
p � �
URL� http���www�elsevier�nl�locate�entcs�volume���html �� pages

Axiomatizing ST Bisimulation for a Process
Algebra with Recursion and Action Re�nement

�Extended Abstract� �

Mario Bravetti� Roberto Gorrieri

Dipartimento di Scienze dell�Informazione

Universit�a di Bologna

Mura Anteo Zamboni �� ���	� Bologna� Italy

E
mail� fbravetti� gorrierig�csuniboit

Abstract

Due to the complex nature of bisimulation equivalences which express some form
of history dependence� it turned out to be problematic to axiomatize them for
non trivial classes of systems� Here we introduce the idea of �compositional level�
wise renaming� which gives rise to the new possibility of axiomatizing the class
of history dependent bisimulations with slight modi�cations to the machinery for
standard bisimulation� We propose two techniques� which are based on this idea�
in the special case of the ST semantics� de�ned for terms of a process algebra with
recursion� The �rst technique� which is more intuitive� is based on dynamic names�
allowing weak ST bisimulation to be decided and axiomatized for all processes
that possess a �nite state interleaving semantics� The second technique� which is
based on pointers� preserves the possibility of deciding and axiomatizing weak ST
bisimulation also when an action re�nement operator P �a� Q	 is considered�

� Introduction

Many bisimulation equivalences expressing some form of history dependence
have been de�ned in the literature� history preserving bisimulation �����	��
��
ST bisimulation ����
����������� and location bisimulation ����������� Due to
the complex nature of this kind of equivalences it turned out to be not simple
to decide �see for instance ����� and� especially� axiomatize them for non trivial
classes of systems �e�g� classes which include most recursive systems��

Two main approaches have been developed in the literature for expressing
history dependent bisimulations�

The �rst approach is based on static names ��
����
������ According to this
approach a unique name is statically assigned �i�e� on the basis of the syntac�

� This research has been partially supported by MURST and CNR�

c����� Published by Elsevier Science B� V�

Bravetti and Gorrieri

tical structure of the process� to each di�erent �historical element� �e�g� a lo�
cation in location bisimulation� which must be referred to in labels of process
computations� Such references express the history dependence� Then history
dependent bisimulation is de�ned by making associations among historical el�
ements of di�erent terms that are considered to be equivalent� An advantage
of this approach is that it produces �at least in our formulation of ST seman�
tics of ��� and in the location semantics of ������ �nite semantic models also for
a wide class of recursive systems� The main drawback of this approach is that
each kind of history dependent bisimulation has a di�erent de�nition which
deviates from standard bisimulation� As a consequence� there is no easy way
to axiomatize these history dependent bisimulations �it is necessary to rely
on equality parametrized on associations among historical elements�� and the
results previously developed for standard bisimulation theory �e�g� tools for
veri�cation� cannot be directly exploited�

The second approach is based on pointers ��	��������� According to this
approach� a historical dependence is expressed in the label of a computa�
tion by a pointer that determines the position in the semantic model of the
transition that �activated� such �historical element� �i�e� the transition rep�
resenting an action start in ST semantics�� This approach has the advantage
that the equivalence of terms� according to a history dependent bisimulation�
can be established by simply applying the standard notion of bisimulation on
a particular semantic model especially constructed for that kind of history de�
pendent bisimulation� The drawback of the techniques used in ��	�������� is
that for most recursive systems �e�g� for a k recX�b�X in ��	������ a semantic
model with an in�nite number of states is produced� As a consequence there is
no easy way to decide or axiomatize history dependent equivalences between
process terms which include recursion�

A further step is made in ����� Here a technique for expressing history
preserving semantics is developed� which is based on dynamic names� This
technique combines the advantages of the �rst and second approach� �nite
semantic models are produced for a wide class of recursive systems and history
preserving bisimulation is decided simply by applying the standard de�nition
of bisimulation� The idea of the approach of ���� is to dynamically assign � with
a �xed rule � a di�erent name to each new �historical element� that becomes
active� on the basis of the names of the historical elements already active�
in particular� names of obsolete �historical elements� �which are no more
active� are reused� Note that this technique is based on names as the approach
of ��
����
������ but here names are not assigned statically �i�e� at compile�
time� according to their syntactical position in the initial process� they are
instead computed dynamically while the system evolves �i�e� at run�time�� �

Since the method to compute new names is �xed� processes that perform
equivalent computations produce the same names for �historical elements�� As
a consequence the history dependent bisimulation can be decided by applying
standard bisimulation�

� The idea of dynamic names already appeared in ���� but here no special technique �like
reuse of names� is employed in order to obtain 	nite models�

108

Bravetti and Gorrieri

Unfortunately the technique developed in ���� is not compositional� in the
sense that� in order to produce the history preserving semantic model of a
term� �rst an intermediate semantic model of the whole term must be com�
puted and then transformed by adjusting history information in transitions�

In fact� we could easily develop an axiomatization for a history dependent
bisimulation� which is complete over a wide class of processes� if we had a
compositional approach for deriving semantic models which encode history
with dynamic names �i�e� names dynamically assigned with a �xed rule and
reuse of obsolete names�� What we need is a structured operational semantics
�SOS ��
�� which allows to derive� e�g� in the case of the parallel composi�
tion operator �k�� from the history dependent computations of P and Q� the
history dependent computations of P kQ� As long as we consider only terms
with choice� pre�x and termination operators� where history dependences are
encoded in pre�xes �such terms are just normal forms� i�e� representations of a
semantic model�� axiomatizing standard bisimulation is simply done with the
standard axiom set developed by Milner ����� In order to transform a general
term in normal form it is just su�cient to have axioms that re�ect the oper�
ational rules for the operator k� i�e� they must derive from the computations
of P and Q �pre�xes which encode history dependences�� the computations of
P kQ �in the form of pre�xes with history dependences��

Therefore the essence of the problem of developing the axiomatization is
obtaining compositionality in the generation of semantic models� In order to
do this it is necessary to associate in some way the names used for identifying
historical elements at the level of P kQ� generated according to the �xed rule
for creating new names� to the names used for identifying the same historical
elements inside P or Q �which in general are di�erent� generated according to
the same rule� In this way when a future reference to a historical element is
made by a computation inside P or Q such a reference can then be re�mapped
to the correct reference at the level of P kQ�

We show that it is possible to do this by parameterizing in state terms each
parallel operator with a mapping M which records such associations while
new names are generated� The resulting technique is a level�wise renaming

technique where historical elements are renamed at each structural level �e�g�
from the level of P or Q to the level of P kM Q� according to such mappings�

In this paper we tackle this problem for one of these history dependent
bisimulations� weak ST bisimulation equivalence� We present two techniques�
based on our idea of level�wise renaming� for de�ning the ST semantics via SOS
rules of a language with recursion �for the second technique we consider also
a semantic action re�nement operator�� Both these techniques can be used
for deciding ST equivalence via standard bisimulation �namely observational
congruence ������ Moreover they produce �nite ST semantic models for all
processes that possess a �nite state interleaving semantics� As a consequence
we show that both techniques can be used for axiomatizing ST bisimulation
over the wide class of �interleaving� �nite state processes�

With ST semantics� originally de�ned in ���� over Petri Nets� the execution
of an action gives rise to the two distinguished events of action start and

109

Bravetti and Gorrieri

action termination� Between such events� other system activities may evolve�
Moreover� enough information is included in semantic models� so that the
event of an action termination uniquely determines to which event of action
start it refers to �this is a form of history dependence�� even in the situation
of auto�concurrency �i�e�� multiple actions of the same type being in execution
at the same time��

Initially we consider a basic process algebra equipped with a recursion op�
erator and the CSP parallel operator� We show how to de�ne ST semantics
for such a language via SOS rules� by employing our idea of level�wise renam�
ing� when we encode history dependence through dynamic names� a di�erent
name is dynamically assigned to each action that starts execution and names
of terminated actions are reused when new actions start� Hence with this tech�
nique� hereafter called name technique� the reuse of names is �on demand��
i�e� it is delayed until new names need to be activated�

Then we propose a better �even if less intuitive� technique for implement�
ing ST semantics that is based on some sort of pointers instead of dynamic
names� but still relies on our idea of level�wise re�mapping of pointers� The
main di�erence with the previous technique is that here the reuse of names
is always done as soon as an �active� �started� action terminates� by chang�
ing the names of the other active actions� Hence here reuse is performed
eagerly� A consequence is that the name assigned to an active action changes
dynamically while other actions start and terminate� hence it assumes the
�avour of a pointer� In a state of a semantic model the name of an active
action �its pointer� is determined by the position of such action in a �stack�
of the currently active actions� For this reason this technique is called stack

technique� The stack technique produces a simpler representation for states
and more compact semantic models� Moreover we show that with this new
pointer�based technique it is possible to solve some problems that arise with
the name technique when we extend our language with an action re�nement
operator P �a� Q� which performs the semantic re�nement of all a executed
by P to Q ����������� In particular with the new technique we have that if
both P and Q are �nite state processes then P �a� Q� is �nite state� Through
the new technique we de�ne the ST semantics in SOS style for an extended
language which includes the re�nement operator and we produce a complete
axiomatization for ST bisimulation over �nite state processes�

The paper is organized as follows� In Sect� � we brie�y present the name
technique and we show how it can be used to de�ne ST semantics via SOS
rules of a basic process algebra� In Sect�
 we analyze the defects of the name
technique and the decidability problems that arise when an action re�nement
operator is considered� In Sect� � we present the stack technique and we use
it to de�ne the ST semantics via SOS rules of a process algebra with action
re�nement and recursion� In Sect� � we present a complete axiomatization for
weak ST bisimulation equivalence over �nite state processes of such a process
algebra� Finally� in Sect� we report some concluding remarks�

The full version of the paper� which includes a detailed presentation of the
name technique and proofs of theorems� is available at�

110

Bravetti and Gorrieri

ftp���ftp�cs�unibo�it�pub�techreports�������ps�gz�

� ST Semantics via the Name Technique

We start by brie�y presenting the technique based on dynamic names� Here
we consider a simple process algebra with actions taken from a set A� ranged
over by a� b� c� � � �� the CCS pre�x� choice and recursion operators� and the
CSP parallel composition operator �kS�� where synchronization over actions
of type S is required�

The name technique is based on the idea of dynamically assigning� at the
semantic level� a new name to each action that starts execution� Names are
indices i � NI that distinguish actions of the same type� In particular the
event of starting of an observable action a is represented in semantic models
by a transition labeled by a�i � where i is the minimum index not already used
by the other actions a that have started but not terminated yet� This rule for
computing indices guarantees that names are reused and that �nite models
can be obtained also in the presence of recursion� The termination of the
action is simply represented by a transition labeled by a�i � where the name i
uniquely determines which action a is terminating�

In order to express this behavior compositionally it is necessary to
parameterize in state terms each parallel operator with a mapping M � For
every action a started in P kS�M Q� M records the association between the
name i� generated according to the rule above for identifying a at the level
of P kS�M Q� and the name j �which in general is di�erent from i�� generated
according to the same rule for identifying the same action a inside P �or Q��
In this way when such action a terminates in P �or Q� the name j can be
re�mapped to the correct name i at the level of P kS�M Q� by exploiting the
information included in M �

In M the action a of P kS�M Q which gets name i is uniquely determined
by expressing the unique name j it gets in P or in Q and the �location�
of the process that executes it� left if P � right if Q� Such an association is
represented inside M by the pair �i� locj� with indices i� j � NI and location
loc � Loc � fl� rg� where �l� stands for left and �r� for right� We denote an
association function� whose elements are associations �i� locj�� with afun which
ranges over the set Afun of partial bijections from NI to Loc � NI � Finally M
ranges over the set fM j M � A ��o Afung of mappings� i�e� sets including
independent association functions for di�erent action types�

Now we show how the name technique can be exploited to give operational
ST semantics to our simple language� We need a richer syntax to represent the
states of semantic models where pre�xing is extended to semi�actions �a�� � and
parallel operators are parametrized with mappings M �denoted by �kS�M��� �

The following notations are used in the de�nition of the operational rules�

De�nition ��� Given a partial function f � I ��o J we de�ne fi with i � I

� The operators
kS� occurring in a term P of the process algebra are considered as being

kS��� when P is regarded as a state�

111

Bravetti and Gorrieri

as follows�
fi � f�i� if i � dom�f�� fi � � otherwise

Moreover we de�ne f �i �� j� with i � I� j � J � which modi�es f so that f
maps i into j as follows�

f �i �� j� � f � �i� fi� ��i� j�

where�
�k� h� � f�k� h�g if h 	� ���k� h� � � otherwise

In the following we describe the operational rules that deviate from the
standard interleaving ones�

The operational rules for observable action pre�xing are�

a�P
a�������� a�� �P a�� �P

a�������� P

The rules for computing the starting moves of �P kS�M Q� for observable
actions a �� S are as follows�

P
a�i������ P �

P kS�M Q
a�
n�Ma������� P � kS�M �a ��Ma�f�n�Ma ��li �g�Q

When P performs a�i then a new index n�Ma� is determined for identifying
the action a at the level of �kS�M� and the new association �n�Ma�� li� is added
to Ma� Function n computes the new index by choosing the minimum index
not used by the other actions a already in execution� n�afun� � minfk j k ��
dom�afun�g� where afun � Afun� Symmetrically for a move a�i of Q�

Q
a�i������ Q�

P kS�M Q
a�
n�Ma������� P kS�M �a ��Ma�f�n�Ma ��ri �g�Q

�

The rules for computing the termination moves of �P kS�M Q� for observ�
able actions a �� S are as follows� where j � M��

a �li��

P
a�i������ P �

P kS�M Q
a�
j������ P � kS�M �a ��Ma �f�j �li�g�Q

When P performs a�i the action of type a with index j associated to li in M
terminates at the level of the parallel operator� Symmetrically the rule for a
move a�i of Q is the following one� where j � M��

a �ri��

Q
a�
i������ Q�

P kS�M Q
a�j������ P kS�M �a ��Ma �f�j �ri�g�Q

�

112

Bravetti and Gorrieri

1
+a

1
+a

a
1
-

a
1
-

1
+a a

1
-

1
+a

a
2
+ a

2
+

a
2
-a

2
-

a
1
-

a
2
-

a
2
-

O/ O/recX.a.X || ,
recX.a.X

recX.a.X

a .recX.a.X
1
-

O/1
-a .recX.a.X

O/|| ,

a .recX.a.X
1
-

O/ }||a .recX.a.X
1
-

,{ a:{(1,l)}1

a .recX.a.X
1
-

O/|| ,
recX.a.X

{ 1 }a:{(2,r)}

O/ a .recX.a.X
1
-

1
-a .recX.a.X O/|| ,{ a:{(1,l) ,(2,r1 1)}} || ,{

a .recX.a.X
1
-

{

}

||recX.a.X
,{ 1a:{(1,r)}}

1 (2,l)},a:{(1,r) 1

1a:{(2,l)}}
recX.a.X

Fig�
� Example of Recursion with the Name Technique

The rule for computing the moves � of �kS�M�� where � is a semi�action
a�i or a�i with a � S� is�

P
������� P � Q

������� Q�

P kS�M Q
������� P � kS�M Q�

This rule requires that the two synchronizing actions have the same index and
produces an action with that index� Note that�

� since actions of a given type a � S are numbered independently from actions
of other types�

� since the rule for generating new indexes for actions a starting in P and Q
is the same� and

� since actions of type a are required to start and terminate in P and Q at
the same time and with the same index�

then the set of indices of actions a in execution in P and Q is always the same
and it is never possible for P and Q to start actions with di�erent indices�

Example ��� In Fig� � we depict the semantic model of recX�a�X k�
recX�a�X� where recX denotes recursion in the usual way� 	

As we show in ��� with the name technique we have that the ST semantics
of a process P is �nite state if and only if the interleaving semantics of P
is �nite state� A simple syntactical characterization for processes that are
guaranteed to be �nite state is the following one� P is �nite state if for each
subterm recX�Q of P � X does not occur free in Q in the context of a static

operator ���� �for our basic language� the parallel operator only�� Note that
this class of processes includes strictly the class of nets of automata� i�e� terms
where no static operator occurs in the scope of any recursion�

The equivalence notion we consider over terms� denoted with
n �where
the n stands for the name technique�� is the standard notion of observational
congruence extended to open terms �����

�We use a � I as a shorthand notation for �a� I��

113

Bravetti and Gorrieri

As we show in detail in ��� a complete axiomatization for
n over �nite
state terms of our process algebra is simply obtained by modifying the axioms
related to the parallel operator� re�ecting the new operational rules� in the
standard axiom set of ��	��

� Extending the Language with Re�nement

The name technique is based on a very intuitive idea but produces a rather
complicate representation of states and consequently large semantic models�
The reason for this is the intricate structure of mappingsM in terms P kS�M Q�
The problem is that� for any type a� the association function Ma� may present
holes and index permutations� The exact nature of these two phenomena is
explained by the following two examples� the �rst showing how holes can be
generated and the second describing a computation that leads to an index
permutation�

Example ��� A hole in the ordered sequence of indices can be generated
as follows� Consider a�	 k� a�	� After the right�hand a starts� the state is
a�	 k��fa
f���r��gg a�� �	� After the left�hand a starts� the state is
a�� �	 k��fa
f���r������l��gg a�� �	� Finally� after the right�hand a terminates� the state
is a�� �	 k��fa
f���l��gg 	 where only index � is being used� Therefore we have a
hole in position ��

For the next example� we denote the association function Ma for a given
type a as a string on the alphabet Loc � f�g� where � denotes a hole in the
ordered sequence of indices of actions a started in P kS�M Q� For example
f��� l��� �
� r��g is represented by the string �l��r���
Example ��� An index permutation occurs when an association function
does not preserve the order of indices� For instance consider the process
�a�	 k� a�	� k� a�	� After the rightmost a starts� the state is �a�	 k��� a�	� k��fa
r�g
a�� �	� After the leftmost a starts� the state is �a�� �	 k��fa
l�g a�	� k��fa
r�l�g a�� �	�
After the rightmost a terminates� the state is �a�� �	 k��fa
l�g a�	� k��fa
�l�g 	� Fi�
nally after the central a starts� the state is �a�� �	 k��fa
l�r�g a�� �	� k��fa
l�l�g 	�
Therefore we have an index permutation� the action with index � is mapped
to l� and the action with index � is mapped to l��

A di�erent technique which could avoid creating holes in the ordered se�
quences of indices and which could guarantee that the order of indices is pre�
served by mappings �so that indices in the strings of the last example would
become redundant� would greatly simplify the representation of system states
and consequently reduce the size of semantic models�

Moreover� the two phenomena above cause problems when we try to ex�
tend our basic language with an action re�nement operator P �a � Q� which
performs the semantic re�nement of all occurrences of a in P by Q� As sug�
gested in ���� P �a � Q� can be de�ned in term of the parallel operator and
other basic operators� As we will see� if we want to obtain a re�nement opera�
tor with the desirable property that if both P and Q are �nite state processes

114

Bravetti and Gorrieri

then P �a � Q� is �nite state� then we must have the possibility to de�ne
an elimination rule for the parallel operator such that P k�Q is turned into
P if Q is terminated� With the name technique such a rule cannot be im�
plemented in general� For instance a k� a reaches the state a�� �	 k��fa
f���l��gg 	
which is not equivalent to a�� as well as �a�	 k� a�	� k� a�	 reaches the state
�a�� �	 k��fa
l�r�g a�� �	� k��fa
l�l�g 	 which is not equivalent to a�� �	 k��fa
l�r�g a�� �	�
The point is that� due to the possible presence of holes or index permutations�
it may be that� when a parallel operator should be eliminated� the related
mapping is not a simple identity�

� ST Semantics via the Stack Technique

In order to solve all the problems we reported in the previous paragraph and
to give a satisfactory operational semantics to a language including a semantic
action re�nement operator� we introduce another technique for representing
the ST semantics� This technique is based on the idea of eliminating the holes
in the sequences of started action indices� In particular� started actions of
a given type are organized as a stack of coins over a table where the coin
on the top of the stack is the action with index � and the other actions are
indexed in increasing order from top to bottom� When a new action starts
the corresponding coin is put on the top of the stack �and the old actions are
renumbered accordingly�� When an action terminates the corresponding coin
is removed and the hole is �eliminated by gravity� �causing a renumbering of
all the actions below it��

Since the index of a started action change dynamically while other actions
start and terminate� this technique is not based on names �seen as identi�ers
for actions� but is more similar to the approach �������� based on pointers�
In particular� the event of starting of an action a is represented in semantic
models by a transition labeled with a� �so no index is observable� whilst the
event of termination of an action a is represented by a transition labeled with
a�i where i is the current position of the action on the stack� The event of
action start referred by a transition a�i can be uniquely determined by going
back in the history of process computations �reconstructing the history of
the stack state at each backward step� until the transition a� that pushed
on the stack the action that now is at position i is reached� More precisely�
the procedure for determining which transition a� is pointed by a�i is the
following�

Let k represent the current position on the stack of the action referred by
a�i � Initially we have k � i�

� When� going back� we meet an a�j � we do the following�
� If j k� then we have to consider an additional action on the stack
closer to the top than the one we are referring to �it was removed by a�j ��
Therefore we pose k � k � � so that the new value of k is the position of
our action before the event a�j �

� Otherwise� the additional action does not in�uence the position of the one
we are referring to� so k is unchanged�

115

Bravetti and Gorrieri

� When� going back� we meet an a�� we do the following�
� If k � �� then we have reached the transition a� that pushed on the stack
the action a�i and we are done�

� Otherwise� we have to consider one less action on the stack �it was added
by a��� Therefore we pose k � k � � so that the new value of k is the
position of our action before the event a��

This stack�like behavior is expressed compositionally by parameterizing
each parallel operator with a mapping M � but now we can rely on association
strings which are no longer a�ected by the two problems of holes and index
ordering discussed above� Once again� since the method for updating indices
in the case of an action start or termination is �xed� actions of processes that
perform equivalent computations get the same indices when they terminate
and ST bisimilarity can simply be checked by applying standard bisimilarity�

Let w range over the set AStr � fw � NI � ��o Loc j �k � � � dom�w� �
f� � � � kgg of association strings� i�e� non�empty strings over the alphabet of
locations Loc � fl� rg � � M is a partial function mapping action types in
association strings w � AStr � A string w associated to a type a represents
a stack of started a actions� where the action a� on the top of the stack
corresponds to the left�most position in w and the action ai corresponds to
the i�th position in w� The location in the i�th position of w determines if
the action ai is executed by the left�hand term �if the location is �l�� or right�
hand term �if the location is �r�� of the parallel composition operator� The
index j of the action a of the left�hand �or right�hand� term associated to ai
is determined as follows� Index j is given by the position of the l �or r� in the
string obtained from w by removing all locations r �or l��

Example ��� In Fig� � we depict the ST semantic model of recX�a�X k�
recX�a�X obtained by applying the stack technique� � By comparing the se�
mantic model of Fig� � with that of Fig� � we can see that the phenomenum
of holes of the name technique generates only two additional states� If we
consider �recX�a�X k� recX�a�X� k� recX�a�X we have that� due to the com�
bined e�ects of holes and index permutations� the ST semantic model obtained
with the name technique has �� states� whilst that obtained with the stack
technique has only � states�

We consider a language where we distinguish deadlock� denoted by �� from
successful termination� denoted by 	 �otherwise ST bisimulation could not be
a congruence for the re�nement operator� and we employ the ACP sequential
composition operator ��� instead of the CCS pre�x operator ����

Let A be a countable set of observable action types� a� b� c range over A
and S� L over the subsets of A� The set of all action types is denoted by
Act � A � f
g� where
 is a distinguished type representing an internal

� Even if the set of nonempty strings over Loc is usually denoted by Loc
� we prefer to

stick to this notation to be consistent with the notation of the name technique�
�We apply the stack technique to a simple language with pre	xing instead of general

sequential composition in this preliminary example only�

116

Bravetti and Gorrieri

a
1
-a

1
-

a
2
-a

2
-

a+

a .recX.a.X
1
-

O/

O/ O/recX.a.X || ,
recX.a.X

1
-a .recX.a.X O/

O/||a .recX.a.X
1
-

,{a:l}

1
-a .recX.a.X O/|| ,{a:rl}

a .recX.a.X
1
-

a .recX.a.X
1
-

a+ a
1
-

a
1
- a+

a+

recX.a.X ||recX.a.X
,{a:r}

|| ,{a:lr}

Fig� �� Example of Recursion with the Stack Technique

�

p
������ �

P
������� P �

P �Q
������� P ��Q

P

p
������ P � Q

������� Q�

P �Q
������� Q�

P
������� P �

P Q
������� P �

Q
������� Q�

P Q
������� Q�

P
������� P �

P�L ������� P ��L
type��� �� L P

������� P �

P�L ������� P ��L
type��� � L

PfrecX�P�Xg ������� P �

recX�P
������� P �

Table
 Standard Rules

computation� Let � range over Act � Moreover let Var be a set of process
variables ranged over by X� Y� Z� The terms of RL �re�nement language� are
generated by the following syntax�

P ��� 	 j � j X j � j P �P j P � P j P kS P j P�L j recX�P j P �a� P �

�kS� is the CSP parallel operator� where synchronization over actions in S
is required� ��L� is the hiding operator which turns the actions in L into

actions� Finally �recX� denotes recursion in the usual way� A RL process is
a closed term of RL� We denote RLG the set of strongly guarded processes of
RL�

To de�ne the operational semantics of RL processes� we need a richer
syntax to represent states� We denote with SA � A � feg the set of state
observable action types� where e is a distinguished type that will be used
in the de�nition of the re�nement operator� Let � range over SA and S�L
range over the subsets of SA� The set of all state action types is denoted by
SAct � SA � f
g� where
 is a distinguished type representing an internal
computation� Let SAST � f�� j � � SAg � f��i j � � SA � i � NI �g� ranged
over by �� and SActST � SAST � f�
g� where �
 is a distinguished semi�action

117

Bravetti and Gorrieri

representing an internal computation� � Let range over SActST and � range
over SAct � SActST � The meta�variable � ranges over SActST � fpg� wherep

is a distinguished action representing successful termination� Moreover M
ranges over the set fM j M � SA ��o AStrg of mappings� i�e� sets including
the association strings for all the state actions currently in execution� Finally�
let � range over the bijections over SA� The state terms are generated by the
following syntax�

P ���	 j� jX j� jP �P jP � P jP kS�M P jP�L jrecX�P jP �a�P � j �P jP ���

The bang operator ��� and the �bijective� relabeling operator ����� are aux�
iliary operators that are necessary for the de�nition of the re�nement opera�
tor� � In the following� in order to avoid ambiguities� we assume the following
operator precedence relation� hiding � bang � relabeling � sequential com�
position � recursion � parallel composition � choice � re�nement�

Again we consider the operators �kS� as being �kS��� when an RL process
P is regarded as a state�

The semantics of state terms produces a transition system labeled over
SActST � The operational rules for �	� and the operators ���� ���� ��L� and
�recX� are the standard ones and are presented in Table �� The operational
rules for ��� and the operator �kS�M� are presented in Table ��

The function type � SActST � fpg �� SAct � fpg is de�ned in the obvious
way� The termination predicate

p
is de�ned as P

p � ��Q � P

p
������ Q� �

�	 � � SActST � Q
� � P

������� Q��� The expression �i�l�w� computes the
position of the i�th l in the string w� We have that �i�l�w� is the only j � NI �

such that w�j� � l and jfk j j w�k� � lgj � i� Similarly for �i�r�w�� Finally
we de�ne w � i as the string obtained by removing the i�th element from the
string w� i�e� w� i � f�j� loc� � w j j � ig � f�j��� loc� j �j� loc� � w�j � ig�

The meaning of the operational rules for �P kS�M Q� is the following�

When P performs �� �� �� S� then the new action is pushed on the top of
the stack of � actions� This is represented by putting an l in the �rst position
of the association string for �� Symmetrically for a move �� of Q�

When P performs ��i �� �� S�� the corresponding � action �whose position
on the stack is that of the i�th l in the association string for �� terminates
and is eliminated from the stack� This behavior is expressed by two rules in
Table � because we eliminate the parallel operator in the case P becomes a
successfully terminated process� Symmetrically for a move ��i of Q�

� Introducing an invisible semiaction �� is not strictly necessary� On the other hand split
ting � actions as we do for visible actions adheres to the intuition that the semantics of �
should be isomorphic to that of a�fag�
	 The restriction to bijective relabelings allows us to give a simple operational semantics

to the operator
P ����� This because actions with di�erent types cannot be relabeled into
actions with the same type� hence it is not necessary to reindex the relabeled actions in
order to keep them distinguished� On the other hand the capability of performing bijective
relabelings is su�cient for de	ning the re	nement operator�

118

Bravetti and Gorrieri

�
�������� ��� 	

������� �	

������� �

P
�������� P �

P kS�M Q
�������� P � kS�M �� ��lM��Q

� ��S

Q
�������� Q�

P kS�M Q
�������� P kS�M ����rM��Q

� ��S

P
��i������ P � ��P �p � S � ��

P kS�M Q

��
�i�l�M��

������ P � kS�M ����M�	�i�l�M���Q

� ��S
P

��������� P � P �p

P k��M Q

��
���l�M��

������ Q

Q
��
i������ Q� ��Q�p � S � ��

P kS�M Q

��
�i�r�M��

������ P kS�M ����M�	�i�r�M���Q
�

� ��S
Q

��������� Q� Q�p

P k��M Q

��
���r�M��

������ P

P
������� P � ��P �p � S � ��

P kS�M Q
������� P � kS�M Q

P
������� P � P �p

P k��M Q
������� Q

Q
������� Q� ��Q�p � S � ��

P kS�M Q
������� P kS�M Q�

Q
������� Q� Q�p

P k��M Q
������� P

P
������� P � Q

������� Q�

P kS�M Q
������� P � kS�M Q�

type��� � S 	 fpg

Table � Rules for the Stack Technique

The semantic rules for the re�nement operator are based on its de�nition
in terms of the parallel operator and other basic operators� Our approach to
ST semantics enables the following de�nition of P �a� Q� that closely adheres
to the intuition of the way it works�

�P �a� e� kfeg����e��Q� e�� ���feg

where the bijective relabeling �� �� is de�ned by �� �� � f��� ���� ���� ��g
� f����� ���� j ��� � SA � ��� �� f�� ��gg� For each a executed by the process
P a corresponding process Q is activated by the bang operator in the right�
hand term� In this way if P executes several auto�concurrent actions a then
a corresponding number of processes Q are executed in parallel by the right�
hand term� The correct association between actions a and processes Q is
guaranteed by the fact that the events of starting and termination of each
auto�concurrent action e are uniquely related by the ST semantics� �

 This de	nition of semantic action re	nement is slightly di�erent from the usual de	ni
tion ���������� in that in P �a � Q� each execution of Q is preceded and followed by the

119

Bravetti and Gorrieri

� P �a
 e	 kfeg�� ��e��Q� e�� � ��feg
������� P �

P �a� Q	
������� P �

P
�������� P �

P ��	
�����

������ P ���	

P
��
i������ P �

P ��	
�����

i������ P ���	

P
������� P �

P ��	
������� P ���	

type��� � f	�pg

�P

p
������ �

P
�������� P �

�P
�������� P � k��f�
lg�P

P
������� P �

�P
������� P � k����P

Table � Rules for Re�nement

The operational rules for the re�nement operator� ��� and ����� are pre�
sented in Table
�

Theorem ��� The interleaving semantics of a RL process P not including

the re�nement operator is �nite state �� i� the ST semantics of P obtained

with the stack technique is �nite state�

In the following we will refer to a process which is �nite state for interleav�
ing and ST semantics simply as a ��nite state process��

Our approach ensures that the �niteness of semantic models is preserved
by the action re�nement operator�

Theorem ��� If P and Q are �nite state RL processes� then P �a� Q� is a

�nite state process�

Example ��� In Fig�
 we present the �nite ST semantic model of recX�a�
X�a � b� c� obtained with the stack technique� In Fig� � we show an initial
fragment of the in�nite ST semantic model of the same term obtained with
the name technique� Note that ST semantics via the name technique over the
whole language RL is simply obtained as follows� The operational rules for
the re�nement� relabeling and bang operators are the same as for the stack
technique� except that e� is replaced by e�i in the premise for re�nement� ��

is replaced by ��
i in the rules for relabeling and bang operators and ����� is

replaced by �����i in the rule for relabeling� Fig� � makes clear that� in the
absence of an elimination rule for the parallel operator� the number of parallel

occurrence of a silent transition �� � In order to obtain a de	nition which adheres completely
to the usual one it is simply su�cient to
skip� e transitions �instead of just hiding them
with
�feg��� similarly as done in ����
��The interleaving operational rules are the standard ones� therefore they are omitted�

120

Bravetti and Gorrieri

t̂

t̂

t̂

a
1
- ;recX.a;X(()

a
1
- ;recX.a;X(()

a
1
- ;recX.a;X(()

a
1
- ;recX.a;X(()

e;recX.a;X

a
1
- ;recX.a;X

e][a O/,
||

{e}
e

1
-

O/

e][a O/,
||

{e}
e

1
-

O/

e][a O/,
||

{e}
e

1
-

O/

e][a O/,
||

{e}
e

1
-

O/

e][a O/,
||

{e}
e

1
-

O/

O/,
||

{e}
e

1
-e+

e
1
-e+(! ;b;c;))) / {e}

e
1
-e+(! ;b;c;))) / {e}

e
1
-e+(! ;b;c;))) / {e}

e
1
-e+(! ;b;c;))) / {e}

e
1
-e+(! ;b;c;))) / {e}

c
1
-

b
1
-

c+

b+

recX.a;X [a b;c]

((

(()

)

(;b;c;e ||
,{e:l}

(b
1
- ;c; ||

,{e:l,b:l}

(;c;e ||
,{e:l}

(c
1
- ; ||

,{e:l,c:l}

(;e ||
,{e:l}

e] (! ;b;c;)) / {e}[a

Fig� �� Example of Re�nement with the Stack Technique

operators generated by the bang operator grows as new actions to be re�ned
start and terminate� Therefore even re�ning a simple recursive term such as
recX�a�X leads to an in�nite semantic model� ��

Now we give a simple syntactical characterization for RL processes that
are guaranteed to be �nite state� In the following corollary we consider as
static the operators of parallel composition� hiding and action re�nement�

Corollary ��� Let P be a RL process s�t� for each subterm recX�Q of P � X
does not occur free in Q in the context of a static operator or in the left�hand

side of a ���� Then P is a �nite state process�

The equivalence notion we consider over RL processes� denoted with
s

�where the s stands for the stack technique� is again observational congruence
where the alphabet of visible actions is SAST and hidden actions are �
 actions�

Once extended the application of the name technique to the whole language
RL� as explained in the previous example� we have the following theorem of
consistency�

Theorem ��	 Given two RL processes P and Q we have that P
n Q i�

P
s Q�

�� For the simple example recX�a�X �a � b� c�� the execution of a re	nement by means of
��e�i � b� c� e

�
i � always leads to � k�����e

�

i � b� c� e
�
i �� where the parallel operator could in fact be

eliminated� The fact that� with the name technique� we cannot apply the elimination rule to
the parallel operators generated by re	nement� can be seen by considering a re	nement �e�g�
a � b� c� of the term recX�a�X k recX�a�X � whose semantic model �see Fig� �� includes
states which exhibit
holes� in the index sequences of started actions�

121

Bravetti and Gorrieri

recX.a;X [a b;c]

t̂

t̂

c+
1

b+
1

t̂

b+
1

a
1
- ;recX.a;X(()

a
1
- ;recX.a;X(()

a
1
- ;recX.a;X(()

e;recX.a;X

a
1
- ;recX.a;X

;recX.a;Xa
1
-

e][a e
1
-

O/,

e][a O/,
||

{e}
e

1
-

O/

O/,
||

{e}
e

1
-

O/e][a

e][a O/,
||

{e}
e

1
-

O/

e][a O/,
||

{e}
e

1
-

O/

O/,
||

{e} O/ O/(e||
,

e
1
-e+

e][a O/,
||

{e} O/

l1
e

1
-e+(! ;b;c;))) / {e}

1

l1
e

1
-e+

1
(! ;b;c;))) / {e}

l1)}}

l1
e

1
-e+

1
(! ;b;c;))) / {e}

e
1
-e+

1
(! ;b;c;))) / {e}

l1 l1

e
1
-e+

1
(! ;b;c;))) / {e}

l1

r1
e

1
-

O/ l1
(;b;c;e ||

,{e:{(1,)}}
e

1
-e+(! ;b;c;

1
)))) / {e}

c
1
-

b
1
-

((;recX.a;Xa
1
-)

(()

(()

(()

(;b;c;e ||||
{e}

(b
1
- ;c; ||

(;c;e ||
,{e:{(1,

(c
1
- ; ||

,{e:{(1,

(;e ||
,

e][a
1

(! ;b;c;))) / {e}

(e||
,{e:{(1,

O/ ,{e:{(1,)}}

,{e:{(1,)},b:{(1,

)}}

)},c:{(1,)}}

{e:{(1,)}}

)}}

Fig� �� Example of Re�nement with the Name Technique

Theorem ��
 P
s Q is a congruence w�r�t� all the operators of RL� includ�

ing recursion�

� Axiomatization via the Stack Technique

The axiom system ARL for
s on RLG terms is formed by� the standard
axioms presented in Table � �where �bb� and �j� denote� respectively� the left
merge and synchronization merge operators and the axiom �LM�� re�ects the
elimination rules for the parallel operator�� the axioms of Table � which are
speci�c for the stack technique� and the axioms of Table which deal with
the re�nement operator�

The axiom �Par� is the standard one except that when the position of
processes P and Q is exchanged we must invert left and right inside M � The
inverse M of a mapping M is de�ned by M � f�a� w� j �a� w� � Mg where
w � f�i� r� j �i� l� � wg � f�i� l� j �i� r� � wg� Axioms �LM�� and �LM�� just
re�ect the operational rules of the parallel operator for an independent move
of the left�hand process�

If we consider the obvious operational rules for �bbS�M� and �jS�M� that

122

Bravetti and Gorrieri

�A
� P Q � Q P �A�� �P Q� R � P �QR�

�A�� P P � P �A�� P � � P

�Tau
�
� �	 �
 �Tau�� P �	 �P � �	 �P

�Tau�� �� �P �	 �Q� ��Q � �� �P �	 �Q�

�Seq
� �P �Q��R � P � �Q�R� �Seq�� �P Q��R � P �RQ�R

�Seq�� ��P � P �Seq�� P � � � P

�Seq�� ��P � �

�LM
� �P Q� bbS�M R � P bbS�M RQ bbS�M R

�LM�� �
�P � bb��M � �
�P

�LM�� ��	 �P � bbS�M Q � �	 � �P kS�M Q�

�LM�� ���P � bbS�M Q � � type��� � S
�LM�� � bbS�M P � �

�LM�� � bbS�M P � �

�SM
� P jS�M Q � Q jS�M P

�SM�� �P Q� jS�M R � P jS�M RQ jS�M R

�SM�� ���P � jS�M ���Q� � �� �P kS�M Q� type��� � S
�SM�� ��	 �P � jS�M Q � P jS�M Q

�SM�� ���P � jS�M ����Q� � � type��� �� S � � �� ��

�SM�� � jS�M � � �

�SM�� � jS�M �
�P � � �

�SM�� � jS�M P � �

�Hi
� �P Q��L � P�LQ�L
�Hi�� �P �Q��L � P�L�Q�L
�Hi��
�L �
 type�
� �� L
�Hi�� ��L � �	 type��� � L
�Hi�� ��L � �

�Hi�� ��L � �

�Rec
� recX�P � PfrecX�P�Xg
�Rec�� Q � PfQ�Xg Q � recX�P provided that X is strongly guarded in P

Table � Standard Axioms

123

Bravetti and Gorrieri

�Act
� � � ������ �Act�� 	 � �	 � �	

�Par� P kS�M Q � P bbS�M QQ bbS�M P P jS�M Q

�LM�� ����P � bbS�M Q � ��� �P kS�M �a��lM��Q� � �� S
�LM�� ���i �P � bbS�M Q � ��

l�w �i�� �P kS�M �a��M�	�i�l�M���Q� � �� S

Table � Axioms for the Stack Technique

�Ref� P �a� Q	 � � P �a
 e	 kfeg�� ��e��Q� e�� � ��feg
�Rel
� �P Q���	 � P ��	 Q��	 �Rel�� �P �Q���	 � P ��	�Q��	

�Rel�� ����	 � ����� �Rel�� ��i ��	 � �����i

�Rel�� �	 ��	 � �	 �Rel�� ���	 � �

�Rel�� ���	 � �

�Bang� �P � recX��� P bb���X� provided that X is not free in P

Table � Axioms for Re�nement

derive from those we presented for the parallel operator� �� then the axioms
of ARL are sound�

We have the following theorem� where a sequential state is a state that
includes only �	�� ���� �X� and operators ���P�� �P � P�� �recX�P��

Theorem ��� If a RLG process P is �nite state then �P � � ARL � P � P �

with P � sequential state�

Since for sequential states the ST semantics coincide with the standard
interleaving semantics and the axioms of ARL involved are just the standard
axioms for CCS �it su�ces to consider ���P� as being ���P�� ��� as being �	�
and �	� as being �

p
�	��� from ��	� and Theorem ��� we derive the completeness

of ARL�

Theorem ��� ARL is complete for
s over �nite state RLG processes�

� Conclusion

We think that the two techniques for expressing ST semantics� which are
based on the new idea of compositional level�wise re�indexing� that we have
introduced can be exploited also for deciding and axiomatizing other forms of
history dependent bisimulations over processes that possess a �nite interleav�
ing semantics as well as bisimilarity for name�passing calculi �e�g� ��calculus��
For example ���� uses a technique that is very similar to our name technique�
even if not in a compositional way� to express history preserving bisimulation�
As far as location bisimulation is concerned� the two techniques collapse in a

��The de	nition of the operational rule for
jS�M� must allow for actions
��� to be
skipped ���� as re�ected by axiom �SM���

124

Bravetti and Gorrieri

single one because locations never become obsolete and the problems related to
the reuse of names do not arise� Even if the stack technique is more adequate
in the context of ST semantics because it allows to decide ST bisimulation
also in the case of action re�nement� we believe that both techniques have dif�
ferent features that may make one of them more suitable than the other one
depending on the context of application� For example in the language of ����
where �probabilistically� timed actions are given a semantics similar to ST se�
mantics� the name technique �as opposed to the stack technique� gives rise to
semantic models which are very close to Generalized Semi�Markov Processes
�GSMPs�� where names assigned to actions correspond to the elements of a
GSMP�

Acknowledgement

We thank the anonymous referees for the helpful comments and suggestions�

References

�
	 L� Aceto� �On �Axiomatising Finite Concurrent Processes� � in SIAM
Journal on Computing ��������������
���

��	 L� Aceto� �A Static View of Localities�� in Formal Aspects of Computing�
����
�����
���

��	 L� Aceto� M� Hennessy� �Adding Action Re�nement to a Finite Process

Algebra�� in Information and Computation

��
�������
���

��	 M� Bravetti� M� Bernardo� R� Gorrieri� �Towards Performance Evaluation

with General Distributions in Process Algebras�� in Proc� of the �th Int Conf
on Concurrency Theory �CONCUR ����� LNCS
������������ Nice �France��

���

��	 G� Boudol� I� Castellani� M� Hennesy� A� Kiehn� �A theory of processes with

localities�� in Formal Aspects of Computing �����
�������
���

��	 M� Bravetti� R� Gorrieri� �Deciding and Axiomatizing ST Bisimulation for

a Process Algebra with Recursion and Action Re�nement�� Technical Report
UBLCS����
� University of Bologna �Italy��
���

��	 M� Bravetti� R� Gorrieri� �Interactive Generalized Semi
Markov Processes��
to appear in Proc� of the �th Int Workshop on Process Algebras and

Performance Modeling �PAPM ����� Zaragoza �Spain�� September
���

��	 N� Busi� R�J� van Glabbeek� R� Gorrieri� �Axiomatising ST
Bisimulation

Equivalence�� in Proc� of the IFIP Working Conf on Programming Concepts�

Methods and Calculi �PROCOMET ����� pp�
���
��� S� Miniato �Italy��
���

��	 I� Castellani� �Observing Distribution In Processes� Static and Dynamic
Localities�� in Int� Journal of Foundations of Computer Science ����������

���

125

Bravetti and Gorrieri

�
�	 P� Darondeau� R� Degano� �Causal Trees�� in Automata� Languages and
Programming� LNCS ������������
���

�

	 P� Degano� R� Gorrieri� �A causal operational semantics of action re�nement��
in Information and Computation
������

��
���

�
�	 R�J� van Glabbeek� �The re�nement theorem for ST
bisimulation semantics��
in Proc� of the IFIP Working Conf on Programming Concepts� Methods and
Calculi �PROCOMET ����� pp� ������ Sea of Gallilea �Israel��
���

�
�	 R�J� van Glabbeek� U� Goltz� �Equivalence Notions for Concurrent Systems

and Re�nement of Actions�� Arbeitspapiere der GMD ���� Gesellschaft fur
Mathematik und Datenverarbeitung MBH�
���

�
�	 R� Gorrieri� A� Rensink� �Action Re�nement�� to appear in Handbook of
Process Algebra� Elsevier� ����

�
�	 R�J� van Glabbeek� F�W� Vaandrager� �Petri Net Models for Algebraic

Theories of Concurrency�� in Proc� of the Conf on Parallel Architectures

and Languages Europe �PARLE ����� LNCS ������������ Eindhoven �The
Netherlands��
���

�
�	 R� Gorrieri� C� Laneve� �The limit of splitn bisimulations for CCS agents��
in Proc� of the Symp on Mathematical Foundations of Computer Science

�MFCS ����� LNCS ����
���
���
��

�
�	 R� Gorrieri� C� Laneve� �Split and ST Bisimulation Semantics�� in
Information and Computation

����������
���

�
�	 A� Kiehn� M� Hennessy� �On the decidability of non
interleaving process

equivalences�� in Fundamenta Informaticae ���
��
�����
����

�
�	 R� Milner� �Communication and Concurrency�� Prentice Hall�
���

���	 R� Milner� �A complete axiomatization for observational congruence of �nite

state behaviours�� in Information and Computation �
���������
���

��
	 U� Montanari� M� Pistore� �Minimal Transition Systems for History

Preserving Bisimulation�� in Proc� of the ��th Symp on Theoretical Aspects

of Computer Science �STACS����� LNCS
����
���

���	 U� Montanari� D� Yankelevich� �Location Equivalence in Parametric Setting��
in Theoretical Computer Science
��������������
���

���	 G� Plotkin� �A Structural Approach to Operational Semantics�� Technical
Report DAIMI FN�
�� Aarhus University� Department of Computer Science�
Aarhus�
��
�

���	 A� Rabinovich� B� Trakhtenbrot� �Behaviour Structures and Nets�� in
Fundamenta Informaticae

���������
����

���	 W� Vogler� �Bisimulation and action re�nement�� in Theoretical Computer
Science

��
�������
���

126

