URL: http://www.elsevier.nl/loca{:e/entcs/volume\27.htlml 20 pages

Axiomatizing ST Bisimulation for a Process
Algebra with Recursion and Action Refinement

(Extended Abstract) !

Mario Bravetti, Roberto Gorrieri

Dipartimento di Scienze dell’Informazione
Universita di Bologna
Mura Anteo Zamboni 7, 40127 Bologna, Italy
E-mail: {bravetti, gorrieri} @cs.unibo.it

Abstract

Due to the complex nature of bisimulation equivalences which express some form
of history dependence, it turned out to be problematic to axiomatize them for
non trivial classes of systems. Here we introduce the idea of “compositional level-
wise renaming” which gives rise to the new possibility of axiomatizing the class
of history dependent bisimulations with slight modifications to the machinery for
standard bisimulation. We propose two techniques, which are based on this idea,
in the special case of the ST semantics, defined for terms of a process algebra with
recursion. The first technique, which is more intuitive, is based on dynamic names,
allowing weak ST bisimulation to be decided and axiomatized for all processes
that possess a finite state interleaving semantics. The second technique, which is
based on pointers, preserves the possibility of deciding and axiomatizing weak ST
bisimulation also when an action refinement operator Pla ~ ()] is considered.

1 Introduction

Many bisimulation equivalences expressing some form of history dependence
have been defined in the literature: history preserving bisimulation [24,10,13],
ST bisimulation [12,3,25,16,17,8] and location bisimulation [5,2,22,9]. Due to
the complex nature of this kind of equivalences it turned out to be not simple
to decide (see for instance [18]) and, especially, axiomatize them for non trivial
classes of systems (e.g. classes which include most recursive systems).

Two main approaches have been developed in the literature for expressing
history dependent bisimulations.

The first approach is based on static names [13,12,3,2,9]. According to this
approach a unique name is statically assigned (i.e. on the basis of the syntac-

! This research has been partially supported by MURST and CNR.
(©1999 Published by Elsevier Science B. V.

A4 Y U4 4L AN LS A VLV

tical structure of the process) to each different “historical element” (e.g. a lo-
cation in location bisimulation) which must be referred to in labels of process
computations. Such references express the history dependence. Then history
dependent bisimulation is defined by making associations among historical el-
ements of different terms that are considered to be equivalent. An advantage
of this approach is that it produces (at least in our formulation of ST seman-
tics of [4] and in the location semantics of [2,9]) finite semantic models also for
a wide class of recursive systems. The main drawback of this approach is that
each kind of history dependent bisimulation has a different definition which
deviates from standard bisimulation. As a consequence, there is no easy way
to axiomatize these history dependent bisimulations (it is necessary to rely
on equality parametrized on associations among historical elements), and the
results previously developed for standard bisimulation theory (e.g. tools for
verification) cannot be directly exploited.

The second approach is based on pointers [10,16,17,8]. According to this
approach, a historical dependence is expressed in the label of a computa-
tion by a pointer that determines the position in the semantic model of the
transition that “activated” such “historical element” (i.e. the transition rep-
resenting an action start in ST semantics). This approach has the advantage
that the equivalence of terms, according to a history dependent bisimulation,
can be established by simply applying the standard notion of bisimulation on
a particular semantic model especially constructed for that kind of history de-
pendent bisimulation. The drawback of the techniques used in [10,16,17,8] is
that for most recursive systems (e.g. for a || recX.0.X in [10,16,8]) a semantic
model with an infinite number of states is produced. As a consequence there is
no easy way to decide or axiomatize history dependent equivalences between
process terms which include recursion.

A further step is made in [21]. Here a technique for expressing history
preserving semantics is developed, which is based on dynamic names. This
technique combines the advantages of the first and second approach: finite
semantic models are produced for a wide class of recursive systems and history
preserving bisimulation is decided simply by applying the standard definition
of bisimulation. The idea of the approach of [21] is to dynamically assign - with
a fized rule - a different name to each new “historical element” that becomes
active, on the basis of the names of the historical elements already active;
in particular, names of obsolete “historical elements” (which are no more
active) are reused. Note that this technique is based on names as the approach
of [13,12,3,2,9], but here names are not assigned statically (i.e. at compile-
time) according to their syntactical position in the initial process, they are
instead computed dynamically while the system evolves (i.e. at run-time). 2
Since the method to compute new names is fixed, processes that perform
equivalent computations produce the same names for “historical elements”. As
a consequence the history dependent bisimulation can be decided by applying
standard bisimulation.

2 The idea of dynamic names already appeared in [5], but here no special technique (like
reuse of names) is employed in order to obtain finite models.

108

A4 Y U4 4L AN LS A VLV

Unfortunately the technique developed in [21] is not compositional, in the
sense that, in order to produce the history preserving semantic model of a
term, first an intermediate semantic model of the whole term must be com-
puted and then transformed by adjusting history information in transitions.

In fact, we could easily develop an axiomatization for a history dependent
bisimulation, which is complete over a wide class of processes, if we had a
compositional approach for deriving semantic models which encode history
with dynamic names (i.e. names dynamically assigned with a fixed rule and
reuse of obsolete names). What we need is a structured operational semantics
(SOS [23]) which allows to derive, e.g. in the case of the parallel composi-
tion operator “||”, from the history dependent computations of P and @, the
history dependent computations of P || Q. As long as we consider only terms
with choice, prefix and termination operators, where history dependences are
encoded in prefixes (such terms are just normal forms, i.e. representations of a
semantic model), axiomatizing standard bisimulation is simply done with the
standard axiom set developed by Milner [19]. In order to transform a general
term in normal form it is just sufficient to have axioms that reflect the oper-
ational rules for the operator ||, i.e. they must derive from the computations
of P and @ (prefixes which encode history dependences), the computations of
P || @ (in the form of prefixes with history dependences).

Therefore the essence of the problem of developing the axiomatization is
obtaining compositionality in the generation of semantic models. In order to
do this it is necessary to associate in some way the names used for identifying
historical elements at the level of P || @), generated according to the fixed rule
for creating new names, to the names used for identifying the same historical
elements inside P or () (which in general are different) generated according to
the same rule. In this way when a future reference to a historical element is
made by a computation inside P or () such a reference can then be re-mapped
to the correct reference at the level of P || Q.

We show that it is possible to do this by parameterizing in state terms each
parallel operator with a mapping M which records such associations while
new names are generated. The resulting technique is a level-wise renaming
technique where historical elements are renamed at each structural level (e.g.
from the level of P or @ to the level of P ||;; Q) according to such mappings.

In this paper we tackle this problem for one of these history dependent
bisimulations: weak ST bisimulation equivalence. We present two techniques,
based on our idea of level-wise renaming, for defining the ST semantics via SOS
rules of a language with recursion (for the second technique we consider also
a semantic action refinement operator). Both these techniques can be used
for deciding ST equivalence via standard bisimulation (namely observational
congruence [19]). Moreover they produce finite ST semantic models for all
processes that possess a finite state interleaving semantics. As a consequence
we show that both techniques can be used for axiomatizing ST bisimulation
over the wide class of (interleaving) finite state processes.

With ST semantics, originally defined in [15] over Petri Nets, the execution
of an action gives rise to the two distinguished events of action start and

109

A4 Y U4 4L AN LS A VLV

action termination. Between such events, other system activities may evolve.
Moreover, enough information is included in semantic models, so that the
event of an action termination uniquely determines to which event of action
start it refers to (this is a form of history dependence), even in the situation
of auto-concurrency (i.e., multiple actions of the same type being in execution
at the same time).

Initially we consider a basic process algebra equipped with a recursion op-
erator and the CSP parallel operator. We show how to define ST semantics
for such a language via SOS rules, by employing our idea of level-wise renam-
ing, when we encode history dependence through dynamic names: a different
name is dynamically assigned to each action that starts execution and names
of terminated actions are reused when new actions start. Hence with this tech-
nique, hereafter called name technique, the reuse of names is “on demand”,
i.e. it is delayed until new names need to be activated.

Then we propose a better (even if less intuitive) technique for implement-
ing ST semantics that is based on some sort of pointers instead of dynamic
names, but still relies on our idea of level-wise re-mapping of pointers. The
main difference with the previous technique is that here the reuse of names
is always done as soon as an “active” (started) action terminates, by chang-
ing the names of the other active actions. Hence here reuse is performed
eagerly. A consequence is that the name assigned to an active action changes
dynamically while other actions start and terminate, hence it assumes the
flavour of a pointer. In a state of a semantic model the name of an active
action (its pointer) is determined by the position of such action in a “stack”
of the currently active actions. For this reason this technique is called stack
technique. The stack technique produces a simpler representation for states
and more compact semantic models. Moreover we show that with this new
pointer-based technique it is possible to solve some problems that arise with
the name technique when we extend our language with an action refinement
operator Pla ~ ()] which performs the semantic refinement of all a executed
by P to @ [12,11,14]. In particular with the new technique we have that if
both P and @ are finite state processes then Pla ~» Q)] is finite state. Through
the new technique we define the ST semantics in SOS style for an extended
language which includes the refinement operator and we produce a complete
axiomatization for ST bisimulation over finite state processes.

The paper is organized as follows. In Sect. 2 we briefly present the name
technique and we show how it can be used to define ST semantics via SOS
rules of a basic process algebra. In Sect. 3 we analyze the defects of the name
technique and the decidability problems that arise when an action refinement
operator is considered. In Sect. 4 we present the stack technique and we use
it to define the ST semantics via SOS rules of a process algebra with action
refinement and recursion. In Sect. 5 we present a complete axiomatization for
weak ST bisimulation equivalence over finite state processes of such a process
algebra. Finally, in Sect. 6 we report some concluding remarks.

The full version of the paper, which includes a detailed presentation of the
name technique and proofs of theorems, is available at:

110

A4 Y U4 4L AN LS A VLV

ftp://ftp.cs.unibo.it/pub/techreports/99-01.ps.gz.

2 ST Semantics via the Name Technique

We start by briefly presenting the technique based on dynamic names. Here
we consider a simple process algebra with actions taken from a set A, ranged
over by a,b,c,..., the CCS prefix, choice and recursion operators, and the
CSP parallel composition operator “||s”, where synchronization over actions
of type S is required.

The name technique is based on the idea of dynamically assigning, at the
semantic level, a new name to each action that starts execution. Names are
indices ¢+ € N that distinguish actions of the same type. In particular the
event of starting of an observable action a is represented in semantic models
by a transition labeled by a;f, where 7 is the minimum index not already used
by the other actions a that have started but not terminated yet. This rule for
computing indices guarantees that names are reused and that finite models
can be obtained also in the presence of recursion. The termination of the
action is simply represented by a transition labeled by a; , where the name ¢
uniquely determines which action a is terminating.

In order to express this behavior compositionally it is necessary to
parameterize in state terms each parallel operator with a mapping M. For
every action a started in P ||sp @), M records the association between the
name ¢, generated according to the rule above for identifying a at the level
of P||lsm @, and the name j (which in general is different from i), generated
according to the same rule for identifying the same action a inside P (or Q).
In this way when such action a terminates in P (or) the name j can be
re-mapped to the correct name i at the level of P ||s @, by exploiting the
information included in M.

In M the action a of P ||y @ which gets name 7 is uniquely determined
by expressing the unique name j it gets in P or in () and the “location”
of the process that executes it: left if P, right if (). Such an association is
represented inside M by the pair (7, loc;) with indices 7,7 € N and location
loc € Loc = {l,r}, where “I” stands for left and “r” for right. We denote an
association function, whose elements are associations (i, loc;), with afun which
ranges over the set Afun of partial bijections from N to Loc x N. Finally M
ranges over the set {M | M : A —e> Afun} of mappings, i.e. sets including
independent association functions for different action types.

Now we show how the name technique can be exploited to give operational
ST semantics to our simple language. We need a richer syntax to represent the
states of semantic models where prefixing is extended to semi-actions “a;” and
parallel operators are parametrized with mappings M (denoted by “||s.a/”). *

The following notations are used in the definition of the operational rules.

Definition 2.1 Given a partial function f : I —e>.J we define f; with ¢ € [

3 The operators “||s” occurring in a term P of the process algebra are considered as being
“l|s,0” when P is regarded as a state.

111

A4 Y U4 4L AN LS A VLV

as follows:
fi = f(i)if i € dom(f); f; = () otherwise
Moreover we define f[i — j] with ¢ € I,j € J, which modifies f so that f
maps ¢ into j as follows:
flim jl=f - <i, fi>U<i,j>
where:

<k,h>={(k,h)}if h # 0; <k, h> = () otherwise

In the following we describe the operational rules that deviate from the
standard interleaving ones.
The operational rules for observable action prefixing are:

+ —_
@y @y
a.P —— aT.P TP —— P

The rules for computing the starting moves of “P ||gy Q" for observable
actions a ¢ S are as follows.

at

p—p

() ,
P ||S,MQ — s P

S, M[am MaU{(n(Ma),1)}] @

When P performs a; then a new index n(M,) is determined for identifying
the action a at the level of “||s,” and the new association (n(M,),l;) is added
to M,. Function n computes the new index by choosing the minimum index
not used by the other actions a already in execution: n(afun) = min{k | k ¢
dom(afun)}, where afun € Afun. Symmetrically for a move a; of Q.
af
Q—— @

an(Ma)
Pllsy@ ——— P

S,Mams MaU{(n(Ma),ri)}] @'

The rules for computing the termination moves of “P ||y Q" for observ-

able actions a ¢ S are as follows, where j = M_1(1;).

a

P——p

a

7
P sy Q@ —— P'||s,m[am Ma-{0.1)} @

When P performs a; the action of type a with index j associated to [; in M
terminates at the level of the parallel operator. Symmetrically the rule for a
move a; of @ is the following one, where j = M '(r;).

a

Q——Q

a

PHS,MQ —]> P

§,M[a—Ma-{(j,r:)}] @’

112

A4 Y U4 4L AN LS A VLV

recXaxX ||, o recX.ax

& .recXa.x ”Q),{a:{(l,l ! recX.aX recX.ax ||®’{ a{LrB g, .recX.ax

+

%
ai recX.a.x "(D,{ af(Lry). 1% ai recX.ax

&

3 reeXaXlip aqasy ey & rexax

&

recX.ax ||®’{ @l g, .recX.ax g, .recX.ax ||®’{ (@I 1} recX.ax

Fig. 1. Example of Recursion with the Name Technique

7

The rule for computing the moves v of “||s/”, where v is a semi-action

Fora; withaeS,is:

a;
v v
p—"p g
5
Pllsm@Q@ —— P'||sm @'

This rule requires that the two synchronizing actions have the same index and
produces an action with that index. Note that:

* since actions of a given type a € S are numbered independently from actions
of other types,

* since the rule for generating new indexes for actions a starting in P and @)
is the same, and

* since actions of type a are required to start and terminate in P and () at
the same time and with the same index,

then the set of indices of actions a in execution in P and () is always the same
and it is never possible for P and () to start actions with different indices.

Example 2.2 In Fig. 1 we depict the semantic model of recX.a.X ||
recX.a.X, where recX denotes recursion in the usual way. *]

As we show in [6], with the name technique we have that the ST semantics
of a process P is finite state if and only if the interleaving semantics of P
is finite state. A simple syntactical characterization for processes that are
guaranteed to be finite state is the following one. P is finite state if for each
subterm recX.() of P, X does not occur free in () in the context of a static
operator [19] (for our basic language, the parallel operator only). Note that
this class of processes includes strictly the class of nets of automata, i.e. terms
where no static operator occurs in the scope of any recursion.

The equivalence notion we consider over terms, denoted with ~, (where
the n stands for the name technique), is the standard notion of observational
congruence extended to open terms [19].

4 We use a : I as a shorthand notation for (a,I).

113

A4 Y U4 4L AN LS A VLV

As we show in detail in [6], a complete axiomatization for ~, over finite
state terms of our process algebra is simply obtained by modifying the axioms
related to the parallel operator, reflecting the new operational rules, in the
standard axiom set of [20].

3 Extending the Language with Refinement

The name technique is based on a very intuitive idea but produces a rather
complicate representation of states and consequently large semantic models.
The reason for this is the intricate structure of mappings M in terms P ||s.a Q.
The problem is that, for any type a, the association function M,, may present
holes and index permutations. The exact nature of these two phenomena is
explained by the following two examples, the first showing how holes can be
generated and the second describing a computation that leads to an index
permutation.

Example 3.1 A hole in the ordered sequence of indices can be generated
as follows. Consider a.0||pa.0. After the right-hand a starts, the state is
a.0 /g {a:{(1,r)}} 01 -0 After the left-hand a starts, the state is
ay 0 [0 {a:{(1,r),20)}13 @1 -0. Finally, after the right-hand a terminates, the state
is 1.0 ||p {a:{(2,01)}3 0 Where only index 2 is being used. Therefore we have a
hole in position 1.

For the next example, we denote the association function M, for a given
type a as a string on the alphabet Loc U {x}, where % denotes a hole in the
ordered sequence of indices of actions a started in P||g Q). For example
{(1,11), (3,r1)} is represented by the string “l;*r;”.

Example 3.2 An index permutation occurs when an association function
does not preserve the order of indices. For instance consider the process
(a.01|p a.0) ||p a.0. After the rightmost a starts, the state is (a.0||p,p @.0) ||p,a:r1}
ay .0. After the leftmost a starts, the state is (a; .0 ||g {a:1,} @-0) ||0,{airi11} @1 -0
After the rightmost a terminates, the state is (ay .0 a1} @-0) ||p,{a:t,3 0. Fi-
nally after the central a starts, the state is (ay.0||p fau,r} @1 -0) || {asair} 0.
Therefore we have an index permutation: the action with index 1 is mapped
to [y and the action with index 2 is mapped to [;.

A different technique which could avoid creating holes in the ordered se-
quences of indices and which could guarantee that the order of indices is pre-
served by mappings (so that indices in the strings of the last example would
become redundant) would greatly simplify the representation of system states
and consequently reduce the size of semantic models.

Moreover, the two phenomena above cause problems when we try to ex-
tend our basic language with an action refinement operator Pla ~] which
performs the semantic refinement of all occurrences of a in P by (). As sug-
gested in [8], Pla ~ @] can be defined in term of the parallel operator and
other basic operators. As we will see, if we want to obtain a refinement opera-
tor with the desirable property that if both P and) are finite state processes

114

A4 Y U4 4L AN LS A VLV

then Pla ~ ()] is finite state, then we must have the possibility to define
an elimination rule for the parallel operator such that P ||g@ is turned into
P if () is terminated. With the name technique such a rule cannot be im-
plemented in general. For instance a ||y a reaches the state a;.0|p a:4(2,:)13 O
which is not equivalent to a; as well as (a.0]|pa.0) ||p a.0 reaches the state
(a1 .0 ||o,{a:tsr} @1 -0) |0, 1a:151,3 O Which is not equivalent to a7 .0 ||p {a:,r,} 07 -0.
The point is that, due to the possible presence of holes or index permutations,
it may be that, when a parallel operator should be eliminated, the related

mapping is not a simple identity.

4 ST Semantics via the Stack Technique

In order to solve all the problems we reported in the previous paragraph and
to give a satisfactory operational semantics to a language including a semantic
action refinement operator, we introduce another technique for representing
the ST semantics. This technique is based on the idea of eliminating the holes
in the sequences of started action indices. In particular, started actions of
a given type are organized as a stack of coins over a table where the coin
on the top of the stack is the action with index 1 and the other actions are
indexed in increasing order from top to bottom. When a new action starts
the corresponding coin is put on the top of the stack (and the old actions are
renumbered accordingly). When an action terminates the corresponding coin
is removed and the hole is “eliminated by gravity” (causing a renumbering of
all the actions below it).

Since the index of a started action change dynamically while other actions
start and terminate, this technique is not based on names (seen as identifiers
for actions) but is more similar to the approach [16,17,8] based on pointers.
In particular, the event of starting of an action a is represented in semantic
models by a transition labeled with a™ (so no index is observable) whilst the
event of termination of an action a is represented by a transition labeled with
a; where 7 is the current position of the action on the stack. The event of
action start referred by a transition a; can be uniquely determined by going
back in the history of process computations (reconstructing the history of
the stack state at each backward step) until the transition a* that pushed
on the stack the action that now is at position ¢ is reached. More precisely,
the procedure for determining which transition a™ is pointed by a; is the
following.

Let k represent the current position on the stack of the action referred by
a; . Initially we have k = i.

¢ When, going back, we meet an a;, we do the following.

- If 5 < k, then we have to consider an additional action on the stack
closer to the top than the one we are referring to (it was removed by a;).
Therefore we pose k£ = k + 1 so that the new value of k is the position of
our action before the event a; .

- Otherwise, the additional action does not influence the position of the one
we are referring to, so k is unchanged.

115

A4 Y U4 4L AN LS A VLV

* When, going back, we meet an a*, we do the following.
- If k =1, then we have reached the transition a™ that pushed on the stack
the action a; and we are done.
- Otherwise, we have to consider one less action on the stack (it was added
by a™). Therefore we pose k = k — 1 so that the new value of k is the
position of our action before the event a™.

This stack-like behavior is expressed compositionally by parameterizing
each parallel operator with a mapping M, but now we can rely on association
strings which are no longer affected by the two problems of holes and index
ordering discussed above. Once again, since the method for updating indices
in the case of an action start or termination is fixed, actions of processes that
perform equivalent computations get the same indices when they terminate
and ST bisimilarity can simply be checked by applying standard bisimilarity.

Let w range over the set AStr = {w : Nt —e» Loc | 3k > 1 : dom(w) =
{1...k}} of association strings, i.e. non-empty strings over the alphabet of
locations Loc = {l,r} 5. M is a partial function mapping action types in
association strings w € AStr. A string w associated to a type a represents
a stack of started a actions, where the action a; on the top of the stack
corresponds to the left-most position in w and the action a; corresponds to
the i-th position in w. The location in the i-th position of w determines if
the action a; is executed by the left-hand term (if the location is “I”) or right-
hand term (if the location is “r”) of the parallel composition operator. The
index j of the action a of the left-hand (or right-hand) term associated to a;
is determined as follows. Index j is given by the position of the [(or r) in the
string obtained from w by removing all locations r (or [).

Example 4.1 In Fig. 2 we depict the ST semantic model of recX.a.X ||g
recX.a.X obtained by applying the stack technique. ¢ By comparing the se-
mantic model of Fig. 2 with that of Fig. 1 we can see that the phenomenum
of holes of the name technique generates only two additional states. If we
consider (recX.a.X ||p recX.a.X) ||g recX.a.X we have that, due to the com-
bined effects of holes and index permutations, the ST semantic model obtained
with the name technique has 42 states, whilst that obtained with the stack
technique has only 16 states.

We consider a language where we distinguish deadlock, denoted by 4, from
successful termination, denoted by € (otherwise ST bisimulation could not be
a congruence for the refinement operator) and we employ the ACP sequential
composition operator “;” instead of the CCS prefix operator

Let A be a countable set of observable action types; a,b, c range over A
and S, L over the subsets of A. The set of all action types is denoted by

Act = A U {7}, where 7 is a distinguished type representing an internal

W

5 Even if the set of non-empty strings over Loc is usually denoted by Loc™ we prefer to
stick to this notation to be consistent with the notation of the name technique.

6 We apply the stack technique to a simple language with prefixing instead of general
sequential composition in this preliminary example only.

116

A4 Y U4 4L AN LS A VLV

recX.aX [, o recX.ax
0.
/ \
a4 &

g, recX.ax ”(D,{a:rl} a recXax e & & & recXa.x ”Q),{a:lr} g, recX.ax

g, recX.ax ||®’{a:|} recX.a.x recX.a.X ||®'{a:r} & recXa.x

Fig. 2. Example of Recursion with the Stack Technique

Vv
e—V 45
0) v X
P——P p—Y,p 2.
]
P;Q —— P5Q PiQ —— @
P X Pl Q X QI
P+Q . p P+Q BN Q'
P .p p—p
X type(x) ¢ L z type(y) € L
P/L — P'/L P/ —— PL
P{recX.P/X} —— P'
recX.P L) P

Table 1 Standard Rules

computation. Let p range over Act. Moreover let Var be a set of process
variables ranged over by XY, Z. The terms of RL (refinement language) are
generated by the following syntax:

Pi=¢€|6|X|p|P;P|P+P|P|sP|P/L|recX.P|Pla~ P]

“||s” is the CSP parallel operator, where synchronization over actions in S
is required. “/L” is the hiding operator which turns the actions in L into 7
actions. Finally “recX” denotes recursion in the usual way. A RL process is
a closed term of RL. We denote RLg the set of strongly guarded processes of
RL.

To define the operational semantics of RL processes, we need a richer
syntax to represent states. We denote with SA = A U {e} the set of state
observable action types, where e is a distinguished type that will be used
in the definition of the refinement operator. Let o range over SA and S, L
range over the subsets of SA. The set of all state action types is denoted by
SAct = SA U {1}, where 7 is a distinguished type representing an internal
computation. Let SAgr = {a™ |a € SA} U {o; | a € SAANi € NT}, ranged
over by ~; and SActsr = SAsr U {7}, where 7 is a distinguished semi-action

117

A4 Y U4 4L AN LS A VLV

representing an internal computation. ” Let 6 range over SActgr and 7 range
over SAct U SActgr. The meta-variable y ranges over SActgr U {y/}, where
\/ is a distinguished action representing successful termination. Moreover M
ranges over the set {M | M : SA —e» AStr} of mappings, i.e. sets including
the association strings for all the state actions currently in execution. Finally,
let ¢ range over the bijections over SA. The state terms are generated by the
following syntax:

P:u=el|6|X |n|P;P|P+P|Pl|lsymP|P/L|recX.P|Pla~ P]|!P |P|y]

The bang operator “!” and the (bijective) relabeling operator “[p]” are aux-
iliary operators that are necessary for the definition of the refinement opera-
tor. 8 In the following, in order to avoid ambiguities, we assume the following
operator precedence relation: hiding = bang = relabeling > sequential com-
position > recursion > parallel composition > choice > refinement.

> when an RL process

Again we consider the operators “||s” as being “||s’
P is regarded as a state.

The semantics of state terms produces a transition system labeled over
SActsr. The operational rules for “¢” and the operators “;”, “4+”, “/L£” and
“recX” are the standard ones and are presented in Table 1. The operational

rules for “n” and the operator “||s " are presented in Table 2.

The function type : SActsr U{\/} — SAct U {,/} is defined in the obvious
v
way. The termination predicate / is defined as Py/ < (3Q : P —— Q) A

(A0 € SActsr,@Q" : P # ()"). The expression #;;(w) computes the
position of the i-th [in the string w. We have that #;;(w) is the only j € N*
such that w(j) =l and [{k < j | w(k) = {}| = 4. Similarly for #;,(w). Finally
we define w & 1 as the string obtained by removing the i-th element from the
string w, i.e. woi = {(j,loc) € w | j <i} U {(j—1,loc) | (j,loc) € wAj > i}.

The meaning of the operational rules for “P||s s Q" is the following.

When P performs a™ (o ¢ S) then the new action is pushed on the top of
the stack of a actions. This is represented by putting an [in the first position
of the association string for @. Symmetrically for a move a™ of Q.

When P performs «; (o ¢ S), the corresponding « action (whose position
on the stack is that of the i-th [in the association string for a)) terminates
and is eliminated from the stack. This behavior is expressed by two rules in
Table 2 because we eliminate the parallel operator in the case P becomes a
successfully terminated process. Symmetrically for a move a; of ().

" Introducing an invisible semi-action 7 is not strictly necessary. On the other hand split-
ting 7 actions as we do for visible actions adheres to the intuition that the semantics of 7
should be isomorphic to that of a/{a}.

8 The restriction to bijective relabelings allows us to give a simple operational semantics
to the operator “P[p]”. This because actions with different types cannot be relabeled into
actions with the same type, hence it is not necessary to re-index the relabeled actions in
order to keep them distinguished. On the other hand the capability of performing bijective
relabelings is sufficient for defining the refinement operator.

118

A4 Y U4 4L AN LS A VLV

@ — o T—7 0 —— €
at
P——P
T a¢S
«
Pllsm @ —— P'lls mlamsina] @
Q—Q
- a¢S
o
PHS,MQ — PHS,M[CU—H"MOJ Q
a; a;
P—sP ~(PyAS=D) Pp—~p py
a, Oz%S o,
#;1(Ma) , #1,1(Ma)
Plls,y @ —— P's Mlars Moot (Ma)) @ Pllgy@ ——
o a;
Q——Q -(QvV ANS=10) Q——Q QV
o agS -
#i 0 (Ma) , #1.,(Ma)
Plls,u @ —— Pllsmams Moo, (Ma)] @ Ploy@ —— P
P———5pP ~(PyAS=0 P——p Py
7 7
Pllsy Q@ —— P'llsm@Q Pllgy @ —— Q
7 7
Q——Q -(QvV AS=0) Q—Q QV
7 7
Pllsy Q@ —— Pllsm Q' Pllgy @ —— P

PL}P’ QL}Q’

< type(x) € S U {V/}
Pllsy Q@ —— P'ls,n Q'

Table 2 Rules for the Stack Technique

The semantic rules for the refinement operator are based on its definition
in terms of the parallel operator and other basic operators. Our approach to
ST semantics enables the following definition of Pla ~» @] that closely adheres
to the intuition of the way it works:

(Pla < e] [[e0!(e™; Qs e1))/{e}

where the bijective relabeling a <> o is defined by a > o/ = {(«a, &), (¢/,)}
U {(a",a") | &" € SANQ" ¢ {a,a'}}. For each a executed by the process
P a corresponding process () is activated by the bang operator in the right-
hand term. In this way if P executes several auto-concurrent actions a then
a corresponding number of processes () are executed in parallel by the right-
hand term. The correct association between actions a and processes () is
guaranteed by the fact that the events of starting and termination of each
auto-concurrent action e are uniquely related by the ST semantics. °

9 This definition of semantic action refinement is slightly different from the usual defini-
tion [12,11,14] in that in Pla ~ @] each execution of) is preceded and followed by the

119

A4 Y U4 4L AN LS A VLV

(Pla €] llgepn (73 Qe7))/{e} —— P’

Pla ~ Q] X p

at a;
P—— P P——p
p(a)* p(a);

Plp] —— P'[y] Plg] — P'[¢]

P> p

< type(x) € {7, V/}
Plp] —— P'[y]

v
P —> 55
at T
pP——p Pp——p
+ ~
p L p 10, facy 1P 1P —— P'|lpy!P

Table 3 Rules for Refinement

(C’” 2

The operational rules for the refinement operator, and “[p]” are pre-

sented in Table 3.

Theorem 4.2 The interleaving semantics of a RL process P not including
the refinement operator is finite state '° iff the ST semantics of P obtained
with the stack technique is finite state.

In the following we will refer to a process which is finite state for interleav-
ing and ST semantics simply as a “finite state process”.

Our approach ensures that the finiteness of semantic models is preserved
by the action refinement operator.

Theorem 4.3 If P and Q are finite state RL processes, then Pla ~ Q) is a
finite state process.

Example 4.4 In Fig. 3 we present the finite ST semantic model of recX.a;
X[a ~ b; | obtained with the stack technique. In Fig. 4 we show an initial
fragment of the infinite ST semantic model of the same term obtained with
the name technique. Note that ST semantics via the name technique over the
whole language RL is simply obtained as follows. The operational rules for
the refinement, relabeling and bang operators are the same as for the stack
technique, except that e? is replaced by e in the premise for refinement, o
is replaced by «;" in the rules for relabeling and bang operators and ¢(a)* is
F in the rule for relabeling. Fig. 4 makes clear that, in the

replaced by ¢(a);
absence of an elimination rule for the parallel operator, the number of parallel

occurrence of a silent transition 7. In order to obtain a definition which adheres completely
to the usual one it is simply sufficient to “skip” e transitions (instead of just hiding them
with “/{e}”), similarly as done in [8].

10 The interleaving operational rules are the standard ones, therefore they are omitted.

120

A4 Y U4 4L AN LS A VLV

recX.a;X [a~ bic]

t

((airecXaX)[ac € ||y o (b€ ll g oy (€D €)))) / {6}
-

((airecXaX)[ac €l |y o (D€ ll g gy ! (€700C€)))) /{€}
by

((arecXaX)[ac e |y o (&€ Il g e I(e"bicie))))/{e

+

T ¢

G

((arecXaX)[ac el [y o (€€ Il g e I(e"bicie))))/{e

A
t

% ((airecXaX)[ac €l llgy o (€€ ll g e ey ' (€DiCE))) / {€}

((arecxaX)[ac € [o!(ebice))/{e
Fig. 3. Example of Refinement with the Stack Technique

operators generated by the bang operator grows as new actions to be refined
start and terminate. Therefore even refining a simple recursive term such as
recX.a; X leads to an infinite semantic model. !

Now we give a simple syntactical characterization for RL processes that
are guaranteed to be finite state. In the following corollary we consider as
static the operators of parallel composition, hiding and action refinement.

Corollary 4.5 Let P be a RL process s.t. for each subterm recX.QQ of P, X
does not occur free in () in the context of a static operator or in the left-hand
side of a 4”. Then P is a finite state process.

The equivalence notion we consider over RL processes, denoted with =~
(where the s stands for the stack technique) is again observational congruence
where the alphabet of visible actions is SAgy and hidden actions are 7 actions.

Once extended the application of the name technique to the whole language
RL, as explained in the previous example, we have the following theorem of
consistency.

Theorem 4.6 Given two RL processes P and () we have that P ~, @ iff
P~ Q.

1 For the simple example recX.a; X[a ~ b;c], the execution of a refinement by means of
I(ef;b;c;e;) always leads to € ||@7@!(ei+; b; c;e;), where the parallel operator could in fact be
eliminated. The fact that, with the name technique, we cannot apply the elimination rule to
the parallel operators generated by refinement, can be seen by considering a refinement (e.g.
a ~ b;c) of the term recX.a; X || recX.a; X, whose semantic model (see Fig. 1) includes
states which exhibit “holes” in the index sequences of started actions.

121

A4 Y U4 4L AN LS A VLV

recX.a;X [a~» b;c]

>

((&;recxaX)[ac el lly o (ebici€ g e,y ' (Eibicie))) /(e

4
by

- . S Fhe a
((a recXa;X)[ae € ||{e}Y®(bice DAL, LI} (e;bicie)/ {e

by

((arecXaX)[acel lly o (&Ci &l e,y H(Ebicie)))/ {e

+
=l

- . Sy Fhe a
((a recXa;X)[ae € ||{e}Y®(csell ARG (e;bicie)/ {e
€

((arecXaX)[acel lly o (€& llg e,y (EiDici€))) /{8

>

((erecXaX)[ace lly o (ellgq!(erbicie)))/{e

>

(FrecxaX)[acd lly o (ell g goqery (5D € g o,y (Ebici6)))) /e

I~
ibl

V

A=<= << < O<— 0

Fig. 4. Example of Refinement with the Name Technique

Theorem 4.7 P ~, () is a congruence w.r.t. all the operators of RL, includ-
INg TECUTSIOn.

5 Axiomatization via the Stack Technique

The axiom system Apg; for ~, on RLs terms is formed by: the standard
axioms presented in Table 4 (where “||” and “|” denote, respectively, the left
merge and synchronization merge operators and the axiom (LM?2) reflects the
elimination rules for the parallel operator), the axioms of Table 5 which are
specific for the stack technique, and the axioms of Table 6 which deal with
the refinement operator.

The axiom (Par) is the standard one except that when the position of
processes P and @ is exchanged we must invert left and right inside M. The
inverse M of a mapping M is defined by M = {(a,w) | (a,w) € M} where
w={(i,r) | (4,1) € w} U{(:1) | (4,r) € w}. Axioms (LMT) and (LMS8) just
reflect the operational rules of the parallel operator for an independent move
of the left-hand process.

If we consider the obvious operational rules for “||s” and “|s " that

122

A4 Y U4 4L AN LS A VLV

(A1) P+Q=Q+P (A2) (P+Q)+R =P+ (Q+R)
(43) P+P=P (A4) P+5="P
(Taul) 9;7 =0 (Tau2) P+7;P =7; P
(Tau3) v (P+7;Q) +7:Q = 7 (P +7;Q)

(Seql) (P;Q);R = P;(Q; R) (Seq2) (P+Q);R=P;R+@Q;R
(Seq3) P =P (Seqd) Pie=P

(Seqb) 5P =34

(LM1) (P+Q)[lsMmR=PlsuR+Q|[smR

(LM2) (0;P)llpe=6;P

(LM3) (7;P) [lsm Q@ = 75 (P lls,i Q)

(LM4) (mP)lsu@ =19 type(y) € S

(LM5) ellsy P =0

(LM6) Sllsy P =46

(SM1) Plsu@Q=Qlsm P

(SM2) (P+Q)|lsuMR=PlsyR+Q|suR

(SM3) (v; P)lsm(; Q) = % (P lls,m Q) type(y) €S

(SM4) (3 P) s, @ = Plsm Q

(SM5) (v P)lsm(75Q) =4 type(y) ¢ S V v #
(SM6) €lspe=c¢€

(SMT) €ls,m(0;P) =9

(SM8) SlsmP =14

(Hil) (P+Q)/L=P/L+Q/L

(Hi2) (P;Q)/L=P/L;Q/L

(H13) /L =0 type(0) ¢ L

(Hi4) /L =7 type(7y) € £

(Hi5) /L = e

(Hi6) /L =6

(Recl) recX.P = P{recX.P/X}

(Rec2) Q@ = P{Q/X} = Q =recX.P provided that X is strongly guarded in P

Table 4 Standard Axioms

123

A4 Y U4 4L AN LS A VLV

Actl) a=at;af (Act2) T =7%;7
Par) PllsuQ=Plsm@+QlszP+PlsmQ

LMT7) (at;P)|ls,m Q@ = o5 (Plls Mlasina) Q) a¢S
LMB) (a;; P) [l @ = oy, 10 (P lls,mlas Moot ()] Q) @ €S

Table 5 Axioms for the Stack Technique

(
(
(
(

(Ref) Pla~ Q] = (Pla<re] [0 !e™;Q5e7))/{e}

(Rell) (P+Q)[¢] = Ple] + Q¢ (Rel2) (P;Q)l¢] = Plg]; Qle]
(Rel3) atlp] = p(a)* (Reld) aj[p] = p(a);
(Rel5) #lg] = 7 (Rel6) elg] = ¢

(RelT))

(Bang) 'P = recX.(e + P |ppX) provided that X is not free in P

Table 6 Axioms for Refinement

derive from those we presented for the parallel operator, '? then the axioms
of Agrr are sound.

We have the following theorem, where a sequential state is a state that
includes only “€”, “6”, “X” and operators “n; P”, “P + P”, “recX.P”.

Theorem 5.1 If a RLg process P is finite state then IP' : App = P = P’
with P’ sequential state.

Since for sequential states the ST semantics coincide with the standard
interleaving semantics and the axioms of Agy involved are just the standard
axioms for CCS (it suffices to consider “n; P” as being “n.P”, “§” as being “0”
and “€” as being “/.0”), from [20] and Theorem 5.1 we derive the completeness
of ARL-

Theorem 5.2 Ag; is complete for ~, over finite state RLq processes.

6 Conclusion

We think that the two techniques for expressing ST semantics, which are
based on the new idea of compositional level-wise re-indexing, that we have
introduced can be exploited also for deciding and axiomatizing other forms of
history dependent bisimulations over processes that possess a finite interleav-
ing semantics as well as bisimilarity for name-passing calculi (e.g. m-calculus).
For example [21] uses a technique that is very similar to our name technique,
even if not in a compositional way, to express history preserving bisimulation.
As far as location bisimulation is concerned, the two techniques collapse in a

12 The definition of the operational rule for “|s /" must allow for actions “7” to be
skipped [1], as reflected by axiom (SM4).

124

A4 Y U4 4L AN LS A VLV

single one because locations never become obsolete and the problems related to
the reuse of names do not arise. Even if the stack technique is more adequate
in the context of ST semantics because it allows to decide ST bisimulation
also in the case of action refinement, we believe that both techniques have dif-
ferent features that may make one of them more suitable than the other one
depending on the context of application. For example in the language of [7],
where (probabilistically) timed actions are given a semantics similar to ST se-
mantics, the name technique (as opposed to the stack technique) gives rise to
semantic models which are very close to Generalized Semi-Markov Processes

(GSMPs), where names assigned to actions correspond to the elements of a
GSMP.

Acknowledgement

We thank the anonymous referees for the helpful comments and suggestions.

References

[1] L. Aceto, “On “Aziomatising Finite Concurrent Processes” ” in SIAM
Journal on Computing 23(4):852-863, 1994

[2] L. Aceto, “A Static View of Localities”, in Formal Aspects of Computing,
6:201-222, 1994

[3] L. Aceto, M. Hennessy, “Adding Action Refinement to a Finite Process
Algebra”; in Information and Computation 115:179-247, 1994

[4] M. Bravetti, M. Bernardo, R. Gorrieri, “Towards Performance Evaluation
with General Distributions in Process Algebras”, in Proc. of the 9th Int. Conf.
on Concurrency Theory (CONCUR ’98), LNCS 1466:405-422, Nice (France),
1998

[5] G. Boudol, I. Castellani, M. Hennesy, A. Kiehn, “A theory of processes with
localities”, in Formal Aspects of Computing 6(2):165-200, 1994

[6] M. Bravetti, R. Gorrieri, “Deciding and Aziomatizing ST Bisimulation for
a Process Algebra with Recursion and Action Refinement”, Technical Report
UBLCS-99-1, University of Bologna (Italy), 1999

[7] M. Bravetti, R. Gorrieri, “Interactive Generalized Semi-Markov Processes”,
to appear in Proc. of the 7th Int. Workshop on Process Algebras and
Performance Modeling (PAPM ’99), Zaragoza (Spain), September 1999

[8] N. Busi, R.J. van Glabbeek, R. Gorrieri, “Aziomatising ST-Bisimulation
Equivalence”, in Proc. of the IFIP Working Conf. on Programming Concepts,
Methods and Calculi (PROCOMET ’94), pp. 169-188, S. Miniato (Italy), 1994

[9] I. Castellani, “Observing Distribution In Processes: Static and Dynamic
Localities”, in Int. Journal of Foundations of Computer Science 6:353-393,
1995

125

A4 Y U4 4L AN LS A VLV

[10] P. Darondeau, R. Degano, “Causal Trees”, in Automata, Languages and
Programming, LNCS 372:234-248, 1989

[11] P. Degano, R. Gorrieri, “A causal operational semantics of action refinement”,
in Information and Computation 122:97-119, 1995

[12] R.J. van Glabbeek, “The refinement theorem for ST-bisimulation semantics”,
in Proc. of the IFIP Working Conf. on Programming Concepts, Methods and
Calculi (PROCOMET ’90), pp. 27-52, Sea of Gallilea (Israel), 1990

[13] R.J. van Glabbeek, U. Goltz, “Equivalence Notions for Concurrent Systems
and Refinement of Actions”, Arbeitspapiere der GMD 366, Gesellschaft fur
Mathematik und Datenverarbeitung MBH, 1989

[14] R. Gorrieri, A. Rensink, “Action Refinement”, to appear in Handbook of
Process Algebra, Elsevier, 2000

[15] R.J. van Glabbeek, F.W. Vaandrager, “Petri Net Models for Algebraic
Theories of Concurrency”, in Proc. of the Conf. on Parallel Architectures
and Languages Europe (PARLE ’87), LNCS 259:224-242, Eindhoven (The
Netherlands), 1987

[16] R. Gorrieri, C. Laneve, “The limit of split, bisimulations for CCS agents”,
in Proc. of the Symp. on Mathematical Foundations of Computer Science
(MFCS ’91), LNCS 520:170-180, 1991

[17] R. Gorrieri, C. Laneve, “Split and ST Bisimulation Semantics”, in
Information and Computation 118:272-288, 1995

[18] A. Kiehn, M. Hennessy, “On the decidability of non-interleaving process
equivalences”, in Fundamenta Informaticae 30(1):18-33, 1997.

[19] R. Milner, “Communication and Concurrency”, Prentice Hall, 1989

[20] R. Milner, “A complete aziomatization for observational congruence of finite-
state behaviours”, in Information and Computation 81:227-247, 1989

[21] U. Montanari, M. Pistore, “Minimal Transition Systems for History-
Preserving Bisimulation”, in Proc. of the 14th Symp. on Theoretical Aspects
of Computer Science (STACS’97), LNCS 1200, 1997

[22] U. Montanari, D. Yankelevich, “Location Equivalence in Parametric Setting”,
in Theoretical Computer Science 149(2):299-332, 1995

[23] G. Plotkin, “A Structural Approach to Operational Semantics”, Technical
Report DAIMI FN-19, Aarhus University, Department of Computer Science,
Aarhus, 1981.

[24] A. Rabinovich, B. Trakhtenbrot, “Behaviour Structures and Nets”, in
Fundamenta Informaticae 11:357-404, 1988.

[25] W. Vogler, “Bisimulation and action refinement”, in Theoretical Computer
Science 114:173-200, 1993

126

