
p ()
URL: http://www.elsevier.nl/locate/entcs/volume82.html 10 pages

Safe Composition of Linda-based Components

Ana M. Roldan 3,1

Dpto. de Ingenieŕıa Electrónica, Sistemas Informáticos y Automática, University
of Huelva, Spain

Ernesto Pimentel 4,1

Dpto. de Lenguajes y Ciencias de la Computación,University of Málaga, Spain

Antonio Brogi 5,2

Dipartimento di Informatica, Università di Pisa, Italy

Abstract

Component-Based Software Development is an emerging discipline in the field of
Software Engineering. When constructing component-based systems, we must be
sure that the cooperative behaviour of the components and their interaction will
be successful. In this paper, we use Linda to specify the interactive behaviour of
software components. To do this, we first introduce a process algebra for Linda, and
then we define a compatibility relation providing conditions that ensure safe com-
position. This relation takes into account the state of a shared tuple space which
represents the current execution. Indeed, a Linda-based computation is characteri-
zed by the store’s evolution, so that the set of tuples included into the store governs
each computation step. In this context, the success of the composition of a pair of
agents in presence of a suitable store can be useful to condition the acceptance of a
given component into an open running system. In order to extend our approach to
complex systems, where constructing a system involves more than two components,
we propose the use of distributed tuple spaces as the glue to join components.

Keywords: Coordination languages, components, software architecture, compatibi-
lity, interaction, process algebras.

1 The work of Ana M. Roldán and E. Pimentel has been partially supported by the Spanish
project TIC2001-2705-C03-02
2 The work of Antonio Brogi has been partially supported by the Italian MIUR project
NAPOLI — Models, Calculi and Languages for Network Aware Programming.
3 Email: amroldan@diesia.uhu.es
4 Email: pimentel@lcc.uma.es
5 Email: brogi@di.unipi.it

c©2003 Published by Elsevier Science B. V.

180

CC BY-NC-ND license. Open access under

http://creativecommons.org/licenses/by-nc-nd/3.0/

Roldan, Pimentel and Brogi

1 Introduction

Component-Based Software Engineering (CBSE) is an emerging discipline in
the field of Software Engineering. In spite of its recent birth, a lot of activi-
ties are being devoted to CBSE both in the academic and in the industrial
world. The reason of this growing interest is the need of systematically deve-
loping open systems and “plug-and-play” reusable applications, which has led
to the concept of “commercial off-the-shelf” (COTS) components. The first
component-oriented platforms were CORBA and DCE, developed by OSF
(Open Software Foundation) and OMG (Object Management Group). Seve-
ral other platforms have been developed after them, like COM/DCOM, CCM,
EJB, and the recent .NET.

Available component-oriented platforms address software interoperability
by using Interface Description Languages (IDLs). Traditional IDLs are em-
ployed to describe the services that a component offers, rather than the services
the component needs (from other components) or the relative order in which
the component methods are to be invoked. IDL interfaces highlight signature
mismatches between components in the perspective of adapting or wrapping
them to overcome such differences.

However, even if all signature problems may be overcome, there is no
guarantee that the components will suitably interoperate. Indeed, mismatches
may also occur at the protocol level, because of the ordering of exchanged
messages and of blocking conditions, that is, because of differences in the
component behaviours. To overcome such a limitation, several proposals have
been put forward in order to enhance component interfaces [11]. Many of
them are based on process algebras, and extend interfaces with a description
of their concurrent behaviour [1,2,5,6,12], such as behavioural types or role-
based representations.

The objective of this work is to explore the usability of the coordination
language Linda for specifying the interaction behaviour of software compo-
nents and to present a software architecture as a collection of interconnected
computational and data components [7].

Linda was originally presented as a set of inter-process communication
primitives which allow processes to add, read, and delete data in a shared tuple
space (store). Linda’s communication model features interesting properties,
such as space and time uncoupling, as well as a great expressive power to
specify concurrent and distributed systems. The contributions of this paper
can be summarised as follows:

(i) We uses a notion of store sensitive compatibility [3] to formalize the com-
patibility of two agents with respect to a given state of the store (share
data-space).The store provides relevant information on the results of the
current execution of the system, and it allows to contextualize the com-
patibility of agents in the perspective of dynamic compatibility checking.
We consider that the compatibility of two agents implies that their inter-

181

Roldan, Pimentel and Brogi

action will be successful. The importance of the notion of compatibility
relates to the possibility of performing a priori verification of complex
interacting systems.

(ii) We present a software architecture as a collection of interconnected com-
putational and data components. Indeed we consider software systems
as compositions of specifications of their components.

The rest of the paper is organized as follows. Section 2 presents a process
calculus for Linda. Section 3 is devoted to introduce the notion of compatibi-
lity with respect to a store. In the following section, we show software systems
as architectural descriptions of their components and finally, some concluding
remarks and future works are discussed.

2 A Linda Calculus

Linda was the first coordination language [9,10], originally presented as a set
of inter-agent communication primitives which can virtually be added to any
programming language. Linda’s communication primitives allow processes to
add, delete and test for the presence/absence of tuples in a shared tuple space.
The tuple space is a multiset of data (tuples), shared by concurrently running
processes. Delete and test operations are blocking and follow an associative
naming scheme that operates like select in relational databases.

In this paper, following [4], we shall consider a process algebra L containing
the communication primitives of Linda. These primitives permit to add a tuple
(out), to remove a tuple (in), and to test the presence/absence of a tuple (rd,
nrd) in the shared dataspace. The language L includes also the standard
prefix, choice and parallel composition operators in the style of CCS.

The syntax of L is formally defined as follows:

P ::= 0 | A.P | P + P | P ‖ P | recX.P

A ::= rd(t) | nrd(t) | in(t) | out(t)

where 0 denotes the empty process and t denotes a tuple.

Following [4], the operational semantics of L can be modeled by a labelled
transition system defined by the rules of Table 1. Notice that the configura-
tions of the transition system extend the syntax of agents by allowing parallel
composition of tuples. Formally, the transition system of Table 1 refers to the
extended language L′ defined as:

P ′ ::=P | P ′ || 〈t〉
Rule (1) states that the output operation consists of an internal move (τout)

which creates the tuple 〈t〉. Rule (2) shows that a tuple 〈t〉 is ready to offer
itself to the environment by performing an action labelled t. Rules (3), (4)
and (5) describe the behaviour of the prefixes in(t), rd(t) and nrd(t) whose
labels are t, t and ¬t, respectively. Rule (6) is the standard rule for choice
composition. Rule (7) is the standard rule for the synchronization between

182

Roldan, Pimentel and Brogi

(1) out(t).P
τout−→ 〈t〉 ‖ P (6)

P
α−→ P ′

P +Q
α−→ P ′ +Q

(2) 〈t〉 t−→ 0 (7)
P

t−→ P ′ Q
t−→ Q′

P ‖ Q
τ−→ P ′ ‖ Q′

(3) in(t).P
t−→ P (8)

P
t−→ P ′ Q

t−→ Q′

P ‖ Q
τ−→ P ′ ‖ Q

(4) rd(t).P
t−→ P (9)

P
α−→ P ′ α 	= ¬t

P ‖ Q
α−→ P ′ ‖ Q

(5) nrd(t).P
¬t−→ P (10)

P
¬t−→ P ′ Q 	 t−→

P ‖ Q
¬t−→ P ′ ‖ Q

Table 1
Transition system for L.

the complementary actions t and t: It models the effective execution of an
in(t) operation. Rule (8) defines the synchronization between two processes
performing a transition labelled t and t, respectively. Notice that the process
performing t is left unchanged, since the read operation rd(t) does not modify
the dataspace. The usual rule (9) for the parallel operator can be applied
only to labels different from ¬t. Indeed a process P can execute a nrd(t)
action in parallel with Q only if Q is not able to offer the tuple 〈t〉, as stated
by rule (10). Notice that, following [4], there are no rules for recursion since
its semantics is defined by structural axiom recX.P ≡ P [recX.P/X] which
applies an unfolding step to a recursively defined process. We also consider
the transition system closed under the usual structural axioms for parallel or
choice operators.

The rules of Table 1 are used to define the set of derivations for a Linda
system. Note that we distinguish two different silent transitions: one corres-
ponding to the output action (τout) and another one for synchronization (τ).
Formally, this corresponds to introducing the following derivation relation:

P �−→ P ′ iff (P
τout−→ P ′ or P

τ−→ P ′ or P
¬t−→ P ′).

Notice that the above operational characterization of L employs the so-
called ordered semantics of the output operation. Namely, when a sequence
of outputs is executed, the tuples are rendered in the same order as they are
emitted. It is also worth noting that also the store can be seen as a process
which is the parallel composition of a number of tuples.

Let us finally introduce another derivation relation that will be used as a

183

Roldan, Pimentel and Brogi

shorthand in the rest of the paper:

P
α
=⇒ P ′ iff (P �−→∗ α−→ P ′)

where α ∈ {t, t, t}.

3 Safe Composition of Components

In Linda, inter-process communication occurs only via a shared store (or da-
taspace) which is a (multi)set of tuples inserted, extracted or deleted by the
concurrent processes.

In order to have an explicit treatment of the store, we consider a com-
patibility relation that takes into account the situation of the store. Indeed,
a Linda-based computation is characterized by the store’s evolution, so that
the set of tuples included into the store governs each computation step. Be-
fore defining the notion of compatibility with respect to a store, we introduce
the notion of synchronizable processes. After that, we show the definition of
compatibility with respect to a store, which was introduced in [3].

Definition 3.1 [Synchronizable processes] A process P provides an input a

for an agent Q if there exist two processes P ′ and Q′, such that P
a
=⇒ P ′ and

Q
α
=⇒ Q′, where α ∈ {a, a}. Two processes P and Q are synchronizable if P

provides an input for Q or Q provides an input for P .

Definition 3.2 [Compatible processes with respect to a store] Let P and Q
be two processes in L, P is semi-compatible with Q w.r.t a store St, written
P CSt Q, iff:

(i) If P is not successful then P and Q ‖ Store are synchronizable.

(ii) If P only can proceed by ¬t transition then Q �−→∗ 	 t−→ and St does not
include the tuple 〈t〉.

(iii) If P
τout−→ 〈t〉 ‖ P ′ then P ′ CSt‖〈t〉 Q.

(iv) If P
t−→ P ′ and St

t−→ St′ then P ′ CSt′ Q.

(v) If P
t−→ P ′ and St

t−→ then P ′ CSt Q.

(vi) If P
t−→ P ′ and St

t−→ then P ′ CSt Q.

A relation CSt is a compatibility w.r.t. the store St if both CSt and C−1
St are

semi-compatibilities w.r.t. the same store St. We say that two processes P
and Q are compatible w.r.t. St, and we denote it by P �St Q, if there exists a
compatibility relation CSt, such that PCStQ.

When agents are defined with a finite number of states (even if they present
an infinite behavior), it is worth observing that it is possible to implement a
tool capable of automatically checking the compatibility of two agents. Ob-

184

Roldan, Pimentel and Brogi

viously, depending on the structural complexity of the agents, the cost of
checking might be very high.

Proposition 3.3 If P �St Q then P ‖ Q ‖ St is successful.

Proof. The full proof is in [3]. ✷

In this context, the notion of compatibility allows to:

• check the compatibility of a component and a running system w.r.t. the
current store (characterizing the current state of the execution),

• condition the acceptance of a given component into an open running system
so as to wait for a suitable state of the store in order to ensure the success
of the overall system.

Thus, a negative answer showing the non-compatibility of two components
could prevent from wrong compositions. Obviously, the compatibility of two
generic agents is not always decidible. Although this compatibility relation is
relevant per se (because the store plays an important role in the interaction
of components, and it is explicitly considered), a more interesting point is the
possibility of building an automatic checking tool capable of determining what
is the store (if any) that makes two given agents compatible.

4 Linda-based Software Architecture

Software Architecture refers to the level of software design in which the system
is represented as a collection of computational and data components intercon-
nected in a certain way [7]. Thus, it is focused on those properties of software
systems that derive from their structure, i.e. from the way in which their
components are combined.

Software systems can be described in Linda by composing the specifications
of their components. We use partial interfaces or roles for describing the
behaviour of each component and we explicitly represent system architecture
as a set of roles for each component.

Definition 4.1 [Component] We define a component as a set of roles :

Comp = {R1, R2, .., Rn}
where each Ri is a process in L.

We consider distributed stores that allow the connection of components
through roles. In this situation, stores will contain shared tuples used to
synchronize components. The connection of several components in an archi-
tecture will be represented by an attachment among roles and stores. This is
formalized as follows.

Definition 4.2 [Attachment] Let S={St1, St2, ..., Stk} be a set of stores and
let C= {Compi}m

i=1 be a set of components, where each Compi is represented

185

Roldan, Pimentel and Brogi

by a set of roles {Ri1 , Ri2, .., Rini
}. We define an attachment as a mapping ψ

from S to P({Rij}i,j).

Now, we can define an architecture as a context composed by a set of stores
which contains the synchronization information (tuples), a set of components
and an attachment ψ describing the attachments.

Definition 4.3 [Context] Consider a software system composed by several
components, C= {Compi}m

i=1. Let S={St1, St2, ..., Stk} be a set of stores. We
say that

< C,S, ψ >

is a context if ψ is an attachment that satisfies the following properties:

(i) ∀ St ε S, |ψ(St)
⋂

Compi| ≤ 1.

(ii) ∀ St,St’ ε S. ψ(St)
⋂

ψ(St′) = ∅.
The previous properties show two important aspects of our notion of con-

text. The first property states that two roles that describe the same component
cannot interact with the same store. In the second one, we establish a disjoint
distribution of the roles among the stores.

Definition 4.4 [Successful context] A context is a successful context if the
parallel composition of its components is successful.

We consider that a software system is composed by a set of components
that are described by roles. In fact, it is necessary to establish some prop-
erty that ensures the composition of these components is successful, i.e. the
interaction among components is deadlock free. In the following proposi-
tion, we formalized the idea that permit us to get this objective. This result
could be extended, and so, a context is successful if the set of roles that de-
scribe the components can be separate in small sets of roles (composed by two
roles)where roles are compatible w.r.t a store. Although, this can be complex
and difficult to automatically check.

Proposition 4.5 Given a context < C,S, ψ >, if |ψ(St)| = 2 for all St in
S and the two roles in ψ(St) are compatible w.r.t St, then the context is
successful.

Proof. The proof descends from the disjoint distribution of the roles among
stores (def.4.3), where roles are compatible w.r.t. a store (def.3.2). ✷

The previous proposition can be applied only when the architecture is
described as a set of components connected through roles, and when these
connections are established pairwise.

When a new component is inserted into a running system, the resulting
context may exhibit an erroneous behaviour (e.g. deadlock situations) if the
interaction provided by the incoming component is not the expected one. The
information given by the store, together with the protocol specification of the

186

Roldan, Pimentel and Brogi

components, may prevent us from undesired behaviours. In some situations,
the insertion of a component may be delayed till certain expected tuples ap-
pear in the store, or alternatively, a component could be accepted as part
of a system even if the resulting context is not successful, whenever it be-
comes successful by adding some tuples to the store (this situation is referred
to as feasible context in [2]). All these possibilities correspond to different
ways of applying the notion of compatibility w.r.t. a store to a Linda-based
architecture.

To illustrate the use of Linda for specifying component protocols, we now
show a partial description of the interaction between the auctioneer and a
bidder.

The auctioneer may start a session by adding to the store a tuple of the
form 〈“on sale′′, goodOnSale, initialPrice〉. The auctioneer then inputs
(and consumes) the bids that are possibly made by bidder(s). If the bid
received is higher than the highest value offered so far for the good, then the
auctioneer updates the current price of the good. Otherwise the auctioneer
continues to analyse the bids received. When no bid has been made, the
auctioneer closes the auction session, publishes the final result of the session
on the store, and terminates.

Auctioneer.Bid(good,price) =

in("auction_closed",_,_,_).StartSession(good,price)

+

nrd("auction_closed",_,_,_).StartSession(good,price)

StartSession(good,price) =

out("on_sale",good,price). AuctionSession(good,price,"nobody")

AuctioneerSession(good,price,currentWinner) =

in("bid",idBidder,good,offer).

(

in("on_sale",_,_).out("on_sale",good,offer).

AuctioneerSession(good,offer,idBidder)

+

AuctioneerSession(good,price,currentWinner)

)

+

nrd("bid",_,_,_).in("on_sale",_,_).

out("auction_closed",good,price,currentWinner).0

A bidder instead waits for the start of an auction session. When a new session
is opened, the bidder decides whether to participate in the session (by putting
his bid in the store) or to simply wait for its end.

Bidder.Auc(id) =

rd("on_sale",good,price).

187

Roldan, Pimentel and Brogi

(

out("bid",id,good,offer).BidderWait(id)

+

BidderWait(id)

)

BidderWait(id) =

rd("auction_closed",good,price,winner).0

5 Concluding Remarks

Linda is a coordination language where inter-process communication can only
occur through a set of tuples. The main novelty of our proposal consists of
defining a software architecture taking into account the specifications of its
components. Thus, we consider a compatibility relation that permits us to es-
tablish dynamic compatibility checking. That is, when a component has to be
incorporated into an already executing system (seen as another component),
the compatibility has to be analyzed dynamically, and the “static” specifica-
tion is not enough because it presents the behavior of a component from its
instantiation. Indeed, the advantage of using a Linda-based formalism is that
a Linda computation is characterized by the store’s evolution, in such a way
that the set of tuples included into the store governs each computation step.

Certainly, some of the issues covered in this paper also have been dealt with
in other proposals. In the context of software architecture Allen and Garlan
[1] use the process algebra CSP to describe synchronization of components and
connectors, and in [8] show new challenges for component-based software engi-
neering such mobility, adaptability and recourse awareness. Another proposal
improving the expressiveness of interaction descriptions by using π-calculus
was presented by Canal [5]. Some ideas proposed in [5] already have been
applied to CORBA in [6].

Our proposal somehow combines these two last lines by defining a notion
of process compatibility in the style of [5,6], while focussing on the automatic,
run-time checking of properties in dynamic, open systems in the style of [2].
Following these approaches, we consider software systems are structured as a
collection of interacting computational and data components interconnected
through the specifications of their components [7].

Our future work will be devoted to define an inheritance relation over
agents in order to promote the reusability and substitutability of interaction
descriptions, to study how this affects compatibility and successful computa-
tions, and to develop a methodology for coding protocol information as me-
talanguage descriptions and for checking composition properties by analyzing
their metalanguage descriptions.

188

Roldan, Pimentel and Brogi

References

[1] R. Allen and D. Garlan,“ A formal basis for architectural connection,” ACM
Transactions on Software Engineering and Methodology, 6(3):213–249, 1997.

[2] A. Bracciali, A. Brogi, and F. Turini. Coordinating interaction patterns. In
Proceedings of 16th ACM Symposium on Applied Computing, 2001.

[3] A. Brogi, E. Pimentel, and A. Roldán. Compatibility of Linda-based
Component Interfaces, ICALP’02(FMCI). Electronic Notes in Theoretical
Computer Science, 2002.

[4] N. Busi, R. Gorrieri, and G. Zavattaro. A process algebraic view of linda
coordination primitives. Electronic Theoretical Computer Science, 192:167–199,
1998.

[5] C. Canal. “Un Lenguaje para la Especificación y Validación de Arquitecturas
de Software ”. PhD thesis, Dept. Lenguajes y Ciencias de la Computación,
University of Málaga, 2001.

[6] C. Canal, L. Fuentes, E. Pimentel, J. Troya, and A. Vallecillo. Extending Corba
Interfaces with Protocols. The Computer Journal, 44(5):448–462, 2001.

[7] D. Garlan and D.E. Perry. Special Issue on Software Architecture.. IEEE Trans.
on Software Engineering, 21(4), April 1995.

[8] D. Garlan and B. Schmerl. Component-Based Software Engineering Pervasive
Computing Environments. In Proceedings of 4th ICSE Workshop on
Component-Based Software Engineering, Toronto (Canada)2001.

[9] D. Gelernter. Generative Communication in Linda.. ACM Transactions on
Programming Languages and Systems , 7:1 (1985), pp.80-112.

[10] D. Gelernter and N. Carriero. Coordination Languages and Their Significance.
Communications de ACM, 35(3):97–107, 1992.

[11] G. T. Leavens and M. Staraman, editors. “Foundations of Component-Based
Systems ”. Cambridge University Press, 2000.

[12] J. Magee, J. Kramer, and D. Giannakopoulou. Behaviour analysis of software
architectures. Kluwer Academic Publishers, 1999.

189

