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Synthetic aperture sonar (SAS) provides high-resolution acoustic imaging by processing coherently

the backscattered acoustic signal recorded over consecutive pings. Traditionally, object detection and

classification tasks rely on high-resolution seafloor mapping achieved with widebeam, broadband

SAS systems. However, aspect- or frequency-specific information is crucial for improving the perfor-

mance of automatic target recognition algorithms. For example, low frequencies can be partly trans-

mitted through objects or penetrate the seafloor providing information about internal structure and

buried objects, while multiple views provide information about the object’s shape and dimensions.

Sub-band and limited-view processing, though, degrades the SAS resolution. In this paper, SAS

imaging is formulated as an ‘1-norm regularized least-squares optimization problem which improves

the resolution by promoting a parsimonious representation of the data. The optimization problem is

solved in a distributed and computationally efficient way with an algorithm based on the alternating

direction method of multipliers. The resulting SAS image is the consensus outcome of collaborative

filtering of the data from each ping. The potential of the proposed method for high-resolution, nar-

rowband, and limited-aspect SAS imaging is demonstrated with simulated and experimental data. VC
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I. INTRODUCTION

Synthetic aperture sonar (SAS) combines coherently the

backscattered echoes from successive acoustic pulses (pings)

for high-resolution seafloor imaging with application in mine

countermeasures, underwater archaeology, or inspection of

underwater installations.1,2 Specifically, an active sonar trans-

mits a short pulse to insonify the seafloor and records the back-

scattered waves repeatedly while it moves along a predefined

(usually linear) path to form a synthetic aperture. SAS imaging

refers to the inverse problem of reconstructing the seafloor

reflectivity by coherently processing the recorded signals from

the synthetic aperture. The range resolution in SAS imaging is

determined by matched filtering, i.e., cross-correlating the

recorded and the transmitted signal, hence it is inversely pro-

portional to the bandwidth of the transmitted pulse. The cross-

range resolution achieved with SAS systems is independent of

frequency and range, i.e., it is not limited by the physical

dimensions of a real aperture which is characterized by a con-

stant angular resolution determined by its beampattern resulting

in a range and frequency dependent cross-range resolution.3,4

Utilizing widebeam systems and broadband pulses at a high

ping repetition rate, synthetic aperture processing can achieve a

centimetric range and cross-range resolution resulting in

optical-like images of the seafloor reflectivity.5,6

Conventional target recognition tasks rely on high-

resolution seafloor mapping.7 However, in applications such

as unexploded ordnance remediation or mine countermeas-

ures, aspect- and frequency-specific features are useful for

reducing the false alarm rate of automatic target recognition

(ATR) algorithms,8–10 as well as for increasing the detection

rate in challenging environments. For example, low frequen-

cies can excite acoustic resonances in objects with structural

symmetries or detect buried objects due to improved seafloor

penetration,11–14 while multi-aspect imaging increases the

information on the object’s shape and dimensions.15

However, sub-band or sub-view processing reduces the res-

olution and the signal-to-noise ratio (SNR) in conventional SAS

imaging. Sub-band and sub-view feature extraction for classifica-

tion is based on image denoising methods such as spatial filtering

followed by deconvolution,16 wavenumber domain filtering,17 or

sparse feature selection through wavelet shrinkage.18

In this paper, we formulate the SAS imaging problem

within the compressive sensing (CS) framework, which

asserts that underlying sparse signals can be reconstructed

from very few measurements with convex optimization.19 In

ocean acoustics, sparse signal reconstruction is shown to

improve radically the resolution in direction-of-arrival esti-

mation20,21 and matched field processing.22 In synthetic

aperture radar compressive imaging has been applied for fea-

ture enhancement,23 autofocusing,24 and deception jamming

suppression.25 In SAS imaging for ultrasound applications in

air, CS has been applied to overcome the ambiguities arising

from spatial under-sampling.26

We develop a compressive SAS imaging method for

underwater applications which, to the best of the authors’a)Electronic mail: Angeliki.Xenaki@cmre.nato.int
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knowledge, has not been reported in the literature yet. In par-

ticular, the main contributions of this study are:

• SAS imaging is formulated in the frequency domain, in

Sec. IV, as a least-squares optimization problem regular-

ized with an ‘1-norm penalty which promotes sparse

solutions.27

• Since the backscattered data are naturally distributed over

multiple pings, we use the alternating direction method of

multipliers28 (ADMM) to solve the optimization problem

in a distributed way. The resulting consensus optimization

problem involves minimizing a data fitting term per ping

with the constraint that the local solutions agree to a

global model for the SAS image, while it allows for

decentralized storage and processing of the large amount

of data resulting from aperture synthesis.
• Guidelines on regularization parameter selection for tun-

ing the optimization problem are provided in Sec. V B.
• The high-resolution imaging and denoising capabilities of

the proposed method are demonstrated in Sec. V with sim-

ulations and validated with experimental data for narrow-

band and multi-view imaging.

The paper makes heavy use of convex optimization the-

ory. The reader is advised to consult the Appendix for a sum-

mary on the basic notions on convex optimization and the

mathematical background of the ADMM algorithm.

A. Mathematical notation

Herein, vectors are represented by bold lowercase letters

and matrices by bold uppercase letters. The symbols T, H

denote the transpose and the Hermitian (i.e., conjugate trans-

pose) operator, respectively, on vectors and matrices.

The ‘p-norm of a vector x 2 C
n is defined as kxkp

¼ ð
Pn

i¼1jxijpÞ1=p
. The infinity norm of x is defined as the

maximum vector element in absolute value kxk1
¼ maxi2njxij. The Frobenius norm of a matrix X 2 C

m�n
is

defined as kXkF ¼ ð
Pm

i¼1

Pn
j¼1jxijj2Þ1=2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðXXHÞ

q
,

where Trð:Þ denotes the matrix trace.

II. STRIP-MAP SAS GEOMETRY

The SAS geometry in strip-map mode2 is depicted in Fig.

1. Let the seafloor lie on the xy-plane and be characterized by

the complex reflectivity function sðrsÞ; rs ¼ ðx; yÞ. The plat-

form carrying a SAS system, comprising a configuration of

transmitters and receivers, moves along a linear path, parallel to

the y axis at height h from the seafloor plane. The reconstruction

of the seafloor reflectivity is depicted on the slant-plane, i.e., in

slant-range—cross-range coordinates. In strip-map mode, the

antenna is focused toward broadside, i.e., the central axis of the

real-aperture beampattern is perpendicular to the platform path.

The active sonar transmits a short pulse of duration sq,

onwards referred to as ping, and records the backscattered

echoes repeatedly as the platform moves along the track.

The stop-and-hop approximation postulates that the platform

is stationary during each ping transmission and reception,

before it jumps instantaneously to the next position.2 Hence,

the position of the platform is discretized according to the

ping number p as

yp ¼ pvpsrec; (1)

where vp is the constant speed of the platform and srec is the

duration of the recording which defines the ping repetition

period. The insonified area per ping is determined by the

radiation pattern of the transmitting antenna. The total imag-

ing area is determined by the synthetic aperture length and

the recording duration srec allowing a maximum swath of

Dr <
csrec

2
; (2)

where c is the speed of sound in water.

Multi-element receiver arrays are employed to allow

longer imaging ranges without violating the spatial sampling

condition for a moderate platform speed (a few knots).1

With the phase center approximation29 (PCA), the resulting

single-transmitter/multiple-receivers multistatic configura-

tion is replaced with a virtual array of monostatic elements

located at the middle of the distance between each

transmitter-receiver pair on the actual array. The resulting

PCA virtual array has half the length of the receiver array L.

The resolution of a SAS system is defined in the range

and cross-range directions, indicated in Fig. 1 as dx and dy,

respectively. The range resolution, obtained with matched

filtering, is determined by the bandwidth Df of the transmit-

ted ping,

dx �
c

2Df
: (3)

The cross-range (angular) resolution depends on the apparent

synthetic aperture length LSA,

dy �
kr0

2LSA

: (4)

For a given transducer size D, the corresponding synthetic

aperture length is proportional to the wavelength and the

FIG. 1. SAS imaging geometry for strip-map mode.
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range of the target, LSA � kr0=D, resulting in a cross-range

resolution which is independent of frequency and range,

dy � D=2.1

III. SAS MODEL

The transmitted ping q(t) is expressed in a general form

as

qðtÞ ¼ wðtÞej/ðtÞ;

/ðtÞ ¼ 2p
ðt

0

f ðsÞ ds; (5)

where w(t) is a window function producing a slowly-varying

envelop, and /ðtÞ is the phase as a function of time t. For

instance, a linear frequency modulated (LFM) chirp of dura-

tion sq sweeping linearly from a low frequency fl to a high

frequency fh with bandwidth Df ¼ fh � fl is

f ðtÞ ¼ fl þ at; a ¼ Df=sq;

qðtÞ ¼ wðtÞej2p flþð1=2Þatð Þt; (6)

where the signal’s instantaneous frequency f is a linear func-

tion of time t 2 ½0; sq� with slope a.

With the stop-and-hop assumption and the PCA, the

backscattered wave from an isotropic point scatterer located

at rs within the insonified area I is a replica of the transmit-

ted pulse q(t) delayed by the travel time for the two-way dis-

tance between the scatterer and the virtual transceiver,

multiplied by the scatterer’s complex reflectivity sðrsÞ.
Then, with the Born approximation,30 the signal dðrr; tÞ
recorded at a receiver located at rr is the superposition of the

backscattered echoes from all scatterers within the insonified

area I,

dðrr; tÞ ¼
ð

I

q t� 2krs � rrk2

c

� �
sðrsÞdrs: (7)

The frequency response of the recorded signal [Eq. (7)] is

obtained through the Fourier transform as

dðrr; f Þ ¼ qðf Þ
ð

I

Gðrr; rs; f Þ

� e�j2pf 2krs�rrk2=csðrsÞdrs; (8)

where we have included, for completeness, an amplitude fac-

tor Gðrr; rs; f Þ ¼ Gtðrs; f ÞGrðrs; f Þ=krs � rrk2
2 accounting

for the shading function of the transmitter array Gtðrs; f Þ and

the receiver array Grðrs; f Þ and the attenuation due to the

spherical spreading over the two-way wave propagation

distance.

The matched filtered frequency response is computed by

multiplying the recorded signal [Eq. (8)] by the complex

conjugate of the transmitted pulse,

dmf ðrr; f Þ ¼ q�ðf Þqðf Þ
ð

I

Gðrr; rs; f Þ

� e�j2pf 2krs�rrk2=csðrsÞdrs: (9)

IV. SAS IMAGING

Discretizing the reflectivity field into N pixels, the data

model [Eq. (9)] can be written in a matrix-vector formulation,

dðp; f Þ ¼ Aðp; f Þsðp; f Þ þ nðp; f Þ; (10)

where d 2 C
M

is the vector of the matched filtered measure-

ments at frequency f for all M receivers comprising the real

aperture at ping p, s 2 C
N

is the unknown vector of the com-

plex reflectivity values over a two-dimensional (2D) grid of

N pixels, and n 2 C
M

is the additive noise vector. The

matrix A 2 C
M�N maps the unknown reflectivity s to the

observations d and has as columns the steering vectors,

aðrs; p; f Þ ¼ e�j2pf 2krs�r1k2=c;…; e�j2pf 2krs�rMk2=c�T ;
h

(11)

which describe the propagation delay from the sth scatterer

to all the M sensors on the real aperture at ping p. In this

study, the matrix A is considered known and fixed. Note that

we have incorporated the gain factors, kqðf Þk2
2 and

Gðrr; rs; f Þ, into the reflectivity vector s as they can be easily

accounted for in a calibrated system.

SAS imaging refers to the inverse problem of reconstruct-

ing the reflectivity field s, given the sensing matrix A and a set

of measurements d over a range of frequencies and pings.

A. CBF

An estimate ŝ of the reflectivity field can be obtained by

spatial filtering the array data d. Conventional (delay-and-

sum) beamforming (CBF) uses the steering vectors [Eq.

(11)] as spatial weights to combine the sensor outputs coher-

ently, enhancing the signal at the look-direction from the

ubiquitous noise. In SAS imaging, CBF provides the reflec-

tivity estimate,

ŝCBF ¼
XP

i¼1

XF

j¼1

AH
ij dij; (12)

by combining coherently the sensor outputs over P pings and

F frequencies. To improve readability, we use the indices i
and j for the ping p and frequency f dependency, respec-

tively, of the quantities in Eq. (10), i.e., dðp; f Þ � dij and

Aðp; f Þ � Aij.

B. Sparse reconstruction with the ADMM

In the case that there are only a few strong scatterers in

the reflectivity field (K � N), SAS imaging can be solved as

a sparse model fitting problem,

min
sij

1

2
kAijsij � dijk2

2 þ lksijk1; (13)

where l > 0 is a regularization parameter which controls the

relative importance between the quadratic data-fitting term

and the sparsity promoting ‘1-norm regularization term. The

‘1-norm regularized least-squares problem (13) is known as
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the least absolute shrinkage and selection operator (lasso),27

and can be solved with convex optimization methods.31 In a

statistical framework, the lasso is equivalent to maximum a
posteriori estimation of a linear model with Gaussian noise

model and Laplacian prior on the model parameters.32

Interior point solvers, implemented for instance in the

Python-embedded CVXPY package,33,34 provide a highly

accurate solution to the lasso problem for applications with

relatively few model parameters such as in direction-

of-arrival estimation.20,35 However, in SAS imaging the

single-ping, single-frequency lasso problem (13) is highly

underdetermined, i.e., the number of measurements from the

M sensors on the real array is much smaller than the number

of pixels with unknown reflectivity N. Hence, the mapping

Aij is highly coherent, i.e., it is characterized by linearly

dependent columns (see Sec. V B). The coherence of Aij

makes the solution

ŝ‘1
¼
XP

i¼1

XF

j¼1

arg min
sij

1

2
kAijsij � dijk2

2 þ lksijk1; (14)

obtained with interior point solvers, highly inaccurate for

l > 0.19,20 Besides, the formulation (14) does not account

for the common sparsity profile among pings and frequencies

identified by the location of strong scatterers in the reflectiv-

ity scene. To reduce the coherence of the mapping Aij, prob-

lem (13) could be reformulated by concatenating the real

aperture data vectors for all pings to form the synthetic aper-

ture data vector dSA
j 2 C

MP
with the corresponding sensing

matrix ASA
j . The resulting solution,

ŝSA
‘1
¼
XF

j¼1

arg min
sj

1

2
kASA

j sj � dSA
j k

2
2 þ lksjk1; (15)

is more accurate than Eq. (14), yet it does not account for the

common sparsity profile among frequencies while it is com-

putationally impractical due to the increased problem dimen-

sions and requires a centralized collection of the data before

processing.

Here, we solve problem (13) with the ADMM which is

an efficient convex optimization solver for problems with a

very large number of model parameters N; see Appendix 2

for a full derivation of the iterative ADMM solution.

Accounting for separable measurements over pings and fre-

quencies, the lasso problem (13) is reformulated as

min
sij;z

1

2

XP

i¼1

XF

j¼1

kAijsij � dijk2
2 þ lkzk1

subject to sij � z ¼ 0; for
i ¼ 1;…;P;

j ¼ 1;…;F:

(
(16)

Problem (16) is a consensus problem, since the constraint

imposes that the local reflectivity variables sij related to the

data set from each ping and each frequency should be equal

to the global variable z. A common reflectivity profile z over

pings and frequencies implies isotropic scattering for the

considered view angle and frequency band. Isotropic

scattering is a typical assumption in SAS, where the back-

scattered waves from consecutive pings are coherently inte-

grated to achieve high-resolution imaging. Consensus

optimization promotes collaborative filtering as the P data

sets over the frequency band of interest are collaborating to

develop a global model for z.

Note that Eq. (16) is a separable, equality constrained,

convex optimization problem which can be derived from

the generic formulation (A8) with f ðsÞ ¼
PP

i¼1

PF
j¼1fijðsijÞ,

fijðsijÞ ¼ 1=2kAijsij � dijk2
2; gðzÞ ¼ lkzk1; Hij ¼ I, G ¼ �I,

and cij ¼ 0. Then the corresponding ADMM solution (A13)

becomes

skþ1
ij ¼ arg min

sij

1

2
kAijsij � dijk2

2 þ
q
2
ksij � zk þ uk

ijk
2
2

� �
;

zkþ1 ¼ arg min
z

lkzk1 þ
q
2

XP

i¼1

XF

j¼1

kskþ1
ij � zþ uk

ijk
2
2

0
@

1
A;

ukþ1
ij ¼ uk

ij þ skþ1
ij � zkþ1; (17)

where q > 0 is the augmented Lagrangian regularization

parameter. A closed-form solution for the sij and z update

steps is obtained with partial differential calculus by solving,

respectively,

rsij

1

2
kAijsij � dijk2

2 þ
q
2
ksij � zk þ uk

ijk
2
2

� �

¼ AH
ij Aijs

kþ1
ij � Aijdij

� �
þ q skþ1

ij � zk þ uk
ij

� �
¼ 0

(18)

and

rz lkzk1 þ
q
2

XP

i¼1

XF

j¼1

kskþ1
ij � zþ uk

ijk
2
2

0
@

1
A

¼ l@zkzk1 þ qPFðzkþ1 � �skþ1 � �ukÞ ¼ 0: (19)

The overline operator in Eq. (19) denotes averaging over the

P pings and F frequencies, �v ¼ 1=ðPFÞ
PP

i¼1

PF
j¼1vij and the

subgradient @z is a generalization of the partial differential

operator for functions that are not differentiable everywhere

(Ref. 31, p. 338).

The resulting ADMM iterative algorithm for solving

problem (16) is

skþ1
ij ¼ AH

ij Aij þ qI
� ��1

AH
ij dij þ qðzk � uk

ijÞ
� �

;

zkþ1 ¼ Sl=ðqPFÞ �skþ1 þ �ukð Þ;
ukþ1

ij ¼ uk
ij þ skþ1

ij � zkþ1; (20)

where S:ð:Þ denotes a soft-thresholding operator defined as

SjðaÞ ¼ ða=jajÞmaxðjaj � j; 0Þ for a 2 C; j 2 R.28 Note

that the sij-update is an ‘2-norm regularized least-squares

solution (ridge regression), so the ADMM is essentially solv-

ing the lasso problem by an iterative ridge regression proce-

dure. The s- and u-variable update steps in Eq. (20) are

independent for each ping i 2 ½1;P� and for each frequency

1842 J. Acoust. Soc. Am. 146 (3), September 2019 Angeliki Xenaki and Yan Pailhas



j 2 ½1;F�. Hence, the ADMM provides the solution to a large

global problem by coordinating the solutions of smaller

decentralized local problems, i.e., through a broadcast and

gather procedure.

In the following, the ADMM algorithm (20) is initial-

ized with s0
ij ¼ AH

ij dij; z0 ¼ �s0 and u0
ij ¼ 0 for i 2 ½1;P� and

j 2 ½1;F�. We defer the discussion on regularization parameter

selection until Sec. V. The stopping criterion is based on the

‘2-norm of the primal and dual residual (see Appendix 3),

krkþ1k2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXP

i¼1

XF

j¼1

kskþ1
ij � zkþ1k2

2

vuut 	 �kþ1
r ;

kykþ1k2 ¼ qkzkþ1 � zkk2 	 �kþ1
y ; (21)

where �kþ1
r ¼ �abs

ffiffiffiffi
N
p
þ �relmaxðk�skþ1k2; kzkþ1k2Þ and �kþ1

y

¼ �abs

ffiffiffiffi
N
p
þ �relkq�ukþ1k2 are the corresponding convergence

tolerances.28 Herein, the absolute and relative tolerance

bounds are �abs ¼ �rel ¼ 10�3. Making use of the matrix inver-

sion lemma identity ðAþ BCDÞ�1 ¼ A�1 � A�1BðC
þDA�1BÞ�1

DA�1 which holds for matrices A, B, C, D with

conformable dimensions when all the inverses exist,28 the

matrix inverse in the sij-minimization step can be replaced by

AH
ij Aij þ qI

� ��1

¼ 1

q
I� 1

q2
AH

ij Iþ 1

q
AijA

H
ij

� ��1

Aij:

(22)

The identity [Eq. (22)] allows caching the factorization of a

smaller matrix which is computationally advantageous in

SAS imaging where M� N.

V. RESULTS

The potential of the proposed sparse reconstruction

method over CBF is demonstrated first on sub-band SAS

imaging with synthetic data and then on narrowband and

limited-aspect SAS imaging with experimental measurements.

A. Simulations

For the simulations, we employ a SAS system, as in Fig.

1, with a uniform linear receiver array with 12 sensors at spac-

ing d¼ 0.03 m. The transmitted signal is a LFM pulse [Eq.

(6)] of duration sq ¼ 10 ms with bandwidth 3–20 kHz and a

Tukey (tapered cosine) window w(t). The PCA is used to

replace the single-transmitter/multiple-receivers multistatic

configuration with a monostatic one. The array displacement

between pings is Dy ¼ 0:09 m and the cross-range distance

from �2 to 2 m is used for aperture synthesis so that the whole

imaging area is within the �3 dB beam width of the transmit-

ter which is 40
. The sound speed is c¼ 1500 m/s and the

imaging grid comprises N ¼ 31� 41 ¼ 1271 pixels. With the

selected system parameters and assuming that the SAS plat-

form’s velocity is 3 knots, the stop-and-hop approximation is

valid; see Eq. (51) in Ref. 36.

To describe the SAS system, both in terms of resolution

and artifacts from sidelobes due to matched filtering and

beamforming, we first calculate the point spread function

(psf) which is the response of an imaging system to an iso-

tropic point scatterer.36 Figure 2 shows the psf of CBF and

sparse reconstruction implemented with the ADMM for a

point scatterer at r0 ¼ ð8:5; 0Þ m with the considered SAS

system for full-band (3–20 kHz) and sub-band (7–10 kHz)

processing. The range resolution of CBF deteriorates for

sub-band processing as expected from Eq. (3). The cross-

range resolution also deteriorates since the synthetic aperture

length remains unaltered for full-band and low frequency

sub-band processing; see Eq. (4). Sparse reconstruction with

consensus optimization offers high-resolution imaging, free

of sidelobes in both cases.

Figure 3 shows the SAS reconstruction for sub-band

processing when a second isotropic scatterer is added to the

reflectivity field with power �20 dB relative to the power of

FIG. 2. (Color online) psf for (a)–(c)

full-band (3–20 kHz) and (d)–(f) sub-

band (7–10 kHz) SAS imaging. (a) and

(d) CBF reconstruction and (b) and (e)

sparse reconstruction with the ADMM

algorithm. (c) and (f) Cross-sections at

cross-range y¼ 0 m.
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the point scatterer located at r0 ¼ ð8:5; 0Þ m. The ADMM

reconstructs the weaker scatterer accurately, both when it

falls within the �3 dB beam width, Figs. 3(a)–3(c), and

when it is masked by the sidelobes of CBF, Figs. 3(d)–3(f).

In the latter case, the artifacts in sparse reconstruction which

are adjacent to the strong scatterer (at the order of �12 dB),

where the spatial coherence of the psf is high, are due to the

fact that the ADMM converges to a solution with moderate

accuracy; see Appendix 3. Nevertheless, Fig. 4 demonstrates

that consensus optimization with the ADMM algorithm pro-

vides more accurate sparse reconstruction in SAS imaging

than interior point solvers. Specifically, since the lasso prob-

lem in Eq. (15) is solved independently for each frequency,

the coherence in slant-range is still high (low slant-range

resolution) resulting in artifacts along the slant-range.

Besides, solving Eq. (15) with interior point solvers requires

8.8 min due to the size of the problem while the ADMM pro-

vides the solution in Fig. 4(d) in less than 40 s (8 iterations).

Consider now a more realistic scenario where the sea-

floor is modeled as a random field of isotropic scatterers37

with characteristic length 0.2 m and exponential covariance

with zero-mean and standard deviation �15 dB relative to

the reflectivity of an embedded strongly scattering disk as

depicted in Fig. 5(a). The SNR due to additive noise is

20 dB. Sub-band, low frequency (7–10 kHz) processing

degrades the range resolution of conventional SAS imaging

[Fig. 5(b)] while sparse reconstruction provides a more accu-

rate estimate of the strongly scattering disk [Fig. 5(c)].

B. Regularization parameter selection

It is important to note that the solution of the ADMM

consensus optimization [Eq. (20)] is tuned with two regulari-

zation parameters: the regularization parameter for the aug-

mented Lagrangian term q and the regularization parameter

for the ‘1-norm constraint on the model features l. Even

though the best choice for the values of the regularization

parameters is problem-dependent, we provide general guide-

lines on regularization parameter selection.

FIG. 3. (Color online) Sub-band

(7–10 kHz) SAS imaging of two point

scatterers with a dynamic range of

20 dB located at (a)–(c) r0 ¼ ð8:5; 0Þ
m, r1 ¼ ð8:4; 0Þ m, and (d)–(f) r0

¼ ð8:5; 0Þ m, r1 ¼ ð8:1; 0Þ m. (a) and

(d) CBF reconstruction and (b) and (e)

sparse reconstruction with the ADMM

algorithm. (c) and (f) Cross-sections at

cross-range y¼ 0 m.

FIG. 4. (Color online) Comparison of SAS imaging methods for sub-band

(7–10 kHz) processing. (a) Reflectivity field comprising a distribution of

four point scatterers with equal strength, (b) CBF reconstruction [Eq. (12)],

(c) sparse reconstruction with interior point solvers [Eq. (15)] (l ¼ 0:01)

and (d) sparse reconstruction with the ADMM algorithm [Eq. (20)] (q¼ 1,

l ¼ 0:75lmax).

FIG. 5. (Color online) Sub-band (7–10 kHz) SAS imaging. (a) Reflectivity

field comprising a strongly scattering disk on a weak scattering background.

(b) CBF reconstruction and (c) sparse reconstruction with the ADMM

algorithm.
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To make the analysis generally applicable to SAS imag-

ing, i.e., independent of a particular system or model, we

normalize the sensing matrix by its Frobenius norm,

Aij=kAijkF, such that the N eigenvalues of the associated

Gram matrix sum up to one
P

eigðAH
ij AijÞ ¼ 1. Besides, we

normalize the data dij=kdijk2 to focus on the phase differ-

ences between the recorded data on the physical array.

The parameter q regularizes the least-squares solution

for the s-variable update in Eq. (20) in terms of diagonal

loading of the Gram matrices AH
ij Aij to stabilize its inverse.

Strip-map SAS requires receiver arrays with broad beam

widths to maximize the effective length of aperture synthesis

providing fine cross-range resolution which in turn requires

fine imaging grids. The wide beampattern of the (physical)

receiver array in combination with the fine spatial sampling

of the SAS image results in rank-deficient Gram matrices

AH
ij Aij. Figure 6 shows that less than 0.1% of the eigenvalues

have a significant value. In practice, there is one non-zero

eigenvalue approximately equal to 1 and setting q¼ 1 regu-

larizes the least-squares s-variable update sufficiently. Bear

in mind that, even though the Gram matrix for a single ping

and frequency has highly coherent columns, the resulting

coherence pattern of the total SAS processing is better

described by the psf; see Fig. 2.

The parameter l controls the sparsity of the solution,

hence it depends on the specific setup. For large values of l,

the solution is very sparse but the data fit is poor. In fact for

l > lmax ¼ k
PP

i¼1

PF
j¼1AH

ij dijk1 the solution z of the dis-

tributed lasso problem (20) is zero.28 As l decreases toward

zero the solution becomes gradually less sparse improving

the data fit. For l¼ 0 the ADMM solution becomes equal to

the CBF solution z ¼ ŝCBF. The best value for l for a spe-

cific setup is determined through the lasso path,21,38 i.e., by

solving problem (20) for different values of l in the interval

0 < l 	 lmax. Figure 7 shows the ADMM solution for the

setup in Fig. 5 for l¼ [0:0.2:1]lmax. For the sparse SAS

imaging in Fig. 5(c) we have used l ¼ 0:5lmax. Note that

solving Eq. (20) for increasing l requires gradually less iter-

ations if the variables z and u are initialized with their opti-

mal values from the previous l (warm start).28

C. Convergence

Convergence is another important aspect of the iterative

ADMM solution as it determines both the computational

efficiency of the algorithm and the accuracy of the optimal

solution. Figure 8 shows the evolution of the primal and dual

residual norms of the ADMM algorithm for the sparse recon-

struction in Fig. 5 (q¼ 1, l ¼ 0:5lmax). The stopping crite-

rion, as determined by the tolerance bounds [Eq. (21)], is

satisfied after eight iterations, while each iteration takes less

than 5 s to compute. The fast convergence of the ADMM

iterative solution is very useful for practical applications.

FIG. 6. (Color online) (a) The Gram matrix jAHAj for a single ping at

f¼ 7 kHz. The checkered pattern results from vectorizing the 2D imaging

grid into N pixels. (b) The corresponding eigenvalues presented in percent-

age of the total number N.

FIG. 7. (Color online) Compressive SAS

imaging with the ADMM algorithm [Eq.

(20)] for different values of the regulari-

zation parameter l (a) l¼ 0, (b) l
¼ 0:2lmax, (c) l ¼ 0:4lmax, (d) l ¼ 0:6
lmax, (e) l ¼ 0:8lmax, and (f) l ¼ lmax.

FIG. 8. (Color online) Convergence of the ADMM algorithm. Both the (a)

primal krk2 and (b) dual kyk2 residual norms decrease to the corresponding

tolerance bounds �r and �y (dashed lines) within eight iterations.
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Figure 9 depicts the primal and dual variable updates as

the iterative algorithm (20) approaches convergence. The

consensus problem (16) gradually constrains the local varia-

bles sij, which are initialized with the very low resolution

CBF output for a single ping and frequency bin, to match the

global variable z. Besides, the global variable z, which is ini-

tialized with the total SAS beamforming output, is optimized

toward a sparser representation by the ‘1-norm, while the

dual variable is updated with the running sum of the resid-

uals uk
ij ¼ u0

ij þ
P

kðsk
ij � zkÞ.

The convergence of the ADMM algorithm is highly deter-

mined by the choice of the regularization parameter q; see Sec.

3.4.1 in Ref. 28. The ADMM update Eqs. (17) indicate that

large values of q favor primal feasibility, i.e., the fulfillment of

the constraints in the optimization problem (16). Hence, a large

q reduces the number of iterations needed for the primal resid-

ual norm [Eq. (21)] to reach its tolerance bound. The fast con-

vergence of the primal residual norm comes at the expense of a

less sparse optimal solution for z which tends to increase the

dual residual norm. Contrarily, small values of q induce

FIG. 9. (Color online) Intermediate

values of the variables sij (left col-

umn), z (middle column), and uij (right

column) of the iterative algorithm [Eq.

(20)] at iteration number (a)–(c) 0 (ini-

tializations), (d)–(f) 1 (first update),

and (g)–(i) 4 (half-way to conver-

gence). The local variables sij and uij

are for the central ping i ¼ P=2

(yp¼ 0 m) and frequency index j¼ 1

(f¼ 7 kHz). The primal variables sij

and z are plotted in dB (re max) scale

for direct comparison with the SAS

images.

FIG. 10. (Color online) Primal krk2

and dual kyk2 residual norms and the

corresponding tolerance bounds �r and

�y (dashed lines) along with the final

solution z of the ADMM algorithm

for (a)–(c) q¼ 10 and (d)–(f) q ¼ 0:1;

l ¼ 0:5lmax in both cases.
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opposite trends in the convergence of the primal and dual resid-

ual norms as demonstrated in Fig. 10. The convergence rate

achieved for compressive SAS imaging with the suggested

choice of q¼ 1 (less than 10 iterations irrespective of SNR for

all examples in this study) provides a good balance between

computational efficiency and optimization accuracy.

D. Experimental results

The measurements are from the target-oriented rail-

based experiment (TORHEX’18)39 collected in July 2018 at

the port of La Spezia, Italy, with a SAS system similar to the

one used for the simulations. A steel air-filled sphere of 1 m

diameter and a concrete cylinder of 2 m length are used to

exemplify the potential frequency- and aspect-specific back-

scattering features, respectively, of man-made objects. The

objects are lying on a muddy seafloor at shallow water

between 6 and 10 m depth. The broadband 3–20 kHz, full-

view [�10
, 10
] SAS imaging of the two objects is depicted

in Fig. 11 as a reference.

Figure 12 shows the frequency-dependent, full-view

[�10
, 10
] SAS reconstruction with CBF and compressive

SAS imaging for the spherical object. With narrowband, low

frequency processing CBF exhibits limited resolution, while

compressive SAS imaging indicates clearly the frequency-

dependent scattering features of the shell, suppressing

completely the background reverberation. Notably, at frequen-

cies around fc¼ 4 kHz the sound waves are mainly scattered

from the convex part of the shell, while at frequencies around

fc¼ 7 kHz it is the concave part which scatters the sound.

Similarly, Fig. 13 shows the aspect-dependent SAS

reconstruction with CBF and compressive SAS imaging for

the cylindrical object. In this case, the processing is broadband

(3–20 kHz) while sub-views of the cylinder are achieved by

limiting the length of the synthetic aperture. The cylinder is

slightly tilted towards negative angles which results in strong

specular backscattering by its full length at sub-views [�10
,
�3
] and [�3
, 3
], while at [3
, 10
] the main scatterer is the

cylinder’s base.

FIG. 11. (Color online) SAS imaging

of a spherical shell (a) and (b) and a

cylinder (c) and (d) from the

TORHEX’18 data. (a)–(c) CBF recon-

struction and (d)–(f) sparse reconstruc-

tion with the ADMM algorithm (q¼ 1,

l ¼ 0:7lmax).

FIG. 12. (Color online) SAS imaging of

a spherical shell from the TORHEX’18

data, (a)–(c) CBF reconstruction and

(d)–(f) sparse reconstruction with the

ADMM algorithm (q¼ 1, l ¼ 0:7lmax).

Narrowband processing with fractional

bandwidth Df=fc ¼ 0:2 at central fre-

quency (a) and (d) fc¼ 4 kHz, (b) and (e)

fc¼ 7 kHz, and (c) and (f) fc¼ 10 kHz.
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VI. CONCLUSION

Frequency- and aspect-specific SAS imaging can provide

important information for the classification of man-made

objects. However, sub-band or limited-view processing comes

at the expense of reduced resolution and increased sidelobe

levels in CBF. In this paper, SAS imaging is formulated as a

sparse signal reconstruction problem. The resulting optimiza-

tion problem is solved efficiently in a distributed way with the

ADMM. Sparse reconstruction with distributed optimization is

shown to improve significantly the resolution and the SNR in

SAS processing with limited data indicating the great potential

of the method in SAS imaging. Specifically, we demonstrate

both with synthetic and measured data that compressive SAS

imaging improves the resolution compared to conventional

delay-and-sum beamforming and offers a sidelobe-free recon-

struction. Future efforts will focus on combining the developed

compressive SAS imaging with ATR algorithms.
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APPENDIX: DISTRIBUTED CONVEX OPTIMIZATION

This appendix summarizes the basic formulations in dis-

tributed convex optimization as analytically presented in

Refs. 28 and 31. First, the primal and dual formulation of a

generic equality-constrained convex optimization problem is

presented, followed by a concise description of the ADMM,

which is an algorithm for distributed convex optimization

particularly well-suited for solving large-scale problems.

Basically, this section provides the mathematical framework

for the derivation of the consensus optimization problem

(16), the iterative ADMM solution [Eq. (17)], and the stop-

ping criterion [Eq. (21)].

1. Equality-constrained convex optimization

Consider the equality-constrained convex optimization

problem,

min
s

f ðsÞ

subject to Hs ¼ b; (A1)

where s 2 C
N

is the optimization variable, f : C
N ! R is

the convex objective (or cost) function, and the constraints

are an affine transformation with H 2 C
q�N and b 2 C

q.

The optimal value p� of the optimization problem (A1),

achieved at the optimal variable s�, is

p� ¼ inf f ðsÞ jHs ¼ b
� �

¼ f ðs�Þ jHs� ¼ b
� �

: (A2)

The Lagrangian for problem (A1) is obtained by aug-

menting the objective function with a weighed sum of the

constraints,

Lðs; mÞ ¼ f ðsÞ þ Re mH Hs� bð Þ
	 


; (A3)

where m 2 C
q

is the dual variable of the problem (A1).

The corresponding dual function is the minimum value

of the Lagrangian (A3) over s,

gðmÞ ¼ inf
s

Lðs; mÞ: (A4)

The dual function, which is concave even when problem

(A1) is not convex,31 yields lower bounds on the optimal

value p� (A2),

gðmÞ 	 p�; (A5)

since gðmÞ ¼ infsLðs; mÞ 	 Lð~s;mÞ 	 f0ð~sÞ for every feasible

point ~s.

FIG. 13. (Color online) SAS imaging

of a cylinder from the TORHEX’18

data, (a)–(c) CBF reconstruction and

(d)–(f) sparse reconstruction with the

ADMM algorithm (q¼ 1,

l ¼ 0:7lmax). Sub-view processing (a)

and (d) [�10
, 3
], (b) and (e) [�3
,
3
], and (c) and (f) [3
, 10
] relative to

the point of closest approach.
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The dual problem

max
m

gðmÞ; (A6)

provides the best lower bound on the optimal value of the

primal problem (A1). The optimal value d� of the dual prob-

lem (A6), achieved at the dual optimal variable m� is

d� ¼ sup gðmÞ
� �

¼ gðm�Þ: (A7)

For convex, equality-constrained optimization problems

strong duality holds,31 i.e., the optimal values of the primal

[Eq. (A1)] and dual [Eq. (A6)] problems are equal, p� ¼ d�.
Thus, the optimal solution can be found by solving the dual

problem instead.

2. The ADMM algorithm

The ADMM is an efficient convex optimization solver

for problems of the form,

min
s;z

f ðsÞ þ gðzÞ

subject to HsþGz ¼ c; (A8)

with variables s 2 C
N and z 2 C

M and equality constraints

where H 2 C
q�N

, G 2 C
q�M

, and c 2 C
q
. The basic charac-

teristic of problems like Eq. (A8) is the separable objective

into the functions f and g over a partition of the primal varia-

bles. Dual ascent methods28 can solve such decomposable

optimization problems in a distributed fashion with parallel

computing.

The Lagrangian of problem (A8) is

Lðs; z; mÞ ¼ f ðsÞ þ gðzÞ þ Re mH HsþGz� cð Þ
	 


; (A9)

where m 2 C
q is the dual variable of problem (A10). As in

the method of multipliers,28 adding a quadratic regulariza-

tion term yields the augmented Lagrangian,

Lqðs; z; mÞ ¼ f ðsÞ þ gðzÞ þ Re mH HsþGz� cð Þ
	 


þq
2
kHsþGz� ck2

2; (A10)

where q > 0 is a regularization parameter.

The ADMM solves problem (A8) by updating itera-

tively first the primal variable s, then the primal variable z,

and finally the dual variable m as

skþ1 ¼ arg min
s

Lqðs; zk; mkÞ;

zkþ1 ¼ arg min
z

Lqðskþ1; z; mkÞ;

mkþ1 ¼ mk þ q Hskþ1 þGzkþ1 � cð Þ: (A11)

At this point the naming of the ADMM algorithm is justified:

the characterization alternating direction indicates the

sequential updates of the s and z variables, while the method
of multipliers indicates the use of an augmented Lagrangian

to improve convergence. Performing the s and z minimization

into separate steps for a problem with separable objectives f

and g allows for decomposition. Note that ðzk; mkÞ are the

state variables of the algorithm, i.e., the next state ðzkþ1; mkþ1Þ
is a function of the current state ðzk; mkÞ, while sk is an inter-

mediate result calculated from the previous state ðzk�1; mk�1Þ.
Combining the linear and quadratic terms of the residual

r ¼ HsþGz� c in the augmented Lagrangian and scaling

the dual variable u ¼ ð1=qÞm yields

mHrþ q
2
krk2

2 ¼
q
2
krþ 1

q
mk2

2 �
1

2q
kmk2

2

¼ q
2
krþ uk2

2 �
q
2
kuk2

2: (A12)

The transformation [Eq. (A12)] allows for a scaled formula-

tion of the ADMM which is often used for notational

convenience,

skþ1 ¼ arg min
s

f ðsÞ þ q
2
kHsþGzk � cþ ukk2

2

� �
;

zkþ1 ¼ arg min
z

gðzÞ þ q
2
kHskþ1 þGz� cþ ukk2

2

� �
;

ukþ1 ¼ uk þHskþ1 þGzkþ1 � c: (A13)

Notably, the scaled formulation [Eq. (A13)] indicates that

the dual variable is the running sum of the residuals,

uk ¼ u0 þ
Pk

j¼1rj.

3. Convergence

It is shown28 that the ADMM converges under very gen-

eral conditions, i.e., whenever f and g are convex and the

Lagrangian [Eq. (A9)] has a saddle point. In practice, the

ADMM converges to moderate accuracy within a few tens

of iterations. Thus, the ADMM is a useful solver for large-

scale problems where moderate accuracy is sufficient as it is

counterbalanced by the amount of data, while decomposabil-

ity is far more important for efficient distributed computing.

The primal and dual residuals at iteration kþ 1, as

derived from the primal and dual feasibility conditions28 are,

respectively,

rkþ1 ¼ Hskþ1 þGzkþ1 � c (A14)

and

ykþ1 ¼ qHHGðzkþ1 � zkÞ: (A15)

Residuals (A14) and (A15) converge to zero with the

ADMM iterations. Thus, a valid stopping criterion for the

ADMM iterations is that the primal and dual residuals must

be small, i.e.,

krkþ1k2 	 �r;

kykþ1k2 	 �y; (A16)

where �r and �y are feasibility tolerances.
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