse and Netbeans, con-
firm that there are significant correlations between several
SNA metrics and the number of Bugs. These correlations
are of the same order of magnitude of more traditional
CK metrics—whose predictive power in predicting faulty
classes has been studied and assessed for a long time [5,
7]. Note that all CK metrics, and most SNA metrics, are
basically complexity metrics, denoting high coupling and/or
low cohesion of the measured module. This is consistent

with the positive correlation between these metrics and the
fault-proneness of the module. However, some SNA metrics
are anticorrelated to a fairly high extent with the number
of Bugs, and this property might be further studied and
exploited.

R5: are there SNA metrics significantly correlated to
traditional CK metrics, and to which extent?

The study of Tables 6 and 7 confirms that all SNA
metrics are significantly correlated to all the four considered
CK metrics—WMC, RFC, CBO, and LCOM. Some SNA
metrics— namely, Eff-Size, Size, Ties, and Brokerage—show
quite high Spearman correlation coefficients with all these
CK metrics.

9. Providing Estimates

In this section, we discuss how it is possible to estimate some
values for the metrics starting from the knowledge of the
analytical fitting functions. We assume that all the data are
known for one system release and assume the persistence of
the distributions across releases.

Let us consider, for instance, the metric Ties, and the
Eclipse releases from 2.1 to 3.3. Let us start with the
lognormal distribution. If we compute the estimate of the
mean values using the best fitting parameters found, using
the usual formula (exp(μ + σ2/2)), they match actual values
with an error of about 15% (see Table 9). With regard to the
standard deviation, however, the estimate of the lognormal
fails. In fact, empirical data show a systematic increase of
their standard deviation, while the lognormal provides a
constant value, since the best fitting parameters are almost
constant.

It is also possible to estimate the expected maximum
value for a lognormal population of finite size n, which
depends on n, using the formula [37]:

log(xmax) = μ + σ
√

2 log(n)− σ
(
loglog(n) + log(4π)

)
2
√

2 log(n)
+ ε,

(6)

where ε is a small error term. We approximated our estimates
using the first two terms, since the third is negligible in our
case. The predicted extreme values for the Ties distribution
are reported in Table 9, which shows a discrepancy with the
empirical values of about 15/20%, which increases with the
system size.

If we consider the best-fit power-law distribution, its
exponent αPL has always values between 2 and 3, and this is
consistent with the power-law property that, for such values
of α, the mean is finite, while the standard deviation diverges.
In the case of a finite number of samples, this means that the
standard deviation has obviously a finite value, but it tends to
increase with the number of samples [15]. This is exactly the
behavior which we observed. Therefore, when the number of
CU increases from a release to another, so does the standard
deviation. Note that the power-law cannot fit the bulk of the
data, since the cut-off starts at about 140. So, it cannot be
used to estimate the mean of the samples.



Advances in Software Engineering 19

Table 8: The best fitting parameters for the three different distributions for the metric Ties. For each version of Eclipse, empirical first and
second moment, number of CU and maximum value are also reported.

Ties lognormal Power-law Yule-Simon

Release μ σLN αPL x0 αYS c #CU 〈x〉 〈x2〉
2.1 2.85 1.54 2.38 174 2.23 20.6 7545 59.6 227.3 9799

3.0 2.80 1.54 2.39 141 2.21 19.1 10288 59.2 257.6 11901

3.1 2.85 1.56 2.37 143 2.16 18.6 11854 64.9 294.7 14711

3.2 2.82 1.57 2.35 141 2.14 17.7 14138 65.3 316.2 17029

3.3 2.83 1.57 2.33 145 2.13 17.4 15439 66.8 336.3 18819

Table 9: Estimates for the extreme values of the metric Ties. In the last column, the two values refer to the estimate obtained using parameters
from release 2.1, or using parameters from the immediate previous version, respectively.

Release Actual value 〈xmax〉lognormal 〈xmax〉 (Eq. (8), αpower−law) 〈xmax〉 (Eq. (8), αYS)

3.0 11901 12962 12268 12609/==

3.1 14711 13634 13594 14148/14234

3.2 17029 14511 15446 16327/16838

3.3 18819 14967 16463 17539/18363

Using the power-law, however, we may provide an
estimate for the maximum value, a quantity more relevant
than the estimate of the mean. It is well known that the
following formula holds [15]:

〈xmax〉 ∼ n1/(α−1). (7)

So, for two generic releases we can write
〈
xmax1

〉
〈
xmax2

〉 =
(
n1

n2

)1/(α−1)

, (8)

and we can use one extreme value measured from release i to
estimate the extreme value of release i+1, when CU numbers
are known. Using the values in Table 8, the error is about
15%, as reported in Table 9.

The Yule-Simon distribution is a good compromise
between the two other considered distributions, because it
fits both the bulk and the tail of the data. We numerically
estimated the average using the best fitting parameters
of the Yule-Simon distribution in Table 8, and they are
in agreement with the empirical values. The power-law
exponent obtained from the Yule-Simon best fit is among
two and three, and it is consistent with the empirical standard
deviation, which seems to diverge with the number of CUs.
Furthermore, since (7) holds asymptotically, we can use
the power-law exponent as obtained from the Yule-Simon
best fitting in (8), to estimate the extreme values as before.
These are in excellent agreement with the empirical results
(Table 9).

We may now answer to the third research question R3:
is it possible to use these distributions to estimate the metrics
values in subsequent releases?

We found that mean values, as obtained from the
analytical distributions, are in agreement with the empirical
ones. From the knowledge of the best fitting parameters of
the Yule-Simon distribution in one release, assuming persis-
tence, we estimated the extreme values of subsequent releases

using the CU number. Such estimates are in agreement with
the empirical values with an error of Δx/x = 456/18819 �
2.5%.

These results have been obtained for the metric Ties for
Eclipse but similar considerations hold also for the other
metrics which are best fitted using Yule-Simon distribution.

10. Conclusions

In this paper, we studied for the first time the distribution
of SNA metrics in OO software networks, comparing their
properties with those of CK metrics and other graph-related
metrics. We used as a central concept the Compilation Unit
and not the class, to be able to better study the impact of
metrics on Bugs and Issues, which always refer to CUs and
not to classes, in commonly used configuration management
systems.

The empirical distributions of all the studied metrics
systematically present power-laws in their tails. This property
holds also for bug distribution. It must be noted that bug
distributions may be biased due to the lack of information
in CVS commits, thus our results on bug distributions are as
reliable as the information about bugs extracted from CVSs.
All metrics have very similar features and shapes across all the
system releases and also show very similar behavior in both
Eclipse and Netbeans systems.

We found analytical distribution functions suitable for
fitting the empirical data. Power-law always outperforms
other fittings in the tails, whereas Yule-Simon distribution
follows the shapes of most metrics empirical distributions
very well. In particular, Ties and Fan-in metrics are fitted by
Yule-Simon distribution from the very beginning of values,
with the determination coefficients being over 0.98. We
have shown—using the metric Ties—how it is possible to
provide reliable estimates for averages and extreme values of
subsequent releases from the knowledge of the best fitting



20 Advances in Software Engineering

parameters and system size. The knowledge of extreme values
of metrics could be exploited to keep under control the
quality of software systems, because in general high values
of these metrics denote high coupling among classes.

Regarding correlations among SNA metrics and Bugs,
they are generally good, and when using the Spearman
coefficient to assess them, they are comparable to those of
CK metrics. It is known that LOC is one of the metrics
best correlated with the number of defects. Nevertheless,
as it holds for some other complexity metrics, they focus
only on single software elements, while the use of SNA
metrics allows to take into account the role of interactions
between elements, and how these interactions correlate
with defects. Consequently, we can state that the new SNA
metrics are worth studying in greater detail, to better assess
their predictive power regarding Issues and Bugs, maybe in
conjunction, and not as an alternative to more traditional
OO metrics.

Future developments of this seminal work will include
controlled experiments to better understand the effect of
SNA metrics on bug proneness and if they are able to identify
different kind of bugs, and the construction of software
graphs where the link direction and type are taken into
account.

References

[1] S. R. Chidamber and C. F. Kemerer, “Metrics suite for object
oriented design,” IEEE Transactions on Software Engineering,
vol. 20, no. 6, pp. 476–493, 1994.

[2] F. Brito e Abreu, “The MOOD metrics set,” in Proceedings of
ECOOP Workshop on Metrics, 1995.

[3] M. Lorenz and I. Kidd, Object Oriented Software Metrics: A
Pratical Guide, Pretience Hall, Englewood Cliffs, NJ, USA,
1994.

[4] S. R. Chidamber, D. P. Darcy, and C. F. Kemerer, “Managerial
use of metrics for object-oriented software: an exploratory
analysis,” IEEE Transactions on Software Engineering, vol. 24,
no. 8, pp. 629–639, 1998.

[5] V. R. Basili, L. C. Briand, and W. L. Melo, “A validation of
object-oriented design metrics as quality indicators,” IEEE
Transactions on Software Engineering, vol. 22, no. 10, pp. 751–
761, 1996.

[6] R. Subramanyam and M. S. Krishnan, “Empirical analysis
of CK metrics for object-oriented design complexity: impli-
cations for software defects,” IEEE Transactions on Software
Engineering, vol. 29, no. 4, pp. 297–310, 2003.

[7] T. Gyimóthy, R. Ferenc, and I. Siket, “Empirical validation
of object-oriented metrics on open source software for fault
prediction,” IEEE Transactions on Software Engineering, vol. 31,
no. 10, pp. 897–910, 2005.

[8] S. Valverde, R. Ferrer Cancho, and R. V. Solé, “Scale-free
networks from optimal design,” Europhysics Letters, vol. 60, no.
4, pp. 512–517, 2002.

[9] G. Concas, M. Marchesi, S. Pinna, and N. Serra, “Power-laws
in a large object-oriented software system,” IEEE Transactions
on Software Engineering, vol. 33, no. 10, pp. 687–708, 2007.

[10] A. Potanin, J. Noble, M. Frean, and R. Biddle, “Scale-free
geometry in object-oriented programming,” Communications
of the ACM, vol. 48, no. 5, pp. 99–103, 2005.

[11] J. P. Scott, “Social network analysis,” Sociology, vol. 22, no. 1,
pp. 109–127, 1988.

[12] T. Zimmermann and N. Nagappan, “Predicting defects using
network analysis on dependency graphs,” in Proceedings of
the 30th International Conference on Software Engineering
(ICSE ’08), pp. 531–540, May 2008.

[13] P. Louridas, D. Spinellis, and V. Vlachos, “Power laws in
software,” ACM Transactions on Software Engineering and
Methodology, vol. 18, no. 1, article no. 2, 2008.

[14] A. Tosun, B. Turhan, and A. Bener, “Validation of network
measures as indicators of defective modules in software
systems,” in Proceedings of the 1st International Conference on
Predictor Models (PROMISE ’09), 2009.

[15] M. E. J. Newman, “Power laws, Pareto distributions and Zipf ’s
law,” Contemporary Physics, vol. 46, no. 5, pp. 323–351, 2005.

[16] “Eclipse,” http://www.eclipse.org/.

[17] “NetBeans,” http://www.netbeans.org/.

[18] “Bugzilla,” http://www.bugzilla.org/.

[19] http://netbeans.org/bugzilla/report.cgi.

[20] Cvs, http://www.nongnu.org/cvs/.

[21] H. Simon, “On a class of skew distribution functions,”
Biometrika, vol. 42, pp. 425–440, 1955.

[22] G. Concas, M. Marchesi, S. Pinna, and N. Serra, “On
the suitability of Yule process to stochastically model some
properties of object-oriented systems,” Physica A, vol. 370, no.
2, pp. 817–831, 2006.

[23] T. J. McCabe, “Complexity measure,” IEEE Transactions on
Software Engineering, vol. 2, no. 4, pp. 308–320, 1976.

[24] S. R. Chidamber and C. F. Kemerer, “Towards a metrics suite
for object oriented design,” in Proceedings of the 6th Annual
Conference Object-Oriented Programming Systems, Languages,
and Applications (OOPSLA ’91), vol. 26, pp. 197–211, 1991.

[25] C. Andersson and P. Runeson, “A replicated quantitative
analysis of fault distributions in complex software systems,”
IEEE Transactions on Software Engineering, vol. 33, no. 5, pp.
273–286, 2007.

[26] H. Zhang, “On the distribution of software faults,” IEEE
Transactions on Software Engineering, vol. 34, no. 2, pp. 301–
302, 2008.

[27] R. Vasa, M. Lumpe, P. Branch, and O. Nierstrasz, “Com-
parative analysis of evolving software systems using the gini
coefficient,” in Proceedings of IEEE International Conference
on Software Maintenance (ICSM ’09), pp. 179–188, September
2009.

[28] S. Valverde and R. V. Solé, “Network motifs in computational
graphs: a case study in software architecture,” Physical Review
E, vol. 72, no. 2, Article ID 026107, pp. 1–8, 2005.

[29] R. Wheeldon and S. Counsell, “Power law distributions in
class relationships,” in Proceedings of the 3rd IEEE Interna-
tional Workshop onSource Code Analysis and Manipulation
(SCAM ’03), 2003.

[30] G. Baxter, M. Frean, J. Noble et al., “Understanding the
shapeof Java software,” in Proceedings of the 21st ACM SIG-
PLAN Conference on Object-Oriented Programming Languages,
Systems, and Applications (OOPSLA ’06), Portland, Ore, USA,
October 2006.

[31] G. Concas, M. Marchesi, A. Murgia, S. Pinna, and R. Tonelli,
“Assessing traditional and new metrics for object-oriented
systems,” in Proceedings of the Workshop on Emerging Trends
in Software Metrics (ICSE ’10), Cape Town, South Africa, May
2010.



Advances in Software Engineering 21

[32] M. Eaddy, T. Zimmermann, K. D. Sherwood et al., “Do
crosscutting concerns cause defects?” IEEE Transactions on
Software Engineering, vol. 34, no. 4, pp. 497–515, 2008.

[33] K. Ayari, P. Meshkinfam, G. Antoniol, and M. Di Penta,
“Threats on building models from cvs and bugzilla reposito-
ries:the mozilla case study,” in Proceedings of the 17th Annual
International Conference on Computer Science and Software
Engineering (CASCON ’07), Toronto, Canada, October 2007.

[34] G. Yule, “A mathematical theory of evolution based on the
conclusions of dr. j.c. willis,” Philosophical Transactions of the
Royal Society London B, vol. 213, pp. 21–87, 1925.

[35] A. Clauset, C. R. Shalizi, and M. E. J. Newman, “Power-law
distributions in empirical data,” SIAM Review, vol. 51, no. 4,
pp. 661–703, 2009.

[36] Qualitas Research Group, “Qualitas Corpus Version
20090202,” The Universityof Auckland, February 2009,
http://www.cs.auckland.ac.nz/ewan/corpus.

[37] N. D. Singpurwalla, “Extreme values from a lognormal law
with applications to air pollution problems,” Technometrics,
vol. 14, no. 3, pp. 703–711, 1972.



Submit your manuscripts at
http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


