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Abstract: Condition assessment of bridges has become increasingly important. In order to accurately

simulate the real bridge, finite element (FE) model updating method is often applied. This paper pres­

ents the calibration of the FE model of a reinforced concrete tied-arch bridge using Douglas-Reid meth­

od in combination with Rosenbrock optimization algorithm. Based on original drawings and topograph­

ic survey, a FE model of the investigated bridge is created. Eight global modes of vibration of the

bridge are identified by ambient vibration tests and the frequency domain decomposition technique.

Then, eight structural parameters are selected for FE model updating procedure through sensitivity anal­

ysis. Finally, the optimal structural parameters are identified using Rosenbrock optimization algorithm.

Results show that although the identified parameters lead to a perfect agreement between approximate

and measured natural frequencies, they may not be the optimal variables which minimize the differ­

ences between numerical and experimental modal data. However, a satisfied agreement between them

is still presented. Hence, FE model updating based on Douglas-Reid method and Rosenbrock optimiza­

tion algorithm could be used as an alternative to other complex updating procedures.

Key words: tied-arch bridge; finite element model updating; ambient vibration test; experimental mo­

dal data; Douglas-Reid method; Rosenbrock algorithm

1 Introduction

As major transport infrastructures, bridges are of great

importance to modem society. During the life cycle,

they are exposed to various types of loads such as

winds, traffics, earthquakes and so on. As time goes

• Corresponding author: Tao Liu , PhD. Research Assistant.
E-mail: taoliu.liu@gmail.com.

by, the aging of the bridges cannot be avoided.

Therefore, condition assessment of bridge structures

has become increasingly necessary, which is often

carried out through finite element (FE) method. Of

course, FE models can be created based on technical

design data, as-built drawings and engineering judg-
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ment. However, these FE models usually cannot pre­

dict the exact response of the real structures due to

structural uncertainties. A possible practice to fill the

lack between the real structures and the corresponding

FE models is to employ the FE model updating tech­

nique.

FE model updating had emerged in the 1990s as a

subject of immense importance to the design, con­

struction and maintenance of structures (Jin 2011 ) .

The overview of FE model updating was summarized

fundamentally by Friswell and Mottershead (Friswell

and Mottershead 1995; Mottershead et al. 2011). In

general, methodologies developed to update the FE

model fall into two categories: direct and iterative.

The direct methods (Irnregun and Visser 1991; Mot­

tershead and Friswell 1993; Friswell et al. 1998 ;

Carvalho et al. 2007; Yang and Chen 2009) update

the FE model without any regard to changes in physi­

cal parameters, which directly update the stiffness and

mass matrices of the system in a one-step procedure.

The iterative methods (Farhat and Hemez 1993; Maia

and Silva 1997; Levin and Lieven 1998; Fritzen et

al. 1998; Teughels et al. 2003;) update physical pa­

rameters until the FE model reproduces the measured

data to a sufficient degree of accuracy, where a penal­

ty function (objective function) is typically used. Be­

cause of this nature of iterative methods, they give FE

models that ensure the connectivity of nodes, and

have mass and stiffness matrices that have physical

meaning. This approach is more flexible in its appli­

cation as the physical properties of the FE model can

be updated (Ribeiro et al. 2012). Due to the in­

creased applications, this paper only focuses on itera­

tive updating technique.

The success of FE model updating is depending on

the use of experimental data, the selection of updating

variables and the application of optimization methods.

Experimental modal data, such as natural frequencies

and mode shapes are often identified based on ambient

vibration tests. The most sensitive variables could be

selected by sensitivity analysis. Regarding the optimi­

zation algorithm used in FE model updating, several

methods are available to solve the optimization prob­

lem, such as gradient-based methods (quasi-Newton,

sequential quadratic programming, augmented La-

grangian, etc.) (Teughels 2003), response surface

methods (Ren and Chen 2010; Deng and Cai 2010;

Zhou et al. 2013) and nature inspired algorithms

( e. g., genetic algorithm, evolutionary strategies,

particle swarm optimization) (Levin and Lieven

1998; Jafarkhani and Masri 2011).

For iterative updating procedure, a large number of

analyses need to be performed. In addition, the inves­

tigated FE models are usually very large. Therefore, it

will take much time to carry out the FE model upda­

ting and approximate methods will be necessary to re­

duce the computational time. One of these approximate

methods is the procedure proposed by Douglas and

Reid (Douglas and Reid 1982), which approximates

the natural frequencies of FE model with a specified

function of the unknown structural parameters.

This paper presents the FE model updating of a

tied-arch bridge using MATLAB and MIDAS/CIVIL.

The former is used for sensitivity analysis and optimi­

zation analysis while the later is responsible for struc­

tural modeling and eigenvalue analysis. The outline of

this study is as follows. Section 2 presents the de­

tailed FE model updating procedure based on Doug­

las-Reid method and Rosenbrock optimization algo­

rithm. Description of a three-dimensional FE model

of the bridge is shown in section 3. The modal pa­

rameters of the bridge are identified in section 4 by

ambient vibration tests, such as the natural frequen­

cies and the mode shapes. In section 5 a sensitivity

analysis is performed to select the structural parame­

ters used for model updating. Section 6 calibrates the

FE model of the bridge, and conclusions are drawn in

section 7.

2 Considered FE model updating tech­
nique

In FE model updating, an optimization problem is of­

ten set-up in which the differences between the exper­

imental and numerical modal data have to be mini­

mized. Assuming the experimental modal data, i. e. ,

the natural frequencies and the mode shapes, have

been obtained from ambient vibration tests, the FE

model updating technique is carried out in this study

by developing MATLAB codes interfaced with MI­

DAS/CIVIL. The key aspects of FE model updating
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procedure considered in this paper are the implemen­

tations of Douglas-Reid method and Rosenbrock opti­

mization algorithm, which are further described in the

following subsections.

2.1 Douglas-Reid method

In Douglas-Reid. method (Douglas and Reid 1982) ,
·.th~\'eijlttbrtsh~'·between the i-th natural frequency of

the model and the unknown structural parameters

Xk (k == 1 ,2, "', n) of the model is approximated

around the current values of Xk , by the following:

r (XI ,X2,···,Xn ) == I (AikXk+BikX;) + c, (I)
k =1

where /;* represents the approximated i-th natural fre­

quency of the FE model.

To satisfy the expression and solve the problem,

(2n +1) constants (A;H Bik, and Cj ) must be deter­

mined before to compare each /;* to its experimental

counterpart. In order to evaluate these constants, en­

gineering judgment is first used to estimate a base val­

ue of the structural parameters X:(k == 1 ,2 , ... ,n) and

the range in which such variables can vary. Let de­

note the lower and upper limits of the unknown pa­

rameters as X; and X~ (k == 1 ,2,"', n) , respectively:

X; :;::; x, :;::; X~ (2 )

Then, the 2n +1 constants on the right-hand side of

Eq. ( 1) can be determined by computing the i-th natu­
ral frequency /;num of the finite element model for

2n +1 choices of the unknown parameters. The first

choice of the structural parameters corresponds to the

base values; then each structural unknown is varied,

one at a time, from the base value to the upper and

lower limit, respectively.

Thus, the 2n + 1 conditions used to evaluate the

constants in Eq. (1) are the following:
/;num (X~ ,X~ , ,X~) = /;* (X~ ,X~ , ,X~ )

/;num (X~ ,X~ , ,X~) = /;* (X~ ,X~ , ,X~ )

/;num (X~ ,X~ , ,X~) ==r (X~ ,X~ ,X~) ( 3 )

/;num (X~ ,X~, ""X;) =/;* (X~ ,X~, ""X;)

/;num (X~ ,X: , ... ,X~) =r (X~ ,X~ , "',X~ )

The constants A jk , B jk , and C; can be easily calcu­

lated by the above stated equations. Once these con­

stants have been computed, the approximation (i. e. ,

Eq. (1» is completely defined and it can be used to

Tobia Zordan et al.

update the structural parameters. The optimal parame­

ter estimates are defined to be the values which mini­

mize the following:
m

J == I w;87
i =1

8; ==/;exP - /;* ( X I ,X2 ' '' ' ' Xn) (4)

where /;exp represents the i-th experimentally identified

natural frequency; W; is a weighting constant.

Since the natural frequencies of FE model are ap­

proximated using functions of the unknown structural

parameters, FE model updating procedure can be per­

formed based on any optimization algorithm. Moreo­

ver, it is obvious that the computational efforts are

much less than the procedures using nature inspired

algorithms, such as genetic algorithm, evolutionary

strategies and particle swarm optimization. In recent

years, Douglas-Reid method has been widely adopted

by many researchers (Gentile 2006; Gentile and Saisi

2007; Eusani and Benedettini 2009; Ramos 2011) to

perform FE model updating of different structures.

However, one should have in mind that the quadratic

approximation (Eq. (1» is as better as the base val­

ues are closer to the solution. Indeed, the accuracy

and stability of the optimal estimates may be readily

checked either by the complete correlation with the

experimental data or by repeating the procedure with

new base values. For complex systems, especially for

arch bridges or cable-stayed bridges that often exhibit

similar mode shapes, the use of Douglas-Reid method

should prevent misleading correlation between numeri­

cal and experimental mode shapes (Gentile 2006) .

2.2 Rorenbrock optimization algorithm

In this study, an optimization algorithm with adaptive

sets of search directions proposed by Rosenbrock

(Rosenbrock 1960) is used to solve the optimization

problem. Rosenbrock method proceeds by a series of

stages, each of which consists of a number of explor­

atory searches along a set of directions that are fixed

for the given stage, but which are updated from stage

to stage by using information about the curvature of

the objective obtained during the course of the search.

In addition, Rosenbrock method is a Oth order search

algorithm and it does not require gradient of the target

function. Only simple evaluations of the objective
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Fig. 1 flowchart of Rosenbrock optimization algorithm

function are used. But, this algorithm approximates a

gradient search thus combining advantages of Oth or­

der and 1st order strategies. Flowchart of Rosenbrock

method is presented in Fig. 1, which can be also de­

scribed by the following steps:

1) Initialize the selected variables (parameters),

and the lower and upper limits of variables.

2) Select an initial set of orthogonal vectors, i. e.

the orthogonal vectors of the unit base in n-dimen­

sional space, and step lengths.

ful not to exceed the upper or lower limits. If the lim­

its are exceeded, replace the calculated values of co­

ordinates by the limit value which is surpassed.

5) If the change of the objective function is within

the limits of error, stop the calculation and end the

optimization.

6) Generate a new set of orthonormal vectors using

the Gram-Schmidt orthonormalization procedure, with

the "promising" direction from the just-completed

stage used as the first vector in the orthonormalization

process. Naturally, the direction from the start point

to the final point in the current exploratory iterative

phase may be a direction which can optimize the func­

tion. So a new direction group should include this di­

rection. Detailed procedures to generate these or­

thonormal vectors can be found in many research

studies (Votruba 1975; Chen 2006).

7) Using these new orthonormal vectors, compute

a new calculation (beginning with item 3) until the

optimum is reached.

The investigated bridge was built around 1950, as

shown in Fig. 2. It was designed by Giulio Krall, one

of the most eminent Italian bridge engineers of the

20th century, to replace a former iron bridge on the

same span. The deck of the bridge, with a longitudi­

nal slope of 2. 5% , is a four-cell concrete box girder

(Fig. 3) ; the total width of the girder is 12.69 m for

two traffic lanes and two pedestrian walkways. The

girder is 1. 23 m deep so that a good transparency of

the deck is attained from an aesthetic standpoint. The

two lateral cells suspend the deck by means of in­

clined ties made by conventional reinforcement bars

immersed in a cast-in-place grout. The parabolic arch

structure consists of two solid R. C. arch ribs, trans­

versally connected together with cross struts; the ar­

ches are characterized by a rise/span ratio of 1/6 and

suspend the deck on a length of 75. 50 m so that the

bridge represents one of the most interesting examples

of Nielsen structure still in service in Italy.

Figure 4 presents the 3D FE model of Canonica

bridge developed based on the following assumptions

and the preliminary guess of unknown structural pa­

rameters:

3 Canonica bridge

Create a new set of
orthogonal directions

No

No

Yes

Yes
At least one successful trail

and one failed trail are found
in each direction?

tleast one successful trail
and one failed trail are found

in ith direction?

No,i=i+l

3) Conduct searches along these directions, cycling

over each in tum, moving to new iterates that yield

successful steps (an unsuccessful step being one that

leads to a less desirable value of the objective). If the

trail is successful, step length is multiplied by 3, oth­

erwise multiplied by -0.5.

4) Continue until there has been at least one suc­

cessful and one unsuccessful step in each search direc­

tion. Once this occurs, the current stage terminates.

If the objective at any of these steps is perceived as

being an improvement over the objective at the current

best point, the new point is then considered. Be care-
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1 ) Unit wcigfu of concrete is SCi 10 be 24 . 0 kN/nr'

and that of the stee l is assignl,.'d to be 7/i.11 kS/IlI ' .

2 ) The Puisso n' s ratio of concrete is held constant

and equal III O. 20 and that of the stl,.'e1 is assumed 10

be 11. 25.

J ) Yongv modulu s of the concrete is J4 GPa and

Ih;11 of the steel i.. 210 G Pa.

4 ) Four-node ..hell clements arc used 10 model the

upper and lower concrete ..lab.. of the deck and the

lower partv of the an-he...

S ) The two late ral box ..tringcrs und the transverse

cross-beam.. of the deck arc mode led by two-node J D

beam eleme nts. Rigid links arc used between the con­

c rete slab.. ,md the grid of lateral ..tringer.. and uun s­

verse ero-s-reamv.

(, ) The archc.. and bracing members are modeled a..

beam elements.

7 ) The arch fnolings arc considered as fixed .

/i ) 111e lies arc modeled as truss c lements.

') The effects of the abutment.. and the fonnd.uions ,

as rcvt ruint-, 10 the movement s of the bri dgc . an: taken

into acco unt by introducin g a series of ..pring-, oriented

in the diffe rent directions and attached 10 the ends of

the bridge along each node. Spccificutty. the resultant

stiffne-,.. of all ..pring.. is ucsurncd III be SE+x N /ITl .

Finally . the J () FE model of Canonica bridge con ­

tain.. a total of J tl')6 nodes , I riSh beam elements , J h

truss clements . IH'J(, shell c lements.

In thi-, stud)' . only the glohal motc-, of the bridge

arc considered . which invnlve glohal modal dcflcc­

tion -, of the bridge deck or arches. Based on the initial

FE model . the natural frequencie s of the tirst len

global modes of the bridge and thc corresponding

mode Sh;IJlt.'S are prese nted in Fig. S. Mode 1(; in­

volvcs the rrunsvcr-al bending of the arches. ~loJe ..

2(i . J G . 7(; and tl (j arc flexural modes of the deck.

~tode 4G esscnli:lll~ involve, the tran-vcrsat bending
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of the deck. l\ lod~s :;G , r.G, HCi and lOG urc lor­

<ionul mode, of the deck , In additiou , it can he found

thai some globa l mod es arc coupled together. The-e

particular mode s are character ized by common mOH~ -

( ,,) :101" <1,, .IG·.}. I ~;t. I I,

\ g ) \ 1<,,1<- 7G-5. II. ~ " I II

mcms • with similar amplitudc , of the Jed; or arches .

th described in section 1. I . spcc jul atte ntion must be

direc ted when correlating mode shapes between nu­

IIIl'ril'al and experimenta l modal data.

Cd) :Io I.1lk 4(i-J . /.7.\! III

FI, . 5 FIN b:n gh...... l mN.:' " r inttial II'. .,,,""'1 (If Car..",i"a Ilri.Jgc
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4 Ambient vibration test

In this study. e xperimental lest is basic ally focused on

the charac teriza tion o f the overall dynam ic behavior of

the bridgc . in part icu lar of the deck. The full -scale

tests urc conducted on the bridge using a Io-c hnnnc l

data acquisitton system with 14 uniaxial piezoelectric

Tobia Zordan et at.

accelerometers ( \\, I{ model 73 1A ) , each with a hat­

tcry power unit. For each channel, the ambient accel­

eration- time histories a rc recorded for }(,O(j s at an in­

terval of n. (lOS s. The schemat ic of the sensor layout

is presented in Fig. (' , and the installe d acce lerometer

is shown in Fig. 7.

' .5
13.5 so 8.0 8.0 8 0 80 8.0 14.0

A02 A04 A06 AO~

Adda River

A IQ A 12 A14

A01 AOJ A05 A07

91,2

A09 All All

,

ri~, (, S<:h~II"'li..: "r ...."N". l:Iy<>Ul ( Ill )

•

The oper.uicnal modal analy sis. which identi ties

the modal parameters from out put-on ly time-h istories.

is carr ied out using the Freq uency Domain Decompo­

sition ( FDD ) ( Bnnckcr et a l. 2O(J I ) method implc -

mentcd in the ARTe~1 1 S software. The r DD tech­

nique involves the fo llowing main stcps:

I ) Evaluation of the spectral matrix G ( /) , l. c. •

the matrix where the diagonal terms arc the auto-spec­

tral densities ( AS!)) while the ot her terms arc the

cross-spccr rat denviticx ( CSD) . In the present appli­

cation, the ASDs and the CSDs were estimated, after

decimating the data :') limes. from 20 4H-po ims Han­

niug-windowcd pcriodogrum-, that arc transfor med and

averaged with (,fl . 7'k overlappi ng. Si nce the rc-sam ­

pled lime interval is 0. tl2:,) s. the res ulting frequency

resolution is 1/ (204HXO .1l2:,) ) = (1 . 0 19 :') Hz .

2 ) Singu lar value decomposition ( SVD) of the

matrix G (f ) at each frequency. acco rding (0:

G(j) = UU) xS x UNU ) ( 5)

where the diagona l matrix 5 collec ts the rea l positive
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Frequency (Hz)

963
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o

Fig. 8 Average of normalized singular values of spectral

matrix of all data sets and selected modes

The main uncertainties in FE modeling of the bridge

can be selected based on the engineering experience

and judgment. As shown in Fig. 10, the bridge is di­

vided into three regions, in each of which the

Young's modulus and density of the concrete are as­

sumed as constant. Furthermore , different supports of

the deck slab and the lower parts of the arches are as­

signed in thi s study, i. e. , supports 1 and 2, respec­

tively. Both of them include three different degrees of

freedom , i. e. , two degrees of freedom translation

and one degree of freedom rotation. In addition , the

Young's modulus and the mass density of the steel are

also considered as unknown variables. As a conse ­

quence , a set of 14 uncertain independent variables of

the model are selected and listed in Tab . 1.

To determine the sensiti ve variables that most influ­

ence the modal parameters of the bridge, sensitivity

analysis ( Maia and Silva 1997 ) is performed in this

section. Here , both natural frequencies and mode

shapes of the FE model are considered as structural re­

sponses. The sensitivity analysis computes the sensi­

tivity coefficient, which represents the percentage

change in modal parameter R~urn per 100% change in

the variable Xj , as the following form:

X
j

6.R~urn

s., = 100 x R~um x b.X
j

( 8)

Note that in sensitivity analyses, only one parame­

ter is varied at one time and others keep the same as

the values in initial FE model. The change in each

variable is assigned to be 1% of its value.

Figure 11 shows the computed sensitivity coeffi­

cients against the selected structural parameters and

5 Sensitivity analysis

singular values in descending order; U is a complex

matrix containing the singular vectors as columns ; the

superscript H denotes complex conjugate matrix trans­

pose.

3 ) Inspection of the curves representing the singu­

lar values to identify the resonant frequ encie s and esti­

mate the corre sponding mode shape using the infor­

mation contained in the singular vectors of the SVD.

The principle in the FDD techniques is easily un­

derstood by recalling that any response can be written

in modal co-ordinates and that the spectral matrix of a

linear dynamic system subjected to a white-noise ran­

dom excitation may be expre ssed as:

G(/r) = c/> x Gqq (J) x c/>H ( 6 )

where c/> is the matrix of mode shapes; Gqq (J) is the

spectral matrix of the modal co-ordinates. Since the

modal co-ordinates are un-correlated , the matrix

Gq'l(J) is diagonal; hence, if the mode shapes are or­

thogonal, Eq. ( 6 ) is a SVD of the response spectral

matrix. As a consequence , if only one mode is im­

portant at a given frequency I. , as it has to be expec­

ted for well- separated modes, the spectral matrix can

be approximated by a rank-one matrix:

G (Jr) = (T t (Jr) xu\(J, ) xu7(fr ) ( 7)

The first singular vector u,(f,) is an estimate of the

mode shape . On the other hand, the first singular val­

ue (T I (f,) at each frequency represents the strength of

the dominating vibration mode at that frequency so

that the first singular function can be suitably used as

a modal indication function ( yielding the resonant fre­

quencies as local maxim a ) whereas the successive

singular values contain either noise or modes close to

a strong dominating one.

Figure 8 shows the average s of the first 3 normal­

ized singular values associated with the spectral matri­

ces of all data sets. As can be observed , eight global

modes of the bridge are identified in the investigated

frequency interval of 0-9 Hz. In the following, the

identified modes are marked with B , indicating the

bending modes of the deck, and with T , indicating

torsion modes of the deck. The identified modes are

illustrated in Fig. 9. It can be noted that all these

modes can be found in Fig. 5 when the initial FE

model is investigated, although some of them do not

emerge in the same order .
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modal response s, In order to identify the updating

parameters . sensitivity coefficients les !'> than J arc ex ­

eluded in this figure. It can be observed in this fig­

ure . the modal parameters of the bridge arc signifl­

cantly affected by the concrete properties involved in

( <;1 ~1"deT l -4 . u2J HI

Tobia Zordan et at

region s and z a!' well as the Youn g"s modulus of

the steel. Furthermore , the Young' s modulus o f con­

c rete in reg ion J and the horizontal stiffness of both

supports a lso infl uen ce the moda l pammcters to so me

exte nt.

rn \Iodo TV . _'157 HI

t hl \ 1,l<k n -7. KlJ III

Region 1
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According to the sensitivity analysis, eight structural

parameters are considered to be the dominant factors

affecting the numerical modal data. The base values

of eight parameters are assumed to be the values in

the initial FE model , and the limits of each variable

can be seen in Tab. 1. The calibration of FE model is

conducted in this section based on Douglas-Reid

method and Rosenbrock optimization algorithm de­

scribed in section 2. In the present application, unit

weighting constants are assumed in the objective func­

tion, i. e. , Eq. (4).

The ratios of the optimal parameters relative to the

limits indicated in Tab. 1 are represented in Fig. 12.

A ratio of 0 means that the parameter coincides with

No. Parameter Designation

ECI Concrete Young's modulus in region 1

2 P el Concrete density in region 1

3 Ec2 Concrete Young' s modulus in region 2

4 Pel Concrete density in region 2

5 Ed Concrete Young's modulus in region 3

6 Pc..' Concrete density in region 3

7 E, Steel Young's modulus

8 P, Steel density

9 Khl Horizontal stiffness of support 1

10 K VI Vertical stiffness of support 1

11 K. I Rotate stiffness of support 1

12 Kh2 Horizontal stiffness of support 2

13 KV1 Vertical stiffness of support 2

14 K.2 Rotate stiffness of support 2

0 - 160

0 000000 00
2 0 0 0000 00 140

0 000000 00
1204 00000 00 00

~ 0 0
100" (. -0;;

E 00000 00 0f: 80
::: 8

0 0 60
10

40
12 0 0 0
14 L-"--............................"--........w..................l.-..............,."'----:........,..,

III 111 TI n 113 T3 114 n MI M2 M3 M4 M5 M6 M7 M~

Freque ncy and MAC

Fig. I I . cnxitivity coe ffic ients matrix

6 Calibration of FE model

20

- 0

Lower bound Upper bound Unit

2.0E + 10 4.5 E+IO N/ m2

2. 2E +3 2. 7E + 3 kg/m'

2. 0E +I O 4.5E+ l0 N/ m'

2 . 2E +3 2. 7E +3 kg/rrr'

2. 0E +10 4. 5E + 10 N/m'

2.2E +3 2. 7E +3 kg/m'

2. 0E +11 2. 3E + 11 N/m'

7. 7E +3 8.0E +3 kg/m'

1. OE +8 I. OE + 9 N/ m

1. OE +8 1. OE +9 N/m

1. OE +8 1. OE + 9 N/m

I. OE +8 I. OE + 9 N/ m

1. OE +8 1. 0E +9 N/ m

1. OE +8 1. OE +9 N/m

the lower limit. A ratio of 100 % means that it coin­

cides with the upper limit. As can be observed, all

the optimal parameters are in between the lower and

the upper limits.

100

80

~ 60

.s
;;
0: 40

20

o

Parameter

Fig. 12 Optimal estimates of structural parameters

It can be expected that the order of first two ben­

ding mode s ( B1 and B2 ) is significantly affected

by the ratio of Young ' s modulu s of the deck ( Eel)

to that of the arch ( E e, ) . In this study, the first

measured bending mode B1 is antisymmetric rather

than symmetric ( Fig. 9) , so Eel should be much

less than Ee2 which can be also seen in Fig . 12.

From an engineering standpoint, the stiffness of

arch ribs is seldom affected under serv ice loads be­

cause of the compression dominant interna l force ,

but the stiffness of the deck is significantly infIu-
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cnced by the potent ial cracked section caused by re­

ciprocate traffic loads du ring the life cycle o f the

bridge . explaining why a relative low Young ' s

mod ulus is found in the dec k.

Table ~ shows the error values between numerical

and experimental data , lakin g a'i reference the values

of the expe rimental data. It ca n be observed that the

max imum relative error ( RE) between na tural fre­

quencies , which is H. H, g for initial model before

updat ing , becomes ,1. 5o C;f after oprirnizanon. But ,

une .should have in mind th.u the approximate formu -

la Eq . ( 1 ) is nOI exact for any given struc tural pa­

rarnctcrs and it cannot pro vide the informat ion of

mode shapes. Henc-e , natural frequencie-, and mode

shapes of the updated FE model are computed again

thro ugh eigenvalue ;malysis ba-ed on the optimal

struct ural parameters. After cuhb ranon. the maxi­

mum relative error between natural frequencies be­

comes 4. 4HSf and the minimum ~IAC value pas~s

from I I. III (,9 , befo re the calibration. 10 a value of

O. ')'JJO. Fig. 13 present'> the mode shapes of the FE

mode l after calibration.

( "j ~I,,& fH -J . 19 U III

( h) ~""lc n ·7 , 'j ~ 1l7 11l

(C'l ~ l"d~ er-s. l lll !> II I

( c) ~"".Ic T l ·.1. '10 (,x II I
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Tab. 2 Correlation between modal behavior of updated model and experimental results

291

Experiment Initial model Optimal approximation Updated model

Mode r: (Hz) f"WD (Hz) RE (%) MAC j*(Hz) RE (%) MAC f"om (Hz) RE (%) MAC

B1 3.203 3.0839 3.72 0.0169 3.2030 0.00 3.1913 0.37 0.9066

B2 3.438 3. 1576 8.16 0.0628 3.3175 3.50 3.2841 4.48 0.9544

T1 4.023 3.7205 7.52 0.9086 3.9134 2.73 3.9068 2.89 0.9576

T2 4.805 4.8621 1. 19 0.9937 4.8050 0.00 4.9068 2.12 0.9916

B3 5.254 5. 1646 1. 70 0.9800 5.2088 0.86 5.1816 1. 38 0.9880

T3 5.957 6.0264 1. 17 0.9927 5.9572 0.00 5.9782 0.36 0.9930

B4 6.875 7.0241 2.17 0.9107 6.8750 0.00 6.8912 0.24 0.9247

T4 7.813 8.0965 3.63 0.9787 7.8238 0.14 7.9487 1. 74 0.9765

It is noted that although the optimal structural pa­

rameters lead to a very good agreement between ap­

proximate and measured natural frequencies

(RE =3. 50% ), they may not be the variables which

minimize the differences between numerical and exper­

imental modal data. However, a satisfied match

(RE = 4.48%) between them can be still presented

when compared with the initial FE model. Therefore,

FE model updating based on Douglas-Reid method and

Rosenbrock optimization algorithm could be used as an

alternative to other complex updating procedures.

7 Conclusions

This paper described the calibration of a FE model of

a tied-arch bridge using Douglas-Reid method in com­

bination with Rosenbrock optimization algorithm. The

considered FE model updating procedure is first intro­

duced. Then, based on the preliminary guess of un­

known structural parameters, initial FE model of the

studied bridge is created. After that, eight global

modes of vibration of the bridge, four bending modes

and four torsion modes, are clearly identified within

the frequency range of 0-9 Hz. To perform the FE

model updating, eight structural parameters are select­

ed as updating variables through a sensitivity analysis

of modal parameters.

The updating of the numerical model involves 8 nu­

merical parameters and 16 modal responses. Based on

the described updating procedure, the optimal structur­

al parameters are identified. After optimization, natu­

ral frequencies estimated by the approximate formula

have a very good agreement with experimentally meas­

ured values. The maximum difference changes from

8. 16% for initial model before updating to 3. 50% af­

ter optimization and for some modes (B1, T2, T3 and

B4) the relative errors are even equal to zero. For the

real updated FE model, the maximum relative error is

found to be 4.48%, and the minimum MAC value

passes from O. 0169, before calibration, to a value of

0.9930 after calibration. With regard to the average

MAC value, it changes from O. 7305, before calibra­

tion, to O. 9615 after calibration.

Although the optimal parameters obtained based on

Douglas-Reid method and Rosenbrock optimization

algorithm are not the variables which minimize the

differences between numerical and experimental mo­

dal data, a satisfied match between them can be still

presented and the updated FE model can be used to

evaluate the structural safety of the bridge under dy­

namic loads.
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