
ScienceDirect

Available online at www.sciencedirect.comAvailable online at www.sciencedirect.com

ScienceDirect
Energy Procedia 00 (2017) 000–000

www.elsevier.com/locate/procedia

1876-6102 © 2017 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of the Scientific Committee of The 15th International Symposium on District Heating and Cooling.

The 15th International Symposium on District Heating and Cooling

Assessing the feasibility of using the heat demand-outdoor 
temperature function for a long-term district heat demand forecast

I. Andrića,b,c*, A. Pinaa, P. Ferrãoa, J. Fournierb., B. Lacarrièrec, O. Le Correc

aIN+ Center for Innovation, Technology and Policy Research - Instituto Superior Técnico, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
bVeolia Recherche & Innovation, 291 Avenue Dreyfous Daniel, 78520 Limay, France

cDépartement Systèmes Énergétiques et Environnement - IMT Atlantique, 4 rue Alfred Kastler, 44300 Nantes, France

Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.
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Abstract 

This paper deals with the development of energy management strategies for a hybrid electric vehicle (HEV), aiming to reduce the 
global energy consumption. The vehicle is a Plug-in HEV, and its model had been validated on New European Driving Cycle 
(NEDC). A real-time model-based supervisory controller is implemented, called Equivalent Consumption Minimization Strategy 
(ECMS), and it is compared with the original heuristic control. 
Three ways to manage the energy stored in the battery along the driving mission are presented. Predictive information is then 
introduced to increase vehicle driveability. Conclusions summarize the benefits of such approach, showing satisfactory results also 
considering the driver comfort. 
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1. Introduction 

In the last few years hybrid vehicles have become a promising solution for lowering on-road vehicle 
emissions, while increasing their global efficiency. The most widespread hybridization is the electrified one, the hybrid 
electric vehicle (HEV). If the battery can be externally recharged, the vehicle is referred to as Plug-in HEV(PHEV). 
On board a HEV, there are different control units (usually one for each machine) and they are all managed by a 
supervisory unit, that coordinates the powertrain control. Here it is defined the energy management strategy (EMS), 
which is the algorithm that defines how to split the power request between the electrical and thermal paths. Different 
authors have discussed the topic of energy management for hybrid vehicles [1-3] and, in general, the controllers can 
be classified in three distinct categories: heuristic [4-5], sub-optimal [6-8] and optimal [9-11]. 

In the vehicle considered for this activity there are two EMS available, one rule-based and the other is sub-optimal, 
referred to as Equivalent Consumption Minimization Strategy (ECMS). Using this latter, it is possible to define a state 
of charge management strategy (SoCMS), which governs the battery usage along the entire driving mission. In this 
activity, three SoCMSs have been implemented and compared: Charge-Sustaining (CS) [1-3,6-7]; Charge-Blended 
(CB) [12-13] and Charge-Depleting/Charge-Sustaining (CD-CS). 

Using external information, such as vehicle speed profile and road slope, supposed to be exactly known for a 
certain fixed horizon, it has been possible to improve the vehicle driveability.  

 
Nomenclature 

CB Charge Blended 
CD-CS Charge-Depleting/Charge Sustaining 
CS Charge Sustaining 
ECMS Equivalent Consumption Minimization Strategy 
EM Electric motor 
ISG Integrated Starter-Generator 
MiL Model in the Loop 
SoCMS State of Charge Management Strategy 

2. Vehicle  

This activity has been conducted using a PHEV with a complex architecture. The powertrain includes: 
• Pure electric path, two electrical machines on the front axle, each with a maximum power of 140 kW; 
• Hybrid path, an internal combustion engine (5.2 liters, maximum power 449 kW) directly coupled to an 

electrical machine (serving as starter generator), plus a six gears automatic transmission.  
As additional data, the vehicle mass is 1950 kg and the battery capacity is 30 Ah. 

 
Fig. 1. Powertrain layout 

http://crossmark.crossref.org/dialog/?doi=10.1016/j.egypro.2018.08.076&domain=pdf
https://creativecommons.org/licenses/by-nc-nd/4.0/
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All the vehicle parts, components and controllers, have been modelled in MATLAB/Simulink & SimScape. 
In the model-in-the-loop environment there is a driver model that generates pedals positions and the calculation chain 
reaches the wheels, where the acceleration is calculated.  Only vehicle longitudinal dynamics is considered, and the 
forces acting on the vehicle are modelled as follows: 
 

𝐹𝐹𝑖𝑖(𝑡𝑡) = 𝑚𝑚�̈�𝑥(𝑡𝑡) (1) 

𝐹𝐹𝑎𝑎(𝑡𝑡) =  1
2 𝜌𝜌𝑎𝑎𝑖𝑖𝑎𝑎𝐴𝐴𝑓𝑓𝑐𝑐𝑥𝑥�̇�𝑥2(𝑡𝑡) (2) 

𝐹𝐹𝑎𝑎(𝑡𝑡) =  𝑐𝑐𝑎𝑎(𝑡𝑡)𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚𝑚𝑚(α(𝑡𝑡)) (3) 

𝐹𝐹𝑔𝑔(𝑡𝑡) =  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(α(𝑡𝑡)) (4) 

 
The vehicle model has been validated using experimental results recorded during NEDC test, where it has been used 
a rule-based energy management strategy.  

 
Fig. 2. Vehicle model validation 

A 2.6% error in the overall fuel consumption is committed, therefore the model reliability is proven. 

3. Driving cycle  

The reference route for this activity has been a recorded real driving emission test cycle that, as suggested by 
regulation, presents three different driving conditions: urban, rural and highway. 

 
Fig. 3. Speed and altitude traces over time  

This cycle is more representative of real driving conditions if compared with shorter and less dynamic cycles, like 
NEDC. 

4 Gabriele Caramia/ Energy Procedia 00 (2018) 000–000 

4. Supervisory controllers 

4.1 Rule-Based EMS 
The controller model has the possibility of switching between two different supervisory EMS. 

The first one can be categorized as rule-based, or heuristic, in the following indicated as “Rule-Based” or “RB”, and 
it is also implemented in the real vehicle.  

 

Fig. 4. Heuristic driving mode selection 

Three state variables are used for the driving mode definition and precisely the SOC, torque request at the 
wheels and vehicle velocity. 
If it is in pure electric mode, the vehicle is propelled only using the electric path. If at least one of the logical conditions 
shown in Fig. 4 is false, the vehicle is in hybrid mode. When this happens, the integrated starter generator is used to 
recharge the battery, while the electric machines on the front axle are used to support the ICE. 

4.2 Equivalent Consumption Minimization Strategy 

The second controller is called ECMS and is widely known among who deals with hybrid electric vehicle control. It 
has the aim of finding the best torque split factor between the electrical and thermal path, defined as: 
 

𝑢𝑢(𝑡𝑡) =  𝑇𝑇𝐸𝐸𝐸𝐸𝐸𝐸(𝑡𝑡)
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑡𝑡) (5) 

 
in which u is the torque split factor, Tele is the torque request to the electrical machines and Ttot is the total torque 
request at the wheels. 
The idea, since its first concept [8], is to convert the electrical power consumption into an equivalent fuel 
consumption, sum it with the actual fuel consumption of the engine and then minimize such sum. The equivalent 
fuel rate formulation is reported in (6). 
 

�̇�𝑚𝑒𝑒𝑒𝑒(𝑡𝑡) =  �̇�𝑚𝑓𝑓(𝑡𝑡) + �̇�𝑚𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡) = �̇�𝑚𝑓𝑓(𝑡𝑡) + 𝑠𝑠
𝑄𝑄𝑙𝑙ℎ𝑣𝑣

∗ 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡) (6) 

 
Where terms mean: �̇�𝑚𝑓𝑓 is the engine instantaneous fuel consumption; �̇�𝑚𝑏𝑏𝑏𝑏𝑏𝑏 is the fuel consumption equivalent to the 
used electrical power; 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏  is the electrical power demand; 𝑄𝑄𝑙𝑙ℎ𝑣𝑣  is the fuel lower heating value; s is the equivalence 
factor. The control problem to which this EMS is related, aims to minimize the Hamiltonian of the problem, that is 
the equivalent fuel consumption. Let the state of charge be defined as: 
 

𝜉𝜉̇ (𝑡𝑡) = 𝑓𝑓(𝜉𝜉, 𝑢𝑢, 𝑡𝑡) = − 𝐼𝐼𝑏𝑏𝑏𝑏𝑏𝑏(𝜉𝜉, 𝑢𝑢, 𝑡𝑡)
𝑄𝑄𝑏𝑏𝑏𝑏𝑏𝑏

 (7) 

 
where ξ is the battery state of charge, u is the control action, Ibat is the battery current and Qbat is the battery charge 
capacity. Once these parameters are known, it is possible to define H, which is the Hamiltonian [14]: 
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where ξ is the battery state of charge, u is the control action, Ibat is the battery current and Qbat is the battery charge 
capacity. Once these parameters are known, it is possible to define H, which is the Hamiltonian [14]: 



262 Gabriele Caramia  et al. / Energy Procedia 148 (2018) 258–265
 Gabriele Caramia/ Energy Procedia 00 (2018) 000–000  5 
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∗ 𝑓𝑓(𝜉𝜉, 𝑢𝑢, 𝑡𝑡) + �̇�𝑚𝑓𝑓(𝑢𝑢, 𝑡𝑡) (8) 

 
The following relation is used to find the optimal control action u*, which is also the optimal split factor: 
 

𝑢𝑢∗(𝑡𝑡) = arg min
𝑢𝑢

𝐻𝐻(𝜉𝜉, 𝑢𝑢, 𝜆𝜆, 𝑡𝑡) (9) 
 
4.2.1 Equivalence Factor 
Three formulations for s parameter have been evaluated during this activity, each one defines a different SoCMS for 
the cycle. The state of charge management strategy is the battery usage plan the controller chooses for the driving 
mission. 

• Charge-Sustaining 

In this case, the formulation of s is: 
 

𝑠𝑠(𝑡𝑡) = {1 − 𝑘𝑘𝑝𝑝 [
𝜉𝜉(𝑡𝑡) − (𝜉𝜉𝑚𝑚𝑏𝑏𝑚𝑚 + 𝜉𝜉𝑚𝑚𝑚𝑚𝑚𝑚

2 )

(𝜉𝜉𝑚𝑚𝑏𝑏𝑚𝑚 − 𝜉𝜉𝑚𝑚𝑚𝑚𝑚𝑚
2 )

]

𝑚𝑚

} ∗ [𝑘𝑘𝑏𝑏 (𝜉𝜉𝑟𝑟𝑒𝑒𝑓𝑓 − 𝜉𝜉(𝑡𝑡)) + (𝑠𝑠𝑘𝑘−1 + 𝑠𝑠𝑘𝑘−2
2 )] (10) 

 
Where: 

• ξ(t), ξmax, ξmin, ξref are respectively the actual, upper, lower, and reference value of the state of charge; 
• sk-1, sk-2 are the values of the equivalence factor at the previous two adaptation steps; 
• kp, ka, n are parameters used to tune the strategy. 

This strategy follows a target SOC value that is constant and equal to the initial state of charge, as clarified by Fig. 5. 

 
Fig. 5. ECMS Charge Sustaining 

• Charge-Blended 

CB is a battery charge management strategy that works similarly to the charge-sustaining mode, but follows a target 
that linearly decreases with the driven distance, starting from the initial value of the SOC. 
This solution is preferable for PHEVs, since it allows to reach the end of the driving mission with a low SOC level. 
In following figure, the SOC trend and the reference value for the same variable are shown. 
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Fig. 6. ECMS Charge Blended 

• Charge-Depleting/ Charge-Sustaining 

In general, a CD-CS policy is intended as an electrical energy usage plan that firstly discharges the battery until a 
certain SOC level and then sustains the charge around that value. The idea behind this approach is that, if the vehicle 
can be externally recharged at the end of the driving mission, it is worthless to add other constraints on the state of 
charge value, to keep it around a reference value. Accordingly, the expression of s (11) is formulated such that the 
only requirements is to keep the SOC within the physical limitations. 
 

𝑠𝑠(𝑡𝑡) = {1 − 𝑘𝑘𝑝𝑝 [
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2 )

]

3

} ∗ 𝑠𝑠0 (11) 

 
The formulation (11) is basically the same as (10) but without the charge-sustaining capability. The parameter s0 is a 
gain used to tune the strategy and represents the initial cost of using electrical energy. 

 
Fig. 7. ECMS Charge Depleting- Charge Sustaining 

4.3 Controllers comparisons 

The baseline for evaluating the benefits of a real-time physics-based controller is the performance in terms of fuel 
consumption of the RB controller, that shows a charge-depleting/charge-sustaining behaviour, as clarified in Fig. 8. 



 Gabriele Caramia  et al. / Energy Procedia 148 (2018) 258–265 263
 Gabriele Caramia/ Energy Procedia 00 (2018) 000–000  5 

𝐻𝐻 (𝜉𝜉, 𝑢𝑢, 𝑠𝑠, 𝑡𝑡) =  �̇�𝑚𝑒𝑒𝑒𝑒(𝜉𝜉, 𝑢𝑢, 𝑠𝑠, 𝑡𝑡) = 𝑠𝑠(𝑡𝑡) ∗ 𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏(𝑡𝑡)
𝑄𝑄𝐿𝐿𝐿𝐿𝐿𝐿

∗ 𝑓𝑓(𝜉𝜉, 𝑢𝑢, 𝑡𝑡) + �̇�𝑚𝑓𝑓(𝑢𝑢, 𝑡𝑡) (8) 

 
The following relation is used to find the optimal control action u*, which is also the optimal split factor: 
 

𝑢𝑢∗(𝑡𝑡) = arg min
𝑢𝑢

𝐻𝐻(𝜉𝜉, 𝑢𝑢, 𝜆𝜆, 𝑡𝑡) (9) 
 
4.2.1 Equivalence Factor 
Three formulations for s parameter have been evaluated during this activity, each one defines a different SoCMS for 
the cycle. The state of charge management strategy is the battery usage plan the controller chooses for the driving 
mission. 

• Charge-Sustaining 

In this case, the formulation of s is: 
 

𝑠𝑠(𝑡𝑡) = {1 − 𝑘𝑘𝑝𝑝 [
𝜉𝜉(𝑡𝑡) − (𝜉𝜉𝑚𝑚𝑏𝑏𝑚𝑚 + 𝜉𝜉𝑚𝑚𝑚𝑚𝑚𝑚

2 )

(𝜉𝜉𝑚𝑚𝑏𝑏𝑚𝑚 − 𝜉𝜉𝑚𝑚𝑚𝑚𝑚𝑚
2 )

]

𝑚𝑚

} ∗ [𝑘𝑘𝑏𝑏 (𝜉𝜉𝑟𝑟𝑒𝑒𝑓𝑓 − 𝜉𝜉(𝑡𝑡)) + (𝑠𝑠𝑘𝑘−1 + 𝑠𝑠𝑘𝑘−2
2 )] (10) 

 
Where: 

• ξ(t), ξmax, ξmin, ξref are respectively the actual, upper, lower, and reference value of the state of charge; 
• sk-1, sk-2 are the values of the equivalence factor at the previous two adaptation steps; 
• kp, ka, n are parameters used to tune the strategy. 

This strategy follows a target SOC value that is constant and equal to the initial state of charge, as clarified by Fig. 5. 

 
Fig. 5. ECMS Charge Sustaining 

• Charge-Blended 

CB is a battery charge management strategy that works similarly to the charge-sustaining mode, but follows a target 
that linearly decreases with the driven distance, starting from the initial value of the SOC. 
This solution is preferable for PHEVs, since it allows to reach the end of the driving mission with a low SOC level. 
In following figure, the SOC trend and the reference value for the same variable are shown. 

6 Gabriele Caramia/ Energy Procedia 00 (2018) 000–000 

 

Fig. 6. ECMS Charge Blended 

• Charge-Depleting/ Charge-Sustaining 

In general, a CD-CS policy is intended as an electrical energy usage plan that firstly discharges the battery until a 
certain SOC level and then sustains the charge around that value. The idea behind this approach is that, if the vehicle 
can be externally recharged at the end of the driving mission, it is worthless to add other constraints on the state of 
charge value, to keep it around a reference value. Accordingly, the expression of s (11) is formulated such that the 
only requirements is to keep the SOC within the physical limitations. 
 

𝑠𝑠(𝑡𝑡) = {1 − 𝑘𝑘𝑝𝑝 [
𝜉𝜉(𝑡𝑡) − (𝜉𝜉𝑚𝑚𝑚𝑚𝑚𝑚 + 𝜉𝜉𝑚𝑚𝑚𝑚𝑚𝑚

2 )

(𝜉𝜉𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜉𝜉𝑚𝑚𝑚𝑚𝑚𝑚
2 )

]

3

} ∗ 𝑠𝑠0 (11) 

 
The formulation (11) is basically the same as (10) but without the charge-sustaining capability. The parameter s0 is a 
gain used to tune the strategy and represents the initial cost of using electrical energy. 

 
Fig. 7. ECMS Charge Depleting- Charge Sustaining 

4.3 Controllers comparisons 

The baseline for evaluating the benefits of a real-time physics-based controller is the performance in terms of fuel 
consumption of the RB controller, that shows a charge-depleting/charge-sustaining behaviour, as clarified in Fig. 8. 



264 Gabriele Caramia  et al. / Energy Procedia 148 (2018) 258–265
 Gabriele Caramia/ Energy Procedia 00 (2018) 000–000  7 

 
Fig. 8. Controllers comparison 

All the controllers have been forced to reach the end of the driving mission with the same battery state of charge, 
hence the electrical energy consumption is identical for all of them, since they have the same amount of energy left in 
the battery. Consequently, it is possible to compare their performance only evaluating the actual fuel consumption.  
Fig. 8 shows that the minimum value allowed for the state of charge is 24%, which is the limit imposed by the 
manufacturer to ensure the battery integrity with time. This limitation is also included in all the considered control 
algorithms, to avoid permanent and significant aging effects on the battery behaviour. In fact, this phenomenon could 
influence the overall vehicle performance, since it could significantly reduce the battery life (in terms of capacity and 
number of cycles allowed). 
Moreover, from Fig.8 it can be identified the behaviour of each SoCMS: CS keeps the SOC around a reference constant 
value of 55%. The CB policy follows a target that is 55% at the beginning and then linearly decreases with the distance. 
CD-CS strategy firstly discharges the battery and then sustains the charge around a low value. 

Table 1. Fuel consumption using different SOC strategies 

Strategy Fuel Consumption Difference 
 [l/100 km] [%] 
Heuristic 9.27 0.00 
ECMS Charge Sustaining 8.77 -5.39 
ECMS Charge Blended 8.66 -6.58 
ECMS Charge Depleting/Charge Sustaining 8.53 -7.98 

 
As the numerical results underline, the CD-CS approach is more suitable in the case of a PHEV, while CS approach 
is more suitable if no external recharge is available (HEVs) and CB approach could be interesting in case of a low 
speed zone placed in the middle of the driving mission. 

5. Driveability 

This section deals with the possibility of using external information to increase the vehicle driveability. It is supposed 
to exactly know the vehicle speed trajectory and road slope profile for a certain distance ahead of the actual position, 
50, 250 and 500 meters. The approach is basically the same as the ECMS with CD-CS behaviour, but here the 
minimization of the equivalent fuel consumption is done for a horizon ahead of the vehicle. Mathematically, the cost 
function to be minimized is: 

𝐻𝐻 (𝜉𝜉, 𝑢𝑢, 𝜆𝜆, 𝑘𝑘) =  ∑ �̇�𝑚𝑒𝑒𝑒𝑒

ℎ

𝑘𝑘=1
(𝜉𝜉, 𝑢𝑢, 𝑠𝑠, 𝑘𝑘) = ∑  𝑠𝑠𝑘𝑘 ∗

𝑃𝑃𝑏𝑏𝑏𝑏𝑏𝑏𝑘𝑘
𝑄𝑄𝐿𝐿𝐿𝐿𝐿𝐿

∗ 𝑓𝑓(𝜉𝜉, 𝑢𝑢, 𝑘𝑘) + �̇�𝑚𝑓𝑓(𝑢𝑢, 𝑘𝑘)
ℎ

𝑘𝑘=1
  (12) 
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Where h is the horizon length and the other terms are as in (8). A solution like this helps reducing the number of ICE 
off/on transitions, even if it leads to worse fuel economy, because in this case the optimal control action is chosen 
only once for the entire horizon. The baselines for this comparison are the original rule-based controller, for the 
number of ICE transitions, and ECMS with CD-CS state of charge management strategy, for the fuel consumption. 

Tab.3 shows that both with 250 and 500m it is possible to reduce the ICE off/on transitions with respect to 
the original controller, while maintaining a 1.5 % of fuel saving. With a 50m horizon, instead, it is possible to save 
around 2.0% of the fuel while adding just six more ICE transitions over a driving mission that lasts 6483 seconds. 

Table 2. Driveability analysis results 

Strategy Fuel Consumption ICE Off-On 
 [l/100 km] [-] 
Heuristic 9.27 39 
ECMS CD/CS – Instantaneous 8.53 75 
ECMS CD/CS – 50 m prediction 9.08 45 
ECMS CD/CS – 250 m prediction 9.13 33 
ECMS CD/CS – 500 m prediction 9.13 24 

6. Conclusions and future works 

This work presents the implementation of two different EMS in a vehicle-controller model in the loop environment. 
It has been evaluated the potential fuel saving of a more physical approach like ECMS, which is better performing 
than the original one, regardless of the state of charge management strategy chosen. 
It is also shown that a battery usage plan like CD-CS leads to better fuel economy, if the vehicle is a PHEV. 
In the last section it is reported a preliminary study on the usage of external information to increase the driveability. 
It is evaluated the cost, in terms of fuel consumption, of reducing the ICE transitions between Off and On state.  
Future work will deal with finding the best trade-off between fuel consumption and vehicle driveability, and the 
evaluation of the minimum overall fuel consumption obtainable, using real-time dynamic programming algorithms. 
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