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Abstract 

During their operation, modern aircraft engine components are subjected to increasingly demanding operating conditions, 
especially the high pressure turbine (HPT) blades. Such conditions cause these parts to undergo different types of time-dependent 
degradation, one of which is creep. A model using the finite element method (FEM) was developed, in order to be able to predict 
the creep behaviour of HPT blades. Flight data records (FDR) for a specific aircraft, provided by a commercial aviation 
company, were used to obtain thermal and mechanical data for three different flight cycles. In order to create the 3D model 
needed for the FEM analysis, a HPT blade scrap was scanned, and its chemical composition and material properties were 
obtained. The data that was gathered was fed into the FEM model and different simulations were run, first with a simplified 3D 
rectangular block shape, in order to better establish the model, and then with the real 3D mesh obtained from the blade scrap. The 
overall expected behaviour in terms of displacement was observed, in particular at the trailing edge of the blade. Therefore such a 
model can be useful in the goal of predicting turbine blade life, given a set of FDR data. 
 
© 2016 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the Scientific Committee of PCF 2016. 

Keywords: High Pressure Turbine Blade; Creep; Finite Element Method; 3D Model; Simulation. 

 

 

 
* Corresponding author. Tel.: +351 218419991. 

E-mail address: amd@tecnico.ulisboa.pt 

Procedia Structural Integrity 2 (2016) 2889–2895

Copyright © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license  
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer review under responsibility of the Scientific Committee of ECF21.
10.1016/j.prostr.2016.06.361

10.1016/j.prostr.2016.06.361

 

Available online at www.sciencedirect.com 

ScienceDirect 

Structural Integrity Procedia 00 (2016) 000–000  
www.elsevier.com/locate/procedia 

 

* Corresponding author. Tel.: +39 0521-905962; fax: +39 0521-905924. 
E-mail address: sabrina.vantadori@unipr.it 

2452-3216 © 2016 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the Scientific Committee of ECF21.  

21st European Conference on Fracture, ECF21, 20-24 June 2016, Catania, Italy 

Mode I fracture toughness of fibre-reinforced concrete by means of 
a modified version of the two-parameter model 

Sabrina Vantadori*, Andrea Carpinteri, Giovanni Fortese,                                      
Camilla Ronchei, Daniela Scorza 

 
Dept. of Civil-Environmental Engineering and Architecture (DICATeA) – University of Parma 

Parco Area delle Scienze 181/A, 43124 Parma, Italy 

Abstract 

The present paper proposes a method to calculate Mode I plane-strain fracture toughness of concrete, by taking into account the 
possible crack deflection (kinked crack), even in the case of a far-field Mode I loading.  As a matter of fact, during fracture 
extension, cracks may deflect as a result of microstructural inhomogeneities inside the material.  Concrete is an inhomogeneous 
mixture due to aggregates embedded in the cementitious matrix, but additional inhomogeneities may be represented by fibres.  
Firstly, a two-parameter fracture model based on Mode I analytical expressions of the linear elastic fracture mechanics is 
employed.  Then, in order to take into account the possible crack deflection as a result of the above inhomogeneities, a modified 
version of such a model is here discussed.  Three-point bending tests on both plain concrete specimens and concrete specimens 
reinforced with micro-synthetic polypropylene fibrillated fibres are experimentally performed, and the modified model is applied. 
 
 
Keywords: Fibre-reinforced concrete; fracture toughness; micro-synthetic polypropylene fibrillated fibres reinforced concrete; two-parameter 
fracture model 

1. Introduction 

The Two-Parameter Model (TPM) originally proposed to determine the value of Mode I plane-strain fracture 
toughness of plain concrete (Jenq and Shah (1985), RILEM (1990), Karihaloo and Nallathambi (1991)) is herein 
modified in order to take into account the possible crack deflection (kinked crack). 

According to the TPM, the value of the fracture toughness is obtained from three-point bending tests on single 
edge-notched specimens.  Firstly, the registration of the applied load against the crack mouth opening displacement 
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Fig. 1. Crack propagates under:  (a) pure Mode I; (b) Mixed Mode.  

 

The initial compliance, iC , is used to calculate the elastic modulus, E  (Tada et al. (2000)): 
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where S , W  and B  areloading span, depth and thickness of the specimen, respectively, 0a  is the notch length 
(Fig. 1(a)), iC  is the linear elastic compliance.  Further, the parameter )( 0V  is expressed as follows (Tada et al. 
(2000)): 
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Therefore, if the crack propagates under pure Mode I loading, the effective critical crack length, a , is determined 
through the following equation, by employing an iterative procedure (Tada et al. (2000)): 

 
BWC

VaSE
u

2
6 

     (3) 

where uC  is the unloading compliance, and  V  is obtained from Eq.(2) by replacing 0a with a .  Since a stable 
three-point bend test cannot be performed in some cases, the value uC  can approximately be computed by assuming 
that the unloading path will return to the origin. 

Finally, the Mode I critical stress-intensity factor, S
ICK , is computed by employing the measured value of the 

peak load, maxP , as follows (Tada et al. (2000)): 
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(CMOD) is needed.  Then, the critical stress-intensity factor is computed through the expressions related to a crack 
loaded in Mode I (Tada et al. (2000)). 

However, a crack in concrete may deflect during fracture extension, even in the case of a far-field Mode I 
loading, as a result of inhomogeneities embedded in the cementitious matrix.  Inhomogeneities can be represented by 
aggregates for a plain concrete, and by aggregates and fibres for a fibre-reinforced concrete.  Since the crack is 
loaded under both Mode I and Mode II in such a case, the TPM cannot be applied in its original formulation being 
proposed for crack under Mode I loading only.  Therefore, to determine the critical stress-intensity factor (or Mode I 
plane-strain fracture toughness), a modified version of the TPM is here proposed by employing both the Castigliano 
theorem and the analytical solutions for the SIFs of a bent crack (Kitagawa et al. (1975), Cotterell and Rice (1980)). 

Three-point bending tests on concrete specimens are performed in order to assess the proposed model, by 
considering the inhomogeneities represented by both only aggregates (for plain specimens) and aggregates and 
randomly-distributed micro-synthetic polypropylene fibrillated fibres with a fibre volume content equal to 2.5% (for 
fibre-reinforced specimens). 

 
Nomenclature 

a  effective critical crack length 

0a  notch length 
A  cracked area 
B  specimen thickness 

iC  initial compliance 

uC  unloading compliance 
E  elastic modulus 
F  virtual load 
G  total energy rate 

S
ICK  Mode I critical stress-intensity factor 
S

CIIIK )(   Mixed Mode critical stress-intensity factor 

maxP  peak load 
S  specimen loading span 

TU  total energy 
W  specimen depth 
 

0  relative notch length 
  relative crack length 

F  displacement along F - direction 

 

2. Two-Parameter Model 

According to the Two-Parameter Model (TPM) (Jenq and Shah (1985), RILEM (1990), Karihaloo and 
Nallathambi (1991)), the specimens have a prismatic shape and present a notch in the lower part of the middle cross 
section (Fig. 1(a)).  The tests are performed under three-point bending loading and crack mouth opening 
displacement (CMOD) control. 

Each specimen is monotonically loaded up to the peak load.  When such a load is achieved, the post-peak stage 
follows and, when the force is equal to about 95% of the peak load, the specimen is fully unloaded.  Then, the 
specimen is reloaded up to failure. 
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(CMOD) is needed.  Then, the critical stress-intensity factor is computed through the expressions related to a crack 
loaded in Mode I (Tada et al. (2000)). 

However, a crack in concrete may deflect during fracture extension, even in the case of a far-field Mode I 
loading, as a result of inhomogeneities embedded in the cementitious matrix.  Inhomogeneities can be represented by 
aggregates for a plain concrete, and by aggregates and fibres for a fibre-reinforced concrete.  Since the crack is 
loaded under both Mode I and Mode II in such a case, the TPM cannot be applied in its original formulation being 
proposed for crack under Mode I loading only.  Therefore, to determine the critical stress-intensity factor (or Mode I 
plane-strain fracture toughness), a modified version of the TPM is here proposed by employing both the Castigliano 
theorem and the analytical solutions for the SIFs of a bent crack (Kitagawa et al. (1975), Cotterell and Rice (1980)). 

Three-point bending tests on concrete specimens are performed in order to assess the proposed model, by 
considering the inhomogeneities represented by both only aggregates (for plain specimens) and aggregates and 
randomly-distributed micro-synthetic polypropylene fibrillated fibres with a fibre volume content equal to 2.5% (for 
fibre-reinforced specimens). 
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2. Two-Parameter Model 

According to the Two-Parameter Model (TPM) (Jenq and Shah (1985), RILEM (1990), Karihaloo and 
Nallathambi (1991)), the specimens have a prismatic shape and present a notch in the lower part of the middle cross 
section (Fig. 1(a)).  The tests are performed under three-point bending loading and crack mouth opening 
displacement (CMOD) control. 

Each specimen is monotonically loaded up to the peak load.  When such a load is achieved, the post-peak stage 
follows and, when the force is equal to about 95% of the peak load, the specimen is fully unloaded.  Then, the 
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produced by F  (in their own direction) in an uncracked beam, whereas the second term is a function of the SIF 
values for each Mode of loading (Kitagawa et al. (1975), Cotterell and Rice (1980), Tada et al. (2000)) due to both 
the loading force, P , and the virtual force, F . 
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Fig. 2. Specimen geometry and the actual and the virtual forces in Castigliano theorem.  Lengths are in mm. 

Note that, as is shown in Figure 2, the kinked crack path consists of two segments, named 1a  and 2a .  If the value 
of 2a  obtained from Eq.(6) is negative, it means that the effective crack length is 10 aaa   with 01 3.0 aa  .  
Such a length 1a  is obtained from the following equation by employing an iterative procedure:  
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Finally, the critical stress-intensity factor, S
CIIIK )(  , is computed through Eqs (4) and (5) by considering a 

straight crack having length equal to the projected length of the effective kinked crack (Kitagawa et al. (1975); 
Cotterell and Rice (1980)): 
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4. Experimental and theoretical results  

Specimens are tested under three-point bending  (Figure 2).  Testing is performed by means of an Instron 8862 
testing machine under crack mouth opening displacement (CMOD) control, employing a clip gauge at an average 
speed equal to 0.1 mm h-1. 

The specimen matrix is a cementitious matrix characterised by the following proportions: cement: water: 
aggregates (by weight) = 1: 0.7 : 3.6.  This mixture presents a compressive strength of 30MPa at 28 days. 

Two types of specimens are tested: plain concrete specimens (from P-1 to P-3 in Table 1) and concrete specimens 
reinforced by randomly-distributed micro-synthetic polypropylene fibrillated fibres (from R25-1 to R25-3 in Table 
1).  Such fibres are generally used for concrete secondary reinforcement and to control the plastic shrinkage of 
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Note that the value of S
ICK , computed by assuming an unloading path to the origin, is about 10 to 25% higher 

than the corresponding one computed using the actual unloading compliance. 
 

3. Modified Two-Parameter Model 
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Equation (6) is deduced by employing the Castigliano theorem in the manner suggested by Paris (1957), being   
the crack kinking angle (Fig. 1(b)) and 01 3.0 aa  .  More precisely, the Castigliano theorem states that the 
displacement, F , of any load F  (in its own direction) may be computed as follows: 
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where TU  is the total energy expressed by: 
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being dA  an increase in the cracked area.  By assuming constant loading forces, the total energy rate G  is 
equivalent to the rate of increase of the total strain energy TU , that is: 
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the displacement, F , of a virtual load F  can be computed by replacing Eqs (8) and (9) in Eq.(7): 
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For the plane-stress problem herein examined, that is, a prismatic specimen tested under three-point bending (Fig. 
2), the first term on the right-hand side of Eq.(10) is equal to zero, because it corresponds to the displacement 
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produced by F  (in their own direction) in an uncracked beam, whereas the second term is a function of the SIF 
values for each Mode of loading (Kitagawa et al. (1975), Cotterell and Rice (1980), Tada et al. (2000)) due to both 
the loading force, P , and the virtual force, F . 
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4. Experimental and theoretical results  

Specimens are tested under three-point bending  (Figure 2).  Testing is performed by means of an Instron 8862 
testing machine under crack mouth opening displacement (CMOD) control, employing a clip gauge at an average 
speed equal to 0.1 mm h-1. 

The specimen matrix is a cementitious matrix characterised by the following proportions: cement: water: 
aggregates (by weight) = 1: 0.7 : 3.6.  This mixture presents a compressive strength of 30MPa at 28 days. 

Two types of specimens are tested: plain concrete specimens (from P-1 to P-3 in Table 1) and concrete specimens 
reinforced by randomly-distributed micro-synthetic polypropylene fibrillated fibres (from R25-1 to R25-3 in Table 
1).  Such fibres are generally used for concrete secondary reinforcement and to control the plastic shrinkage of 
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Note that the value of S
ICK , computed by assuming an unloading path to the origin, is about 10 to 25% higher 

than the corresponding one computed using the actual unloading compliance. 
 

3. Modified Two-Parameter Model 

Now a modified procedure is proposed when crack propagates under Mixed Mode loading (Mode I and Mode II).  
Specimens geometry and experimental test procedure are analogous to those discussed in the previous Section.  
Firstly, the elastic modulus is determined according to Eq.(1). 

Under Mixed Mode loading, the effective critical crack length, 210 aaaa   (Fig. 1(b)), is obtained from the 
following equation by employing an iterative procedure: 
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Equation (6) is deduced by employing the Castigliano theorem in the manner suggested by Paris (1957), being   
the crack kinking angle (Fig. 1(b)) and 01 3.0 aa  .  More precisely, the Castigliano theorem states that the 
displacement, F , of any load F  (in its own direction) may be computed as follows: 
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where TU  is the total energy expressed by: 
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being dA  an increase in the cracked area.  By assuming constant loading forces, the total energy rate G  is 
equivalent to the rate of increase of the total strain energy TU , that is: 
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the displacement, F , of a virtual load F  can be computed by replacing Eqs (8) and (9) in Eq.(7): 
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For the plane-stress problem herein examined, that is, a prismatic specimen tested under three-point bending (Fig. 
2), the first term on the right-hand side of Eq.(10) is equal to zero, because it corresponds to the displacement 
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Fig. 4. Front and back side of fracture region of fibre-reinforced concrete specimens: (a)-(b)  R25-1;  (c)-(d)  R25-2;  (e)-(f)  R25-3. 

5. Conclusions 

In the present paper, a method to calculate Mode I plane-strain fracture toughness of concrete, by taking into 
account the possible crack deflection (kinked crack), has been proposed.  Concrete and fibre-reinforced concrete are 
inhomogeneous mixtures due to aggregates and fibres embedded in the cementitious matrix.  Due to such 
microstructural inhomogeneities, cracks may deflect during fracture extension.  Therefore, to take into account such 
a possibility, a modified version of the TPM model has been proposed.  Three-point bending tests on both plain 
concrete specimens and concrete specimens reinforced with micro-synthetic polypropylene fibrillated fibres have 
experimentally been performed in order to assess the proposed model.  It can be concluded that, by applying the 
TPM according to its original formulation, Mode I plane-strain fracture toughness is overestimated up to 19% for 
plain concrete and up to 10% for fibre-reinforced concrete. 
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concrete.  The fibre aspect ratio and content are equal to 0.003 (fibre length equal to 18mm) and 2.5% by volume, 
respectively.  The maximum aggregate size is 4mm. 

Values of fracture toughness S
CIIIK )(   are computed according to Eqs (12) e (13).  Values of S

CIK )(  are also 
computed according to Eq. (4) and listed in the last column of Table (1). 
 

          Table 1. Elastic modulus, E, and critical SIF under Mixed, S
CIIIK )(  , and Mode I, S

ICK , loading. 

Specimen No. E   (MPa) S
CIIIK )(    (MPa m1/2) S

ICK   (MPa m1/2) 

P-1 16028.85 0.460 0.547 

P-2 16294.31 0.423 0.473 

P-3 16242.12 0.488 0.503 

R25-1 17068.80 0.622 0.639 

R25-2 16862.08 0.664 0.696 

R25-3 16838.15 0.600 0.660 

 
For each specimen, crack growth under Mixed Mode (Figs 3 and 4) is observed.  Higher values of crack kinked 

angle are generally found for plain concrete specimens. 
In Table 1, it can be noted that fracture toughness values, S

CIIIK )(  , for reinforced specimens (averaged value 
equal to 0.629 MPa m1/2) are significantly different from those related to plain specimens (averaged value equal to 
0.457 MPa m1/2). 

Therefore, it can be concluded that randomly-distributed micro-synthetic polypropylene fibrillated fibres are able 
both to reduce the value of the kinked angle and to increase the concrete resistance to fracture.  This is probably due 
to the fact that such fibres, tending to slip with respect to the matrix, reduce shear stress field with respect to that 
related to the case where only aggregates are embedded in the matrix.  Since lower shear stresses produce a 
reduction of Mode II loading, both a decrease in kinked angle values and an increase in fracture toughness, 

S
CIIIK )(  ,  are expected to occur. 

As is listed in Table 1, the fracture toughness value determined by employing Eq.(4) instead of Eqs (12) and (13) 
is overestimated up to 19% for the plain concrete specimens, and up to 10% for the fibre-reinforced concrete 
specimens here examined. 

 
 

                     
          (a)                         (b)                            (c)                          (d)                           (e)                         (f) 

Fig. 3. Front and back side of fracture region of plain concrete specimens: (a)-(b)  P-1;  (c)-(d)  P-2;  (e)-(f)  P-3. 
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Fig. 4. Front and back side of fracture region of fibre-reinforced concrete specimens: (a)-(b)  R25-1;  (c)-(d)  R25-2;  (e)-(f)  R25-3. 

5. Conclusions 

In the present paper, a method to calculate Mode I plane-strain fracture toughness of concrete, by taking into 
account the possible crack deflection (kinked crack), has been proposed.  Concrete and fibre-reinforced concrete are 
inhomogeneous mixtures due to aggregates and fibres embedded in the cementitious matrix.  Due to such 
microstructural inhomogeneities, cracks may deflect during fracture extension.  Therefore, to take into account such 
a possibility, a modified version of the TPM model has been proposed.  Three-point bending tests on both plain 
concrete specimens and concrete specimens reinforced with micro-synthetic polypropylene fibrillated fibres have 
experimentally been performed in order to assess the proposed model.  It can be concluded that, by applying the 
TPM according to its original formulation, Mode I plane-strain fracture toughness is overestimated up to 19% for 
plain concrete and up to 10% for fibre-reinforced concrete. 
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concrete.  The fibre aspect ratio and content are equal to 0.003 (fibre length equal to 18mm) and 2.5% by volume, 
respectively.  The maximum aggregate size is 4mm. 

Values of fracture toughness S
CIIIK )(   are computed according to Eqs (12) e (13).  Values of S

CIK )(  are also 
computed according to Eq. (4) and listed in the last column of Table (1). 
 

          Table 1. Elastic modulus, E, and critical SIF under Mixed, S
CIIIK )(  , and Mode I, S

ICK , loading. 

Specimen No. E   (MPa) S
CIIIK )(    (MPa m1/2) S

ICK   (MPa m1/2) 

P-1 16028.85 0.460 0.547 

P-2 16294.31 0.423 0.473 

P-3 16242.12 0.488 0.503 

R25-1 17068.80 0.622 0.639 

R25-2 16862.08 0.664 0.696 

R25-3 16838.15 0.600 0.660 

 
For each specimen, crack growth under Mixed Mode (Figs 3 and 4) is observed.  Higher values of crack kinked 

angle are generally found for plain concrete specimens. 
In Table 1, it can be noted that fracture toughness values, S

CIIIK )(  , for reinforced specimens (averaged value 
equal to 0.629 MPa m1/2) are significantly different from those related to plain specimens (averaged value equal to 
0.457 MPa m1/2). 

Therefore, it can be concluded that randomly-distributed micro-synthetic polypropylene fibrillated fibres are able 
both to reduce the value of the kinked angle and to increase the concrete resistance to fracture.  This is probably due 
to the fact that such fibres, tending to slip with respect to the matrix, reduce shear stress field with respect to that 
related to the case where only aggregates are embedded in the matrix.  Since lower shear stresses produce a 
reduction of Mode II loading, both a decrease in kinked angle values and an increase in fracture toughness, 

S
CIIIK )(  ,  are expected to occur. 

As is listed in Table 1, the fracture toughness value determined by employing Eq.(4) instead of Eqs (12) and (13) 
is overestimated up to 19% for the plain concrete specimens, and up to 10% for the fibre-reinforced concrete 
specimens here examined. 
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Fig. 3. Front and back side of fracture region of plain concrete specimens: (a)-(b)  P-1;  (c)-(d)  P-2;  (e)-(f)  P-3. 
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