
 Procedia Computer Science 96 (2016) 1479 – 1488

Available online at www.sciencedirect.com

1877-0509 © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of KES International
doi: 10.1016/j.procs.2016.08.194

ScienceDirect

20th International Conference on Knowledge Based and Intelligent Information and Engineering
Systems, KES2016, 5-7 September 2016, York, United Kingdom

Approximate matching in ACSM dissimilarity measure

Alessia Amelioa,∗
aDIMES University of Calabria, Via Pietro Bucci Cube 44, 87036 Rende (CS), Italy

Abstract

The paper introduces a new patch-based dissimilarity measure for image comparison employing an approximation strategy. It

extends the Average Common Sub-matrix measure computing the exact dissimilarity among images. In the exact method, dissim-

ilarity between two images is obtained by considering the average area of the biggest square sub-matrices in common between

the images, by exact match of the extracted sub-matrices pixel by pixel. As an extension, the proposed dissimilarity measure

computes an approximate match between the sub-matrices, which is obtained by omitting a controlled number of pixels at a given

column offset inside the sub-matrices. The proposed dissimilarity measure is extensively compared with other well-known approx-

imate methods for image comparison in the state-of-the-art. Experiments demonstrate the superiority of the proposed approximate

measure in terms of execution time with respect to the exact method, and in terms of retrieval precision with respect to the other

state-of-the-art methods.
c© 2016 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of KES International.

Keywords: similarity measure; approximate matching; ACSM; pattern matching; image analysis

2000 MSC: 94A08, 68T10, 68P20

1. Introduction

In recent years, different methods have been proposed in Content-Based Image Retrieval (CBIR), adopting an

approximate strategy for feature extraction or similarity computation.

SIMPLIcity is a retrieval system1 where an image is divided into regions represented by feature vectors, defining

the semantic type of the image. Similarity score, based on a greedy method for finding the region matching, is

computed only between the query image and images belonging to the same semantic class. Carson et al. 2 introduce

the Blobworld system, where each image is represented as a set of blobs corresponding to regions modeled as feature

vectors. Query image is submitted by its blob representation, from which only a few relevant blobs are selected

for matching. Also, an approximate indexing method is introduced to detect images relevant to a given query. In

VisualSEEk3 each image is segmented into regions characterized by color and spatial features. Color is represented

by color sets, based on the assumption that regions are characterized by a few equally salient colors. An indexing

method based on color properties, region centroids and minimum bounding rectangles is employed for retrieval speed-

∗ Corresponding author. Tel.: +39-0984-494783.

E-mail address: aamelio@dimes.unical.it

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of KES International

http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.08.194&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.08.194&domain=pdf

1480 Alessia Amelio / Procedia Computer Science 96 (2016) 1479 – 1488

up. Furthermore, NeTra system4 is an image retrieval framework, where texture, color and shape information are

extracted from the image and used to segment the image into homogeneous regions. Each image region is represented

with a small quantity of colors, associated to a subset of colors from a color codebook, shape and texture content.

Indexing strategies in terms of color, texture and shape are adopted for fast image retrieval. Also, Lv et al. 5 propose a

new image retrieval system, dividing the image into homogeneous regions, represented as bit vectors and enveloped

into a single image feature vector, such that the L1 norm between two vectors is an approximation of the Earth

Mover’s Distance (EMD) between the corresponding images. Querying is performed by bit vector transformation for

the query image. Again, SIFT feature strategy6 efficiently identifies local image features through a filtering procedure

finding key points in scale space. They are computed by modeling blurred image gradients in different orientations

and scales by adopting Difference of Gaussians (DoG) as approximation of Laplacian of Gaussian (LoG). A nearest-

neighbor indexing method is employed for determining the matches of key points between images. SURF descriptor7

approximates LoG with box filter, computed by using the integral images. Non-maximum suppression is applied for

detection of the key points, and wavelet responses employed for feature description. An indexing phase considering

the sign of the Laplacian is also proposed, improving the speed of matching the key points between images. Finally,

Wan et al. 8 propose a deep learning framework for CBIR consisting in learning image features by training large-scale

deep Convolutional Neural Networks (CNNs). The activations of the last three fully connected layers are considered

for image feature representation directly using one of the activation features, or adopting similarity learning algorithms

to refine the previously obtained features, or re-training the CNNs on the new image dataset by initializing the network

with the previously trained parameters.

In this paper, a new patch-based method for approximate dissimilarity computation among images is proposed.

The method extends the state-of-the-art Average Common Sub-matrix algorithm9,10, introduced for exact computa-

tion of the image dissimilarity. It is pixel-based and does not need to extract any feature representation, considering

the image as a pixel matrix. Accordingly, given two images, the area of their largest common sub-matrices is com-

puted to quantify the dissimilarity between them. The largest common sub-matrices are detected by exact matching

of the sub-matrices inside the two images. Hence, matching is performed by comparing the sub-matrices in the two

images pixel by pixel. As an extension, the proposed approach introduces a new approximation strategy in dissim-

ilarity computation, which is pursued by omitting some pixels at regular intervals inside the sub-matrices. For this

reason, matching of the sub-matrices is performed by considering a subset of pixels. It implies that two sub-matrices

are considered to perfectly match only if a subset of their pixels perfectly matches. It determines a meaningful im-

provement in execution time of the dissimilarity computation, at the expense of a low accuracy decrease. The concept

is similar to that of ”don’t cares”11 and pattern matching with k-mismatches12 in 2D arrays. The main difference

is the location of the omitted pixels, which is constrained, established a priori in this case and regularly determined

in the sub-matrices for the dissimilarity computation. To the best of our knowledge, it is the first time that image

dissimilarity is computed by employing a similar approach beforehand.

The paper is organized as follows. Section 2 recalls the main concepts underlying the Average Common Sub-

matrix algorithm. Section 3 introduces the approximation strategy, describes the approximation method and presents

the algorithm for approximate matching. Section 4 describes the experiment. Section 5 presents the results of the

experiment and discusses them. Finally, Section 6 makes the conclusions.

2. ACSM dissimilarity measure

Average Common Sub-matrix (ACSM) is an exact method for computing the dissimilarity among images9,10. It

is based on the concept that two images are dissimilar to each other if they have a few number of small regions in

common. On the contrary, if the two images have a relevant number of large regions in common, they are considered

similar to each other. Next, we briefly recall the main concepts underlying ACSM dissimilarity measure.

Let IA and IB be two images, with corresponding pixel matrices A and B, of size respectively N × N and M × M,

and let Σ be a finite alphabet on which A and B are defined. ACSM evaluates the average area of the sub-matrices in A
exactly matching inside B to quantify the similarity between IA and IB. If another image ID with corresponding matrix

D defined on Σ is considered, it is noted that IA is more similar to IB than to ID if the average area of the sub-matrices

in common between A and B is bigger than the same average area between A and D. The dissimilarity between IA and

1481 Alessia Amelio / Procedia Computer Science 96 (2016) 1479 – 1488

IB is computed starting from the obtained similarity value, considering also the size of the matrices A and B and the

similarity value of IA with itself.

Given a generic matrix Z and a position (i, j) in Z, it is denoted as Zn
i, j the square sub-matrix starting at that position,

of size n and area equal to (n × n). Accordingly, let At
i, j, n = t, be the biggest square sub-matrix of A starting at that

position whose area is equal to (t × t) exactly matching a sub-matrix Bt
h,k starting from a certain position (h, k) in B.

The area (t × t) of At
i, j is denoted as W(i, j). In the case of n = min{i, j}, An

i, j is maximal at that position, and its area

min{i, j}2 is denoted as WD(i, j). The similarity measure between the images IA and IB is realized by considering the

area of the biggest common sub-matrices for all the positions (i, j), i, j = 1...N inside A matrix and computing the

average value. Consequently, ACSM is defined between IA and IB as follows:

S α(IA, IB) =

N∑

i=1

N∑

j=1

W(i, j)/N2 s.t. W(i, j) ≥ α, (1)

where α is a parameter fixing the minimum area of the considered sub-matrices. Given Eq.(1), the symmetric dissim-

ilarity measure is computed as:

ds(IA, IB) = ds(IB, IA) =
dα(IA, IB) + dα(IB, IA)

2
, (2)

where dα(IA, IB) is defined as:

dα(IA, IB) =
log(M2)

S α(IA, IB)
− log(N2)

S α(IA, IA)
, (3)

and S α(IA, IA) is the similarity measure of A with itself.

The straightforward algorithm to compute the ACSM dissimilarity measure between IA and IB can be summarized

in the following main points:

1. For each position (i, j) in A:

(a) find the area W(i, j) of the biggest square sub-matrix At
i, j greater than or equal to α starting at that position,

exactly matching a sub-matrix Bt
h,k at some position (h, k) in B,

(b) find the area WD(i, j) of the square sub-matrix Amin{i, j}
i, j of maximal size greater than or equal to α and starting

at that position,

(c) sum in Wα(A, B) and in Wα(A, A) respectively the obtained W(i, j) and WD(i, j),

2. divide Wα(A, B) and Wα(A, A) by N2 for obtaining S α(IA, IB) and S α(IA, IA),

3. calculate dα(IA, IB) as in Eq.(3) by using S α(IA, IB) and S α(IA, IA),

4. repeat steps 1-3 for B and A and obtain dα(IB, IA),

5. compute ds(IA, IB) as in Eq.(2) by using dα(IA, IB) and dα(IB, IA).

If there is no sub-matrix for some position (i, j) in A of area greater than or equal to α exactly matching in B, that

position won’t give any contribution in the dissimilarity measure.

However, if it is supposed that α parameter is equal to 1, in point 1 (a) of the algorithm, the biggest square sub-

matrix At
i, j at position (i, j) in A is searched by considering all the square sub-matrices An

i, j, n = 1...min{i, j}, having

the main diagonal up to that position. This means that all these sub-matrices are examined for possible matching with

some sub-matrix Bn
h,k inside B. Procedure is started from the sub-matrix of maximal size n = min{i, j} at position (i, j)

of A. If matching is detected with a sub-matrix in B, the procedure is stopped, otherwise it is continued by examining

always smaller sub-matrices of main diagonal up to that position and verifying the matching inside B, until the size

of the sub-matrix reaches the value of n = 1, which corresponds to only one pixel. Point 1 (b) is useful to find the

similarity of IA with itself. It is easily pursued by considering that at position (i, j) of A the biggest square sub-matrix

At
i, j exactly matching a some sub-matrix in A itself is that of maximal size t = min{i, j}. It is worth to note that all the

positions (i, j) inside the A matrix are examined. Furthermore, the size of the sub-matrices is not fixed a priori and the

1482 Alessia Amelio / Procedia Computer Science 96 (2016) 1479 – 1488

contribution of all the pixels of the sub-matrices is considered for determining if a positive match occurs. Accordingly,

the match between two sub-matrices will have a positive result if all the corresponding pixels in the two sub-matrices

perfectly match. For this reason, ACSM algorithm realizes an exact procedure for computing the dissimilarity among

images.

Finding exact match of a sub-matrix An
i, j inside the B matrix (see point 1 (a) in the algorithm) takes O(M2n×n) time

by adopting a brute force approach, because the exact match of An
i, j inside B has to be verified at each position (h, k)

of B13. It can be reduced to O(M2) which is independent from the size of An
i, j, determining a worst case complexity

of O(M2N3) time for ACSM computation9. Furthermore, it has been proved that this complexity can be further

reduced to O(M2N2log(N)) by adopting a binary strategy9. Finally, a more efficient version of the algorithm has

been introduced, employing a generalized suffix tree in two dimensions, for reducing the complexity to O(M2 + N2).

However, the generalized suffix tree construction takes O(M2(logM + log|Σ|) + N2(logN + log|Σ|)) time14, and it can

be particularly demanding if the size of the images is large and the variability of the pixel values is high. Hence, the

temporal cost of ACSM algorithm needs further investigation and reduction of its execution time still remains an open

problem.

Next, we investigate the effect in terms of execution time and performances of omitting a portion of pixels for

ACSM dissimilarity computation. In particular, we start our analysis from the aforementioned straightforward ACSM

algorithm where exact match is performed by the brute force approach. In such a context, an approximation is

introduced in matching procedure, pursued by omitting the match of some pixels at regular intervals. Accordingly, a

match between the two sub-matrices An
i, j and Bn

h,k is considered positive even if only a subset of their pixels successfully

matches. Consequently, we relax the constraint and impose that not all the pixels of the two sub-matrices have to be

equal for obtaining a positive match.

3. Approximate ACSM

3.1. The method

The introduced concept of approximation determines a variation in the ACSM dissimilarity. In particular, IA

and IB are considered as dissimilar to each other if a few image regions with small area are in common between A
and B with a certain degree of approximation. On the contrary, if A and B approximately share a sufficient number

of large regions, their corresponding images IA and IB will be considered as similar to each other. Accordingly,

given the A matrix, the average area of its sub-matrices approximately matching inside B is computed for similarity

evaluation between IA and IB. Also, IA will be more similar to IB than to ID if the average area of the sub-matrices in

A approximately matching with sub-matrices in B is greater than the same average area in D.

Let (i, j) be a given position in A, the method finds the biggest square sub-matrix At̂
i, j, starting at that position in

A whose area is equal to (t̂ × t̂), approximately matching a sub-matrix Bt̂
h,k inside B starting at some position (h, k) in

B. Area (t̂ × t̂) of sub-matrix At̂
i, j is denoted as Ŵ(i, j). The method computes the area of such sub-matrices for all the

positions (i, j), i, j = 1...N inside A and determines the average value. Consequently, ACSM similarity measure with

approximation, computed between IA and IB, is now defined as:

Ŝ α(IA, IB) =

N∑

i=1

N∑

j=1

Ŵ(i, j)/N2 s.t. Ŵ(i, j) ≥ α, (4)

Similarly to Eq.(3), ACSM dissimilarity measure between IA and IB becomes:

d̂α(IA, IB) =
log(M2)

Ŝ α(IA, IB)
− log(N2)

S α(IA, IA)
, (5)

Finally, ACSM symmetric dissimilarity measure is the following:

d̂s(IA, IB) = d̂s(IB, IA) =
d̂α(IA, IB) + d̂α(IB, IA)

2
. (6)

1483 Alessia Amelio / Procedia Computer Science 96 (2016) 1479 – 1488

It is understandable that t′ can be greater than t, because approximation relaxes the match constraint. On the

contrary, there is no variation in computing S α(IA, IA), because the area of the sub-matrix of maximal size at a given

position does not depend on approximation.

3.2. Approximation strategy

Approximate match between An
i, j and Bn

h,k is realized by omitting a controlled number of pixels inside the two

sub-matrices at a fixed column interval. Consequently, An
i, j and Bn

h,k will have a positive match only if the remain-

ing pixels at the corresponding positions match. The procedure of the approximate match in pseudo code, called

approximateMatch, is depicted in Figure 1.

approximateMatch(An
i, j , Bn

h,k, Δc){
1. r = 1
2. while (r <= n)
3. if (r%2)==0
4. c := 2
5. else
6. c := 1
7. while c <= n
8. if An

i, j(r, c) � Bn
h,k(r, c)

9. return false
10. end
11. c = c + Δc
12. end
13. r = r + 1
14. end
15. return true

}

Fig. 1. ApproximateMatch procedure

It has three input parameters: the first sub-matrix An
i, j of A, the second sub-matrix Bn

h,k of B and a column offset

Δc. The output of the procedure is a boolean value indicating if An
i, j and Bn

h,k have a positive match (true) or a negative

match (false). Differently from the exact match procedure, approximateMatch introduces the parameter Δc which is

a column offset for pixel matching. The procedure iterates step by step along the rows of An
i, j and Bn

h,k and by steps of

size Δc along the columns of the two sub-matrices. In order to optimize the coverage of the area of An
i, j and Bn

h,k, the

column index is unaligned between the odd rows and the even rows.

The procedure runs along the rows of the sub-matrices An
i, j and Bn

h,k at constant step of 1 (see lines 1 and 13).

Meanwhile, it verifies if the row index r is an even number (see line 3). If it is so, the column index c is initialized

to 2, otherwise it is initialized to 1, for realizing the column disalignment (see lines 4-6). In lines 7-12, the procedure

iterates along the columns of An
i, j and Bn

h,k, fixed the row index r. Pixels corresponding at position (r, c) inside An
i, j and

Bn
h,k are matched (see line 8) and the procedure is stopped as soon as a mismatch is detected (see line 9). Column index

c is updated by steps of Δc (see line 11). If no mismatches are detected between pixels in An
i, j and Bn

h,k, the procedure

returns a positive match between the two sub-matrices (see line 15). Figure 2 shows an example of approximateMatch
execution.

A =

0 1 1 1 0
1 0 0 1 1
1 0 0 0 1
1 0 1 0 1
0 1 1 0 1

A4
5,5 =

0 0 1 1
0 0 0 1
0 1 0 1
1 1 0 1

B =

1 0 1 1 0
1 1 0 0 1
0 0 1 0 0
1 0 1 1 1
0 0 1 0 1

B4
4,5 =

0 1 1 0
1 0 0 1
0 1 0 0
0 1 1 1

Fig. 2. Execution of approximateMatch procedure on the sub-matrices A4
5,5

and B4
4,5

with column offset Δc = 2. Matched pixels are in bold

Procedure runs step by step along the rows and by steps of Δc = 2 along the columns of A4
5,5 and B4

4,5. Pixels

selected for matching from the procedure are marked in bold. It is observable that pixels are unaligned in correspon-

dence of consecutive rows (i.e. row 1 and row 2) and aligned only in correspondence of alternating rows (i.e. row 1

and row 3). Only pixels at positions (r, c+Δc) are considered for matching inside A4
5,5 and B4

4,5 (in bold). For example,

in row 1, only pixels at positions (1, 1) and (1, 3) are matched inside the two sub-matrices. All the other pixels are

1484 Alessia Amelio / Procedia Computer Science 96 (2016) 1479 – 1488

omitted and not considered for matching. Pixels in A4
5,5 and B4

4,5 are matched, starting from the first selected position

(1, 1) and continuing from left to right and from top to bottom. In this case, all the pixels at the selected positions

perfectly match in A4
5,5 and B4

4,5. It implies that the two sub-matrices will have a positive match and that the procedure

will return true.

3.3. The algorithm

ACSM algorithm with approximation is composed of the same points of the exact ACSM algorithm described in

Section 2. However, the brute force procedure finding exact matches of the sub-matrices of A inside B is modified by

introducing the approximate match procedure. Hence, the approximate algorithm becomes the following:

1. For each position (i, j) in A:

(a) find the area Ŵ(i, j) of the biggest square sub-matrix At̂
i, j greater than or equal to α starting at that position,

approximately matching a sub-matrix Bt̂
h,k at some position (h, k) in B,

(b) find the area WD(i, j) of the square sub-matrix Amin{i, j}
i, j greater than or equal to α starting at that position,

(c) sum in Ŵα(A, B) and in Wα(A, A) respectively the obtained Ŵ(i, j) and WD(i, j),

2. divide Ŵα(A, B) and Wα(A, A) by N2 for obtaining Ŝ α(IA, IB) and S α(IA, IA),

3. calculate d̂α(IA, IB) as in Eq.(5) by using Ŝ α(IA, IB) and S α(IA, IA),

4. repeat steps 1-3 for B and A and obtain d̂α(IB, IA),

5. compute d̂s(IA, IB) as in Eq.(6) by using d̂α(IA, IB) and d̂α(IB, IA).

Figure 3 shows the biggest common square sub-matrices, extracted from ACSM algorithm with approximation,

between two example binary images IA and IB with Δc fixed to 2 and α equal to 4.

A =

1 2 3 4
1 1 0 1 0
2 0 1 0 1
3 1 0 1 0
4 0 1 0 1

B =

1 2 3 4
1 1 0 0 0
2 1 1 0 1
3 0 0 1 0
4 0 1 0 0

A2
2,2 =

1 *
* 1

A2
2,3 =

0 *
* 0

A2
2,4 =

1 *
* 1

A2
3,2 =

0 *
* 0

A2
3,3 =

1 *
* 1

A3
3,4 =

0 * 0
* 0 *
0 * 0

A2
4,2 =

1 *
* 1

A3
4,3 =

0 * 0
* 0 *
0 * 0

A2
4,4 =

1 *
* 1

Fig. 3. Biggest common square sub-matrices, extracted from ACSM algorithm with approximation, between two example binary images IA and IB
whose pixel matrices are A and B. Black pixels are identified as ’1’ and white pixels are identified as ’0’. Symbol ’*’ indicates that pixel at that

position is not considered for matching from the approximateMatch procedure

At position (1, 1) of A, the biggest square sub-matrix approximately matching inside B is A1
1,1 = 1 . However, it

is not taken into account in the dissimilarity computation, because its area is less than α = 4. The same is for positions

(1, 2), (1, 3), (1, 4), (2, 1), (3, 1), and (4, 1).
An example is at position (3, 4) of A, where the biggest square sub-matrix approximately matching a sub-matrix in

B at position (3, 4) is A3
3,4. It is extracted from A by considering its bottom-right corner at (3, 4) and diagonal up to that

position, and checking the approximate match (with Δc = 2) inside B. The set of all the candidate square sub-matrices
at position (3, 4) and of area ≥ α = 4, are the following:

A3
3,4 =

0 * 0
* 0 *
0 * 0

, A2
3,4 =

0 *
* 0

.

1485 Alessia Amelio / Procedia Computer Science 96 (2016) 1479 – 1488

Another example is at position (4, 4) of A, where the candidate square sub-matrices with bottom-right corner at
that position and diagonal up to that position, of area ≥ α = 4, approximated by Δc = 2, are the following:

A4
4,4 =

1 * 1 *
* 1 * 1
1 * 1 *
* 1 * 1

, A3
4,4 =

1 * 1
* 1 *
1 * 1

, A2
4,4 =

1 *
* 1

.

In this case, the maximal square sub-matrix of A at position (4, 4) is A4
4,4. However, it does not match approximately

any sub-matrix inside B. The same is for A3
4,4. Consequently, A2

4,4 is selected as the biggest square sub-matrix at

position (4, 4) of A. In fact, it approximately matches at positions (2, 2) and (3, 3) inside B.

4. Experimentation

Next, we evaluate the ability of ACSM dissimilarity measure with approximation in capturing the differences

among the images. It is performed by embedding the dissimilarity measure inside the image retrieval context. In

particular, let Q be a query image and D an image dataset. The aim is to retrieve the top k images in D which are the

most (less) (dis)similar to Q. Success in retrieval mostly depends on the (dis)similarity measure adopted for image

comparison.

For retrieval evaluation, the well-known retrieval precision criterion has been employed9,15 . It is defined as

the ratio between the T number of relevant images which are retrieved and the total k number of images which are

retrieved9. Images are considered as relevant if they belong to the same class of Q. Because retrieval result strongly

depends on the selected query, procedure is repeated multiple times for different queries and average precision results

are computed. In particular, given N queries, retrieval is performed N times on D. For each query Q, the top k most

(less) (dis)similar images to the query are retrieved. It is realized by computing the (dis)similarity between Q and each

image ID ∈ D, by sorting the images in D based on the (dis)similarity score, and by selecting the k images with the

highest (lowest) score. Then, the T relevant images are selected from the top k retrieved images and retrieval precision

for Q is computed. Finally, retrieval precision is averaged on all the queries.

Experimentation has been performed on a subset of 50 grayscale images employed in9 and on 4 randomly se-

lected queries from Columbia Object Image Library (COIL-20) dataset, and on a subset of 200 RGB color images

from Caltech-256 Object Category Dataset, freely available online at http://www.vision.caltech.edu/Image_

Datasets/Caltech256/. To create the dataset of 200 images, a subset of 10 object classes has been randomly se-

lected. Then, a subset of 20 images has been randomly chosen for each class. Finally, a set of 5 queries has been

randomly selected from the 10 objects. Images have been resized to 128 × 128.

ACSM dissimilarity measure with approximation has been compared to exact ACSM dissimilarity measure and

to other two methods based on well-known approximate descriptors for image representation16, 17, 18: (dis)similarity

strategy adopting SIFT features6 and (dis)similarity method employing SURF features7. The approximation strategy

can be considered as a sampling method, selecting only a subset of pixels for matching. For this reason, ACSM

dissimilarity measure with approximation has been compared to exact ACSM dissimilarity measure employed on the

original images and on the resized images to a smaller size (i.e. 64 × 64). Resizing method was based on nearest
neighbor, bilinear and bicubic interpolation.

Image comparison based on SIFT and SURF local features has been performed by employing two different meth-

ods. In particular, let dx and dy be two images to compare and px and py their corresponding local descriptor sets

(SIFT descriptors or SURF descriptors). Dissimilarity between dx and dy has been computed as 1-NN Similarity
Average19. The only difference is that euclidean distance has been adopted instead of similarity between the local

descriptors20. Hence, dissimilarity between dx and dy has been evaluated as the average euclidean distance between

the local descriptors in dx and their nearest neighbor descriptors in dy:

d1(dx, dy) =
1

|dx|
∑

px∈dx

minpy∈dy (d(px, py)) (7)

where |dx| is the number of local descriptors of dx. Similarity between dx and dy has been computed as Percentage of
Matches19, defined as the percentage of local descriptors in dx having a correspondence in dy:

1486 Alessia Amelio / Procedia Computer Science 96 (2016) 1479 – 1488

sm(dx, dy) =
1

|dx|
∑

px∈dx

m(px, dy) (8)

where m(px, dy) assumes value of 1 if px has a correspondence in dy, 0 otherwise.

Experimentation has been performed in MATLAB R2012a and in Eclipse 3.8 with Java 1.7, on a laptop computer

Intel Core i7 2.3 GHz, 8 GB RAM and UNIX platform. A trial and error procedure has been employed on benchmark

images different from the datasets for tuning the α parameter. Hence, it has been fixed to 3 in all the experiments.

5. Results and Discussion

Two experiments have been performed for analysis of the ACSM dissimilarity measure with approximation. The

first one evaluates if an improvement of execution time is obtained in dissimilarity computation when ACSM mea-

sure with approximation is employed, with respect to the exact ACSM measure on the original images and on the

resized images, and the change in retrieval precision when approximation progressively grows. The second one eval-

uates the retrieval precision of ACSM dissimilarity measure with approximation compared to the other approximate

(dis)similarity methods. In the following, exact ACSM dissimilarity measure on the original images will be referred

as ACSM, exact ACSM dissimilarity measure on the resized images as ACSMnearest(64×64) (nearest neighbor interpo-

lation), ACSMbilinear(64×64) (bilinear interpolation), ACSMbicubic(64×64) (bicubic interpolation), and ACSM dissimilarity

measure with approximation as A-ACSM.

Table 1 shows the results of the first experiment, for each value of Δc varying from 3 to 9. In fact, it is proved

that very small improvements in execution time occur when Δc is equal to 1 and 2, and that a value of Δc higher

than 9 determines an abrupt lowering of retrieval precision for some types of images. Exact ACSM and approximate

ACSM dissimilarity measures are run on the subset of 50 images of COIL-20 dataset. Retrieval precision is averaged

on the 4 queries for the top k less dissimilar images, where k varies from 1 to 5. Furthermore, for each query, the

time (in seconds) spent to compute the dissimilarity between the given query and the complete dataset, is considered.

The average time on all the 4 queries together with the average retrieval precision are reported inside the table. It is

observable that the maximum retrieval precision is obtained from ACSM. In fact, it reaches the highest set of values

of 1.00, 1.00, 0.92, 0.94 and 0.75 for k varying from 1 to 5. However, average execution time per query is pretty

high, reaching a value of 10258 s. As soon as the value of Δc increases, the execution time starts decreasing. In

particular, when the value of Δc varies from 0 (in the case of ACSM) to 3, execution time lowers from 10258 s to

3360 s, which is really noticeable. On the contrary, the corresponding retrieval precision slightly decreases. In fact, it

remains equal to 1.00 for k = 1 and decreases at most of 0.10 for k varying from 2 to 5. For values of Δc higher than

3, the execution time exhibits a slower but meaningful decrease, until it reaches the value of 2512 s for Δc equal to

9. Accordingly, the retrieval precision remains satisfactory for all the k values from 1 to 5. In particular, for k = 1,

A-ACSM reaches in all the cases the same maximum value of ACSM which is 1.00. When k = 2, A-ACSM obtains

the same maximum retrieval precision of ACSM equal to 1.00 for Δc = 4, 6, 7 and 8 (4 cases out of 7). For k = 3, the

retrieval precision of ACSM is 0.92, which is equal to the retrieval precision of A-ACSM when Δc = 4, 5. However,

when Δc = 8, the retrieval precision of A-ACSM has the maximum value of 1.00, outperforming the value of 0.92

obtained from ACSM. Again, for k = 4, the retrieval precision of ACSM, which is 0.94, overcomes the retrieval

precision of A-ACSM for all the values of Δc. In fact, A-ACSM reaches 0.81 when Δc = 3 and 4, 0.75 when Δc =
5, 6, 8, and 0.62 when Δc = 7, 9. Finally, when k = 5, the retrieval precision of ACSM, equal to 0.75, is slightly

higher than the retrieval precision of A-ACSM. In fact, it takes a value of 0.65 for Δc = 3, 4, 5, 8, 9, a value of 0.70

for Δc = 6 and a value of 0.60 for Δc = 7. In conclusion, A-ACSM has the advantage to strongly lower the execution

time, while retrieval precision slowly decreases as the value of Δc becomes higher. It indicates that the loss generated

from the approximation method does not strongly affect the efficacy of the base algorithm, while it strongly improves

its efficiency. Furthermore, in some cases, an increase of the value of Δc determines an improvement in retrieval

precision (i.e. Δc varying from 7 to 8). It demonstrates that some pixels can be misleading in image comparison and

should be omitted for a better dissimilarity evaluation. Hence, introducing approximation sometimes becomes a valid

help for retrieval improvement. On the other hand, it is observable that execution time of ACSM employed on the

resized images is reasonably smaller. However, retrieval precision obtained from A-ACSM outperforms in many cases

that obtained from ACSM employed on the resized images. Specifically, A-ACSM overcomes ACSMnearest(64×64) and

1487 Alessia Amelio / Procedia Computer Science 96 (2016) 1479 – 1488

ACSMbilinear(64×64) in retrieval precision for k = 1, 2, 3, and ACSMbicubic(64×64) for k = 2. For the other k values, ACSM

employed on the resized images reaches the low retrieval precision values which are reached from A-ACSM for some

Δc.

Table 1. Average execution time (in seconds) and retrieval precision of exact ACSM and ACSM with approximation, with Δc parameter varying

from 3 to 9, for the top k less dissimilar images, with k varying from 1 to 5, on a subset of COIL-20 dataset

Method k=1 k=2 k=3 k=4 k=5 Avg. Time Q (s)

ACSM 1.00 1.00 0.92 0.94 0.75 10258

A-ACSM (Δc = 3) 1.00 0.87 0.75 0.81 0.65 3360

A-ACSM (Δc = 4) 1.00 1.00 0.92 0.81 0.65 3059

A-ACSM (Δc = 5) 1.00 0.87 0.92 0.75 0.65 2874

A-ACSM (Δc = 6) 1.00 1.00 0.83 0.75 0.70 2743

A-ACSM (Δc = 7) 1.00 1.00 0.83 0.62 0.60 2660

A-ACSM (Δc = 8) 1.00 1.00 1.00 0.75 0.65 2579

A-ACSM (Δc = 9) 1.00 0.87 0.83 0.62 0.65 2512

ACSMbicubic(64×64) 1.00 0.75 0.75 0.69 0.60 56.75

ACSMbilinear(64×64) 0.75 0.62 0.67 0.62 0.65 56.00

ACSMnearest(64×64) 0.75 0.62 0.67 0.62 0.65 56.00

Table 2 shows the results of the second experiment, in terms of average retrieval precision obtained from A-ACSM

on the subset of 200 images and 5 queries of Caltech-256 dataset, for the top k less dissimilar images, where k varies

from 1 to 10. A-ACSM results are compared on the same dataset to 1-NN Similarity Average approach using SIFT

descriptors (S IFTavg), Percentage of Matches approach using SIFT descriptors (S IFTmatch%
), 1-NN Similarity Aver-

age approach employing SURF descriptors (S URFavg), Percentage of Matches approach adopting SURF descriptors

(S URFmatch%
). Because 1-NN Similarity Average using euclidean distance is a dissimilarity measure, the top k less

dissimilar images are selected for retrieval precision. On the contrary, Percentage of Matches determines a similarity

measure, for which the top k most similar images are selected. Although the dataset is particularly complex, it is worth

to note that A-ACSM outperforms all the competitor approaches in 7 cases out of 10. In fact, the retrieval precision

obtained from A-ACSM outperforms the retrieval precision obtained from the other approaches for k=1 and for k
varying from 5 to 10. Only in 3 cases corresponding to k = 2, 3, 4, A-ACSM obtains the same results of S URFavg.

In fact, it reaches 0.50 for k = 2, 0.47 for k = 3, and 0.40 for k = 4. Obtained results demonstrate the superiority of

the new proposed approximate method in capturing the visual similarity with respect to the well-known approximate

methods in the state-of-the-art.

Table 2. Average retrieval precision of A-ACSM, 1-NN Similarity Average approach using SIFT descriptors (S IFTavg), Percentage of Matches
approach using SIFT descriptors (S IFTmatch%

), 1-NN Similarity Average approach employing SURF descriptors (S URFavg), Percentage of Matches
approach adopting SURF descriptors (S URFmatch%

), on a subset of Caltech-256 dataset for the top k most similar (less dissimilar) images, where

k varies from 1 to 10. In bold are the cases when A-ACSM outperforms all the other approaches.

k S IFTavg S IFTmatch%
S URFavg S URFmatch%

A-ACSM

1 0.20 0.20 0.40 0.40 0.60
2 0.40 0.30 0.50 0.30 0.50
3 0.33 0.33 0.47 0.27 0.47
4 0.30 0.30 0.40 0.30 0.40
5 0.32 0.28 0.32 0.24 0.44
6 0.30 0.27 0.33 0.23 0.43
7 0.26 0.26 0.29 0.26 0.43
8 0.25 0.25 0.27 0.27 0.40
9 0.22 0.22 0.29 0.29 0.40
10 0.22 0.22 0.30 0.28 0.38

6. Conclusions

The paper presented a new approximate dissimilarity measure for image comparison in CBIR systems, extending

the ACSM dissimilarity measure, based on the average area of the biggest square sub-matrices in common in the im-

1488 Alessia Amelio / Procedia Computer Science 96 (2016) 1479 – 1488

ages. ACSM was pursued by exactly matching the sub-matrices of the different images at the corresponding positions

pixel by pixel. Accordingly, a positive match between two sub-matrices was detected if a perfect correspondence of

the pixels occurred. The proposed ACSM extension introduced an approximation method in matching of the sub-

matrices. It was realized by omitting a portion of the pixels, at a given column offset, during the match. Accordingly,

two sub-matrices perfectly matched only if a subset of their pixels was equal at the corresponding positions. Hence,

an algorithm for computing the approximate measure was proposed and an example provided. Experimentation per-

formed on two benchmark image datasets demonstrated the validity of the proposed approximate approach in both

execution time and retrieval precision, when the method was compared with the exact ACSM measure and with other

well-known approximate measures in the state-of-the-art. In particular, it achieved a huge improvement in execution

time with respect to exact ACSM measure, while maintaining a satisfactory value of retrieval precision.

Future work will extend the experimentation to large databases and will test the approach in the field of biometrics.

References

1. Wang, J., Li, J., Wiederhold, G.. Simplicity: semantics-sensitive integrated matching for picture libraries. Pattern Analysis and Machine
Intelligence, IEEE Transactions on 2001;23(9):947–963. doi:10.1109/34.955109.

2. Carson, C., Thomas, M., Belongie, S., Hellerstein, J., Malik, J.. Blobworld: A system for region-based image indexing and retrieval.

In: Huijsmans, D., Smeulders, A., editors. Visual Information and Information Systems; vol. 1614 of Lecture Notes in Computer Science.

Springer Berlin Heidelberg. ISBN 978-3-540-66079-8; 1999, p. 509–517. URL: http://dx.doi.org/10.1007/3-540-48762-X_63.

doi:10.1007/3-540-48762-X_63.

3. Smith, J.R., Chang, S.F.. Visualseek: A fully automated content-based image query system. In: Proceedings of the Fourth ACM International
Conference on Multimedia; MULTIMEDIA ’96. New York, NY, USA: ACM. ISBN 0-89791-871-1; 1996, p. 87–98. URL: http://doi.

acm.org/10.1145/244130.244151. doi:10.1145/244130.244151.

4. Ma, W., Manjunath, B.. Netra: a toolbox for navigating large image databases. In: Image Processing, 1997. Proceedings., International
Conference on; vol. 1. 1997, p. 568–571 vol.1. doi:10.1109/ICIP.1997.647976.

5. Lv, Q., Charikar, M., Li, K.. Image similarity search with compact data structures. In: Proceedings of the Thirteenth ACM International
Conference on Information and Knowledge Management; CIKM ’04. New York, NY, USA: ACM. ISBN 1-58113-874-1; 2004, p. 208–217.

URL: http://doi.acm.org/10.1145/1031171.1031213. doi:10.1145/1031171.1031213.

6. Lowe, D.. Object recognition from local scale-invariant features. In: Computer Vision, 1999. The Proceedings of the Seventh IEEE
International Conference on; vol. 2. 1999, p. 1150–1157 vol.2. doi:10.1109/ICCV.1999.790410.

7. Bay, H., Tuytelaars, T., Van Gool, L.. Surf: Speeded up robust features. In: Computer Vision ECCV 2006; vol. 3951 of Lecture Notes
in Computer Science. Springer Berlin Heidelberg. ISBN 978-3-540-33832-1; 2006, p. 404–417. URL: http://dx.doi.org/10.1007/

11744023_32. doi:10.1007/11744023_32.

8. Wan, J., Wang, D., Hoi, S.C.H., Wu, P., Zhu, J., Zhang, Y., et al. Deep learning for content-based image retrieval: A comprehensive study.

In: Proceedings of the ACM International Conference on Multimedia; MM ’14. New York, NY, USA: ACM. ISBN 978-1-4503-3063-3;

2014, p. 157–166. URL: http://doi.acm.org/10.1145/2647868.2654948. doi:10.1145/2647868.2654948.

9. Amelio, A., Pizzuti, C.. Average common submatrix: a new image distance measure. In: 17th international Conference on Image Analysis
and Processing, (ICIAP 2013). LNCS 8156, Springer-Verlag; 2013, p. 170–180.

10. Amelio, A., Pizzuti, C.. A patch-based measure for image dissimilarity. Neurocomputing 2016;171:362–378. URL: http://dx.doi.

org/10.1016/j.neucom.2015.06.044. doi:10.1016/j.neucom.2015.06.044.

11. Apostolico, A., Parida, L., Rombo, S.E.. Motif patterns in 2d. Theoretical Computer Science 2008;390(1):40 – 55. URL: http://www.

sciencedirect.com/science/article/pii/S0304397507007645. doi:http://dx.doi.org/10.1016/j.tcs.2007.10.019.

12. Ranka, S., Heywood, T.. Two-dimensional pattern matching with k mismatches. Pattern Recognition 1991;24(1):31 –

40. URL: http://www.sciencedirect.com/science/article/pii/003132039190114K. doi:http://dx.doi.org/10.1016/

0031-3203(91)90114-K.

13. Crochemore, M., Lecroq, T.. Pattern-matching and text-compression algorithms. ACM Comput Surv 1996;28(1):39–41. URL: http:

//doi.acm.org/10.1145/234313.234331. doi:10.1145/234313.234331.

14. Giancarlo, R.. A generalization of the suffix tree to square matrices, with applications. SIAM Journal on Computing 1995;24(3):520–562.

15. Tourassi, G.D., Harrawood, B.. Evaluation of information-theoretic similarity measures for content-based retrieval and detection of masses

in mammogragrams. Medical Physics 2007;34(1):140–150.

16. Bicego, M., Lagorio, A., Grosso, E., Tistarelli, M.. On the use of sift features for face authentication. In: Computer Vision and Pattern
Recognition Workshop, 2006. CVPRW ’06. Conference on. 2006, p. 35–35. doi:10.1109/CVPRW.2006.149.

17. Chincha, R., Tian, Y.. Finding objects for blind people based on surf features. In: Bioinformatics and Biomedicine Workshops (BIBMW),
2011 IEEE International Conference on. 2011, p. 526–527. doi:10.1109/BIBMW.2011.6112423.

18. Zagoruyko, S., Komodakis, N.. Learning to compare image patches via convolutional neural networks. CoRR 2015;abs/1504.03641. URL:

http://arxiv.org/abs/1504.03641.

19. Amato, G., Falchi, F., Rabitti, F.. Landmark recognition in visito tuscany. In: Grana, C., Cucchiara, R., editors. Multimedia for Cultural
Heritage; vol. 247 of Communications in Computer and Information Science. Springer Berlin Heidelberg. ISBN 978-3-642-27977-5; 2012,

p. 1–13. URL: http://dx.doi.org/10.1007/978-3-642-27978-2_1. doi:10.1007/978-3-642-27978-2_1.

20. Hua, S., Chen, G., Wei, H., Jiang, Q.. Similarity measure for image resizing using sift feature. EURASIP Journal on Image and Video
Processing 2012;2012(1):1–11. URL: http://dx.doi.org/10.1186/1687-5281-2012-6. doi:10.1186/1687-5281-2012-6.

