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RThis review is aimed at presenting the state-of-the-art of time domain (TD) functional near-infrared spec-
troscopy (fNIRS). We first introduce the physical principles, the basics of modeling and data analysis. Basic
instrumentation components (light sources, detection techniques, and delivery and collection systems) of a
TD fNIRS system are described. A survey of past, existing and next generation TD fNIRS systems used for re-
search and clinical studies is presented. Performance assessment of TD fNIRS systems and standardization is-
sues are also discussed. Main strengths and weakness of TD fNIRS are highlighted, also in comparison with
continuous wave (CW) fNIRS. Issues like quantification of the hemodynamic response, penetration depth,
depth selectivity, spatial resolution and contrast-to-noise ratio are critically examined, with the help of ex-
perimental results performed on phantoms or in vivo. Finally we give an account on the technological devel-
opments that would pave the way for a broader use of TD fNIRS in the neuroimaging community.

© 2013 Elsevier Inc. All rights reserved.
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Introduction)

This review is aimed at presenting the state-of-the-art of time domain
(TD) functional near-infrared spectroscopy (fNIRS. As described in a re-
cent review on the history of fNIRS (Ferrari and Quaresima, 2012),
while fNIRS dates back about 20 years ago, we have to wait till 1996 for
the first single-channel TD fNIRS study to appear in the literature (Obrig
et al., 1996), and only some years later, in 1998–2000, the first papers de-
scribing multi-channel TD fNIRS instruments were published (Cubeddu
et al., 1999; Eda et al., 1999; Hintz et al., 1998; Ntziachristos et al., 1999;
Oda et al., 1999; Schmidt et al., 2000). Noticeably, from the physical and
technological point of view the origin of TD fNIRS can be traced back to
the 1980s, when researchers started exploring the fascinating field of dif-
fusing photons in random (e.g. biological) media (Kuga et al., 1983). A
few years later, several studies were focused on diffuse optical imaging
and spectroscopy with pulsed laser and photo-detection techniques
with picosecond resolution (Chance et al., 1988; Delpy et al., 1988; Ho
et al., 1989; Jacques, 1989a, 1989b; Patterson et al., 1989).

Nowadays, about thirty years after the first studies, there is only one
dual-channel TD fNIRS commercial system (Hamamatsu Photonics,
2013e) not sold outside of Japan, while there are no commercial TD
fNIRS imagers available (Contini et al., 2012; Ferrari and Quaresima,
2012). A few laboratory prototypes have been developed by research
groups located in academic or public research centers. To some extent
this situation could be interpreted as the failure of the TD approach
within biomedical optics. Indeed, in part of the scientific community
TD fNIRS (and TD techniques in general) has the reputation of being
cumbersome, bulky, and very expensive as compared to commercial
continuouswave (CW) fNIRS systems. At the time of writingwe cannot
ignore all these pitfalls and a gap still exists between CW and TD fNIRS
technology. However, we are at the forefront of a new erawhere recent
advances in photonic technologies might allow TD fNIRS to bridge the
gap and potentially to overtake CW fNIRS. In this review we try to sub-
stantiate this foresight by outlining the key physical and technological
aspects that will allow TD fNIRS to reach a maturity stage and to spread
in the biomedical and neuroimaging community.

In the following sections we first describe the principles behind TD
fNIRS and the basics of TD fNIRS instrumentation. We then highlight
the main strengths and weaknesses of TD fNIRS, notably in comparison
with CW fNIRS. A concise survey of TD fNIRS data analysis and applica-
tions is further reported. Finally we give an account on future perspec-
tives and technological developments that pave the way for a broader
use of TD fNIRS in the neuroimaging community.

Principles of TD fNIRS

Basics of NIRS

To properly understand the principles of TD fNIRS it is useful to
briefly recall the basics of near-infrared spectroscopy (NIRS). NIRS is
Please cite this article as: Torricelli, A., et al., Time domain functional N
dx.doi.org/10.1016/j.neuroimage.2013.05.106
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a powerful spectroscopic technique used in several fields (e.g. food
and agriculture, chemical industry, life sciences, medical and pharma-
ceutical, textiles) to nondestructively test samples like liquids (e.g. in
the food sector: oil, wine, and milk), powders (e.g. pharmaceutical
tablets and pills, and wheat flour), and bulk objects (e.g. in the food
sector: fruits and vegetables, meat, and cheese), allowing for their an-
alytical and chemical characterization (Siesler et al., 2002).

In the biomedical field NIRS makes use of light to noninvasively
monitor tissue hemodynamics and oxidative metabolism (Ferrari et
al., 2012). In the 600–1000 nm spectral range, light attenuation by the
main tissue constituents (i.e. water, lipid, and hemoglobin) is in fact rel-
atively low and allows for penetration through several centimeters of
tissue. Moreover, the difference in the absorption spectra of oxygenated
and deoxygenated hemoglobin allows the separatemeasurement of the
concentration of these two species (O2Hb and HHb, respectively), and
the derivation of physiologically relevant parameters like total hemo-
globin concentration (tHb = HHb + O2Hb) and blood oxygen satura-
tion (SO2 = O2Hb / tHb). The term fNIRS is then used to specifically
address NIRS applications in the neuroimaging field aiming at mapping
and understanding the functioning of the human brain cortex.

In NIRS a weak (a fewmW) light signal is injected in the tissue and
the emitted signal which carries information on tissue constituents is
measured. As a result of the microscopic discontinuities in the refrac-
tive index of biological tissues, NIR light is highly scattered, therefore
it is the complex interplay between light absorption and light scatter-
ing that determines the overall light attenuation. Proper physical
models for photon migration (e.g. diffusion, random walk, Monte
Carlo) should be used to correctly interpret NIRS signals unraveling
the absorption from the diffusive contribution (Durduran et al.,
2010; Martelli et al., 2009).

The feature physical quantities in a diffusivemediumare the scatter-
ing length ls and the absorption length la, representing the photonmean
free path between successive scattering and absorption events, respec-
tively. Equivalently, the scattering coefficient μs = 1 / ls and the ab-
sorption coefficient μa = 1 / la (typically expressed in units of mm−1

or cm−1) are used to indicate the scattering and the absorption proba-
bility per unit length, respectively. Due to anisotropy in light propaga-
tion, a reduced scattering coefficient is introduced μs′ = μs (1 − g),
where g is the anisotropy factor (Martelli et al., 2009).

Typically in a NIRS measurement, light is delivered to and collect-
ed from the sample by means of optical fibers (optodes) or other sim-
ple optical systems (e.g. relay lenses), which simplify the use of the
instrumentation, especially when dealing with clinical measurements
on volunteers or patients. A few commercial systems allow placing
light sources and detectors directly in contact with the probed tissue.
The simplest NIRS measurement configuration is the transmittance
mode with the injection and collection fibers on opposite surfaces.
In the biomedical field this is only possible for a few applications
such as hemorrhage detection in newborns (Gibson et al., 2006),
thanks to the small size and transparency of the head, optical
IRS imaging for human brain mapping, NeuroImage (2013), http://
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mammography, where the female breast is gently compressed by
parallel transparent plates (Taroni et al., 2012), or finger arthritis de-
tection (Golovko et al., 2011), where the thinned shape of the finger
makes this possible. On the other hand, the reflectance mode exploits
the fact that, thanks to scattering, light is highly diffused in the sam-
ple volume and NIRS measurements become possible with a couple of
optic fibers placed on the same surface of the tissue at a distance of a
few centimeters. A combination of several injection and collection fi-
bers on regularly spaced arrangements permits topography or tomo-
graphic approaches (Selb and Gibson, 2011).

Independently from the measurement geometry, three different
NIRS approaches can be implemented: i) CW NIRS makes use of a
steady state light source (e.g. a light emitting diode or a laser with in-
tensity constant in time) that can be typically amplitude modulated
at a low (a few kHz) frequency in order to exploit the significant im-
provements in sensitivity available from phase-locked detection tech-
niques, and of a detection apparatus sensitive to light attenuation
changes (e.g. photodiode); ii) Frequency domain (FD) NIRS is based
on amplitude modulated light sources (at frequency of the order of
100 MHz or larger, up to ∼1 GHz) and on the detection of light ampli-
tude demodulation and phase shift; iii) TD NIRS employs a pulsed
light source, typically a laser providing light pulses with duration of
a few tens of picoseconds, and a detection apparatus with temporal
resolution in the sub-nanosecond scale. A detailed review of these
different approaches can be found in Wolf et al. (2007).
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Fig. 1. Principles of TD NIRS. (a) The geometry of TD NIRS measurements in the reflectanc
shape”) is also schematically depicted; (b) TD NIRS signals at different values of the sour
(μa = 0.001 mm−1) and reduced scattering coefficient (μs′ = 1.0 mm−1); (c) TD NIRS s
efficient (μs′ = 1.0 mm−1) for different values of the absorption coefficient (μa = 0.00
distance (ρ = 30 mm) and fixed absorption coefficient (μa = 0.001 mm−1) for diffe
0.5 mm−1).

Please cite this article as: Torricelli, A., et al., Time domain functional N
dx.doi.org/10.1016/j.neuroimage.2013.05.106
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The classical TD NIRS approach

TD NIRS relies on the ability to measure the photon distribution of
time-of-flight (DTOF) in a diffusive medium (in the literature the
DTOF is also called temporal point spread function, TPSF). Following
the injection of a light pulse within a turbid medium, the DTOF mea-
sured at a fixed distance from the injection point (typically in the
range of 10–40 mm) is delayed, broadened, and attenuated. The delay
is a consequence of the finite time that light takes to travel the distance
between the source and detector; broadening is mainly due to the
different paths that photons undergo because of multiple scattering;
attenuation appears because absorption reduces the probability of
detecting a photon, and diffusion into other directionswithin themedi-
um decreases the number of detected photons in the considered direc-
tion. Increasing the source–detector distance yields an increased delay
and broadening of the DTOF and decreases the number of detected pho-
tons. Similar behavior is observedwhen the scattering increases. Finally,
absorption affects both the signal intensity and the trailing edge (i.e.
slope of the tail) of the DTOF, while leaving the temporal position of
the DTOF substantially unchanged.

Fig. 1 shows the effect of source detector distance, absorption, and
reduced scattering on TD NIRS signals in a homogeneous diffusive me-
dium mimicking a biological tissue. While this is an oversimplification
of the real geometry of a human head, nonetheless the model is useful
to present the basics of TDNIRS. In the following sectionwewill discuss
E
D
 P

e mode. The region where photon paths are more likely to occur (the so called “banana
ce detector distance (ρ = 10–30 mm, in steps of 5 mm) for fixed absorption coefficient
ignals at fixed source detector distance (ρ = 30 mm) and fixed reduced scattering co-
5–0.025 mm−1 in steps of 0.005 mm−1); (d) TD NIRS signals at fixed source detector
rent values of the reduced scattering coefficient (μs′ = 0.75–1.75 mm−1 in steps of

IRS imaging for human brain mapping, NeuroImage (2013), http://
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the effect of tissue heterogeneity (e.g. the layered structure of the
human head) on TD NIRS signals.

The null source detector distance TD NIRS approach

In 2005 a collaborative effort between the research groups at
Politecnico di Milano, Milan, Italy, and at University of Florence,
Italy, produced an innovative approach for the investigation of highly
diffusive media, based on TD NIRS reflectance measurements at null
source–detector separation (Torricelli et al., 2005). The null distance
TD NIRS approach was to some extent ground-breaking, since the
classical TD NIRS approach to diffuse imaging and spectroscopy
fixed source and detector at a large distance to avoid the inaccurate
description of light propagation based on photon diffusion at early
time and short distance. A major misconception in TD NIRS is that
penetration depth is dependent on source detector distance, like in
CW NIRS. On the contrary, it was demonstrated by means of numeri-
cal simulations that the null distance approach yields better spatial
resolution and contrast with respect to the use of longer source detec-
tor distances, for an absorbing point-like inclusion embedded in a ho-
mogeneous medium. The extension to absorption and scattering
inclusions with finite dimensions and to layered geometries, better
describing some biological structures, such as head or muscle, was
reported (Spinelli et al., 2006).

TD fNIRS modeling and data analysis

The raw data in TD fNIRS measurements consist of several time se-
ries of DTOFs, acquired at two or more wavelengths, typically from
multiple locations. Each DTOF has to be processed to extract the rele-
vant information. Values for the hemodynamic parameters in the
brain cortex can be estimated from the corresponding values of the
absorption coefficients by means of Beer's law. In a pioneer TD
fNIRS study the absorption coefficient was estimated by simply fitting
the tail of the measured TD NIRS signal with an exponential law
(Chance et al., 1988; Nomura et al., 1997). Nowadays, to properly
model light propagation in diffusive media in the TD regime, a wealth
of analytical and numerical tools exists, for both simulation purposes
(forward model) and for the interpretation of experimental results
(inverse model).

Forward model

The diffusion equation (DE), an approximation to the radiative
transfer equation (RTE) for the case of highly diffusive media, is the
most commonly used framework in which photon migration has
been treated. A fundamental paper for the TD NIRS approach was
published in 1989 by Patterson, Chance and Wilson (Patterson et al.,
1989) presenting the analytical solution of the DE for TD NIRS in a ho-
mogeneous semi-infinite medium or in an infinite slab. Since then,
many other papers have been published with improved description
of the boundary conditions (e.g. extrapolated or partial current
boundary), with analytical solutions for different geometry (e.g. par-
allelepiped, sphere, cylinder) and for heterogeneous cases (e.g. lay-
ered medium, point-like perturbation). It is not the scope of this
review paper to describe in details all these contributions. We simply
mention for the interested reader that recently, Martelli et al. (2009)
have collected in a comprehensive book the basic theory of photon
migration together with analytical solutions for the DE in the CW
and TD regimes (also implemented in the Fortran programming lan-
guage) for several geometries. Other handbooks similarly treat the
same issues (Hielscher et al., 2011; Tuchin, 2010).

Analytical solutions of the RTE have been recently provided for TD
NIRS (Liemert and Kienle, 2012; Simon et al., 2013) aiming at over-
coming the basic limitation of the DE (e.g. modeling photonmigration
at very short times or distances, with high absorption, or low
Please cite this article as: Torricelli, A., et al., Time domain functional N
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scattering). Further, the analytical description of TD perturbation in
a homogeneous diffusive medium has greatly improved, being able
to deal not only with point-like weakly absorbing inclusions, but
also with large highly absorbing objects (Sassaroli et al., 2010).

While to a first approximation the description of light propagation
in realistic geometries (i.e. adult head) can be treated with simplified
analytical models (e.g. layered or perturbed models), it is well known
that the use of numerical methods can provide more flexible and ac-
curate solutions. The finite element method (FEM) is a powerful nu-
merical approach to provide solutions of the DE in any geometry
and it has been used since 1993 in Biomedical Optics to model light
propagation (Arridge et al., 1993). Nowadays freely available tools
exist that implement FEM and also handle meshing of MRI anatomical
data (NIRFAST, 2013; TOAST, 2013). The Monte Carlo method pro-
vides the most accurate description of light propagation in diffusive
media (MCML, 2013; Wang et al., 1995), but in the past it was hin-
dered by a very long computational time. Nonetheless it was used
by several researchers to properly simulate photon migration in real-
istic adult and neonatal head models (Boas et al., 2002; Fukui et al.,
2003). With the advent of parallelization on graphical processing
units (Alerstam et al., 2008b; Fang and Boas, 2009; Ren et al., 2010),
computational times have been reduced by up to 100 times, and re-
searchers have revived the use of Monte Carlo methods (Dehaes et
al., 2011a; Sassaroli and Martelli, 2012). Recently, a further improve-
ment in terms of speed, memory usage, and accuracy has been
obtained by implementing a 3D code that represents a complex do-
main using a volumetric mesh (Fang, 2010; Fang and Kaeli, 2012).
E
DInverse model

The accuracy of non-linear fitting procedures based on the classi-
cal Levenberg–Marquardt approach in conjunction with TD NIRS ana-
lytical models has been validated several times (Alerstam et al.,
2008a; Cubeddu et al., 1996; Spinelli et al., 2009a). Recently, im-
proved fitting procedures based either on the Bayesian approach,
also known as optimal estimation (Martelli et al., 2012), or on genetic
algorithms (Hieslcher et al., 2000; Zhao et al., 2010) have been pro-
posed. Regularization methods for diffuse optical tomography, largely
adopted for processing CW data, have proved to be effective for TD
NIRS data (Arridge, 1999; Gao et al., 2004; Selb et al., 2007), as also
shown in other fields like optical mammography (Enfield et al.,
2007; Intes, 2005) and molecular imaging of small animals
(Advanced Research Technologies, 2013; Lapointe et al., 2012).
Semi-empirical approaches

Semi-empirical phenomenological approaches have been devel-
oped aiming at finding quantities derived from measured DTOF that
exhibit high sensitivity to deep (cerebral) absorption changes and
low sensitivity to superficial (systemic) absorption changes. Two
main approaches have been pursued: the first involves the calculation
of the moments of the DTOF, focusing in particular on the second
order moment (i.e. variance) (Liebert et al., 2004, 2012), or on higher
order moments (Hervé et al., 2012); an alternative approach exploits
time gating of the DTOF to separate late (deep) and early (superficial)
photons (Contini et al., 2007; Selb et al., 2005). The main advantage of
these methods is that they do not rely on nonlinear fitting proce-
dures, rather they are based on linear direct formulas, significantly in-
creasing the contrast-to-noise ratio.

Fig. 2 shows an experimental DTOF and the instrument response
function (IRF) obtained by facing the injection and collection fiber.
Moments of the DTOF and a typical time window used in the
time-gating semi-empirical approach are also shown. Data were ac-
quired by the system described in Contini et al. (2006).
IRS imaging for human brain mapping, NeuroImage (2013), http://
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Fig. 2. Typical TD NIRS signal. Experimental DTOF (red diamonds) and corresponding IRF (blue diamonds), measured by the system described in Contini et al. (2006). An example of
a time window (delay = 2000 ps; width = 1000 ps) used in the time-gating semi-empirical approach is also shown.
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TD fNIRS instrumentation

The values of the optical parameters of biological tissue (i.e.
human head) in the visible and NIR spectral range (e.g. μa =
0.005–0.05 mm−1; μs′ = 0.5–2.5 mm−1) (Torricelli et al., 2001), to-
gether with the values of source detector distances commonly used
(10–30 mm), set the time scale of TD NIRS measurements in the
range of 0.1–10 ns, and fix the light attenuation level to about 8 op-
tical densities. Therefore, the crucial features in the designing of a TD
fNIRS system are temporal resolution and sensitivity. It is therefore
the combination of a specific light source with a proper detection
technique that determines the overall performances of a TD NIRS
(and TD fNIRS) set-up. A further element that can influence the func-
tioning of the TD NIRS set-up is the delivery and collection system
used to bring light pulses to the measured sample and to collect
the NIRS signal. We briefly illustrate the main aspects related to
these building blocks, before presenting the existing TD fNIRS
systems.

Light sources

Current commercially available pulsed lasers produce short (10–
100 ps) and ultra-short (10–100 fs) light pulses, with repetition
frequency up to 100 MHz, and average power in the range of 1–
1000 mW.

Solid state lasers (e.g. Ti:Sapphire) provide a powerful and flexible
solution for laboratory set-ups (Coherent Inc., 2013; Newport
Corporation, 2013). They can in fact offer average power of ~b1 W, rep-
etition rates b100 MHz, and pulse duration under 1 ps over a broad
wavelength range (e.g. 750–850 nm). They provide the advantages of
wavelength tunability over 400 nm, and high output power enabling
time-multiplexing of the sourceovermultiple positions. Their use in clin-
ical TD fNIRS devices is somehow limited, mainly due to a bulky case and
to the long time (~10 s) required to switch between wavelengths.

Pulsed diode lasers are provided by several companies (Advanced
Laser Diode Systems GmbH, 2013; Alphalas GmbH, 2013; Becker &
Hickl GmbH, 2013a; Edinburgh Photonics, 2013; Hamamatsu
Photonics, 2013d; PicoQuant GmbH, 2013b). They are compact and
robust, and they typically come with sufficient average power
(b5 mW), narrow spectral bandwidth (b10 nm) and pulse duration
(b500 ps). Several TD systems have adopted this type of light source
(see Tables 1 and 2). Indeed, to reach acceptable performances, there
is always a trade-off between output power and pulse duration: due
to the particular modulation strategy (gain switching), output
power b1 mW has to be selected to obtain pulse duration b100 ps.
Please cite this article as: Torricelli, A., et al., Time domain functional N
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Another drawback is a long warm-up time (in some cases > 60 min)
needed to achieve pulse time stability in the picosecond range.

In the last years, a few companies (Fianium UK Ltd., 2013b; NKT
Photonics A/S, 2013b) have delivered commercial high-power fiber la-
sers based on supercontinuum (SC) generation. These devices are
ultra-broadband radiation sources with high spectral brightness and ex-
cellent beam quality. Typically, a total average power of b10 W is gener-
ated over a broad spectral range (e.g. 400–2000 nm), allowing average
spectral power of 1 mW/nm. A series of optoelectronic accessories are
used for automatic wavelength selection and power adjustment. Only
preliminary TD fNIRS studies have been reported with these sources,
yet they could potentially replace laser diodes in clinical systems. For
this to happen, issues related to power stability (critical due to the
nonlinear SC generation) and robustness (affected by the durability of fu-
sion and splicing in the photonic crystal fiber) have to be solved (e.g. by
means of feedback loop and opto-mechanical solutions).

We have to notice that the laser power should be fixed to proper
values in order to avoid possible damage or injury to the tissue. No
maximum permissible exposure (MPE) value for the brain has been
determined, however, the light intensity on the brain surface during
fNIRS can be safely estimated to be only a few percent of the solar ir-
radiation (Kiguchi et al., 2007). Despite the fact that these consider-
ations were made for CW fNIRS, they hold also for TD fNIRS.
According to the safety regulations (International Electrotechnical
Commission, 2001) the criteria for the MPE assessment in the case
of a repetitively pulsed or modulated lasers are: i) each single pulse
of the train shall not exceed the MPE for a single laser pulse of the
same duration; ii) the average exposure for a pulse train of duration
T shall not exceed the MPE for a single pulse of duration T; iii) the av-
erage exposure for a pulse train shall not exceed the MPE for a single
pulse multiplied by the correction factor N−0.25 (where N is the total
number of pulses impinging the tissue). The first criterion limits the
energy of a single pulse in order to avoid nonlinear effects that can
damage the tissue; in this case pulse duration and peak power are
critical. The second and third criteria limit the average exposure in
which the key factor is the average power. Thus, in cases in which a
single pulse does not have sufficient energy to cause damage, and
considering a repetition frequency of tens of MHz, the limiting factor
is the average power of the laser, as for CW laser light.

Detection techniques

To detect weak and fast light signals, several detection techniques
with temporal resolution in the range of 1–250 ps and sufficient sen-
sitivity are available.
IRS imaging for human brain mapping, NeuroImage (2013), http://
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Table 1t1:1

t1:2 Traditional TD fNIRS systems.

t1:3 Group Light
source

Wavelength
(nm)

Average
power
(mW)

Repetition
rate
(MHz)

Detection
technique

Count
rate
(MHz)

IRF
FWHM
(ps)

Source
channels

Detection
channels

ReferenceQ3

t1:4 Physikalisch-Technische
Bundesanstalt
Berlin, Germany

Ti:Sapphire 775, 805, 835
(serial)

800 (?) 80 (?) TCSPC NA 35 1 1 Obrig et al. (1996)

t1:5 Stanford University
Palo Alto, California

Laser diode 785, 850 0.1 NA OTDR NA NA 34 (serial) 34 Hintz et al. (1998)

t1:6 Shimadzu Corporation,
Hamamatsu Photonics,
Ministry of Int. Trade
and Industry,
Hokkaido University
Japan

Laser diode 761, 791, 830 0.25 5 TCSPC 1 150 64 Eda et al. (1999)

t1:7 Politecnico di Milano
Milan, Italy

Laser diode 672, 818 1 80 TCSPC 1 200 4 4 Cubeddu et al. (1999)

t1:8 University of Pennsylvania,
Philadelphia, Pennsylvania

Laser diode 780, 830 0.020 5 TCSPC 4 50 9 8 Ntziachristos et al.
(1999)

t1:9 TRS-10, Hamamatsu
Photonics
Japan

Laser diode 759, 797, 833 b0.1 5 TCSPC b1 150 1 1 Oda et al. (1999)
Ohmae et al. (2007)

t1:10 University College London
London, United Kingdom

Ti:Sapphire/fiber
laser

800
780, 815

800
>50

80
40

TCSPC 0.3 80–150 32 (serial) 32 Gibson et al. (2006)
Schmidt et al. (2000)

t1:11 TRS-16, Hamamatsu
Photonics
Japan

Laser diode 760, 800, 830 1 5 TCSPC b4 500 8 (serial) 16 Yamashita et al. (2003)

t1:12 Physikalisch-Technische
Bundesanstalt
Berlin, Germany

Laser diode 687, 803, 826 0.5 20 TCSPC 1 600 1 4 Liebert et al. (2004)

t1:13 Politecnico di Milano
Milan, Italy

Laser diode 685, 780 1 80 TCSPC 4 200 2 8 Torricelli et al. (2004)

t1:14 Institut de Physique
Biologique
Strasbourg, France

Laser diode 690, 785,
830, 870

1 20 TCSPC 8 200 1 8Q4 Montcel et al. (2004)
Montcel et al. (2005)

t1:15 Martinos Center for
Biomedical
Imaging, Boston

Ti:Sapphire One wavelength
tuned in the
range of 750
to 850 nm

1000 80 Time-gated
ICCD

NA 500 32 (serial) 18 Selb et al. (2005)
Selb et al. (2006)

t2:1

t2:2

t2:3Q5

t2:4

t2:5

t2:6

t2:7

t2:8
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plification, or non-linear up-conversion) can be used if time-gating of
the optical signal in the sub-picosecond time scale is required
(Tolguenec et al., 1997; Wang et al., 1991). Indeed this approach re-
quires complex and bulky system set-ups that limit its use to the lab-
oratory scale and in particular for those applications where extreme
time resolution is really needed: in the biomedical field the molecular
imaging of small animals by optical projection tomography (Bassi
et al., 2010), or in the physics of matter field the characterization of
photonic glasses (Toninelli et al., 2008). On the contrary, in fNIRS
U
N
C

Table 2
State-of-the-art TD fNIRS systems.

Group Light
source

Wavelength
(nm)

Average power
(mW)

Repetition
rate (MHz)

TRS-20, Hamamatsu Photonics
Japan

Laser diode 760, 800,
830

0.25 5

Physikalisch-Technische
Bundesanstalt
Berlin, Germany

Laser diode 689, 797,
828

1 42

Politecnico di Milano
Milan, Italy

Laser diode 690, 830 1 80

Politecnico di Milano
Milan, Italy

Laser diode 690, 830 1 80

Institute of Biocybernetics and
Biomedical Engineering
Warsaw, Poland

Laser diode 687, 832 1 80

Please cite this article as: Torricelli, A., et al., Time domain functional N
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applications sub-picosecond time resolution is definitely not manda-
tory (see also next section Temporal resolution).

The streak camera is a detection apparatuswith time resolution in the
1–10 ps range able to operate as multi-wavelength or multi-channel de-
tector by exploiting its bi-dimensional design (Hamamatsu Photonics,
2013a). TD fNIRS experiments in small animals were recently reported
with a streak camera apparatus (Mottin et al., 2011; Vignal et al., 2008),
but no extension to human studies seems feasible due to a very high
cost (also compared to non-linear time gating) and an overall complexity
that prevents the use by personnel without an adequate expertise in
Detection
technique

Count rate
(MHz)

IRF FWHM
(ps)

Source
channels

Detection
channels

Reference

TCSPC 1 250 2 2 Oda et al. (2009)

TCSPC 2 750 9 (serial) 4 Wabnitz et al. (2005)
Wabnitz et al. (2010)

TCSPC 8 500 16 (serial) 16 Contini et al. (2006)
Contini et al. (2009)

TCSPC 4 500 2 2 Re et al. (2010)

TCSPC 16 b800 18 (serial) 8 Kacprzak et al. (2007)

IRS imaging for human brain mapping, NeuroImage (2013), http://
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controlling of scientific instrumentation. Pioneer fNIRS studies were
performed to determine the optical path-length in the adult and/or new-
born head (Delpy et al., 1988; Ferrari et al., 1993; van der Zee et al., 1992;
Wyatt et al., 1990). No further fNIRS studies on human have been
reported to our knowledge.

The pioneer studies by Hintz et al. (1998) and Benaron et al. (2000)
used a TD fNIRS system based on amodified optical time domain reflec-
tometer (OTDR). This approach has been later abandoned because of
poor performances.

The time-correlated single photon counting (TCSPC) technique
(O'Connor and Phillips, 1984) has been extensively used for fluores-
cence lifetime measurements since the 1970s and later for TD NIRS
measurements in diffusive media. In a TCSPC experiment, the tempo-
ral profile of the NIRS signal is not directly measured but is retrieved
by repeatedly measuring the delay between the trigger of the injected
laser pulse and the detection of a (diffusively) reemitted photon for a
statistically significant number of photons. A detector with a fast
(b1 ns) and stable single electron response is required. A variety of
such detectors are commercially available: photomultiplier tube
(PMT) (Hamamatsu Photonics, 2013c), micro-channel plate (MCP)
PMT (Hamamatsu Photonics, 2013b), hybrid detector (Becker &
Hickl GmbH, 2013b; PicoQuant GmbH, 2013a), and single-photon av-
alanche diode (SPAD) (Excelitas Technologies Corp, 2013; ID
Quantique SA, 2013; Micro Photon Devices, 2013a; PicoQuant
GmbH, 2013e; SensL, 2013b). A key parameter in TCSPC is the count
rate, i.e. the number of photons per second which can be processed
(or simply counted) without exceeding the single photon statistics.
In the 1980s light sources were characterized by low intensity and
low repetition rate (b10 kHz), and TCSPC electronic circuit speed
was also limited (the dead time after the detection of a photon was
on the order of 10 μs). The consequence for TCSPC was a very low
count rate (b104 photon/s), which resulted in long acquisition times
(several minutes). Nowadays the speed of commercially available
TCSPC modules is 1000 times faster than the classic TCSPC devices
(e.g. the dead time is as low as 100 ns). In combination with a laser
with repetition rate in the order of tens of MHz, a TCSPC module
has potentially the capability of processing a few 106 photons/s. Fur-
ther, multi-dimensional TCSPC allows the simultaneous recording of
photons from a large number of detectors (Becker & Hickl GmbH,
2013d; PicoQuant GmbH, 2013d; SensL, 2013a). A complete and
updated description of TCSPC systems and applications (including
TD fNIRS) can be found in Becker (2005).

Detection of TD NIRS signal is also possible with a time-gated inten-
sified charge coupled device (ICCD) camera. It basically consists of a
photocathode, anMCP PMT, and a phosphor screen. High temporal res-
olution can be achieved by fast gating of the intensifier cathode of the
ICCD camera (LaVision BioTec GmbH, 2013). Years ago the time resolu-
tionwas limited to about 1 ns restricting the use of the time-gated ICCD
camera, while recently ultra-short gates (e.g. b100 ps) can be achieved
by using smaller image tubes. Like TCSPC, a time-gated ICCD camera is
characterized by sensitivity down to single photon detection. Like a
streak camera, the time-gated ICCD system is a bi-dimensional device,
thus potentially able to measure the spatial and temporal profile of
the remitted light from a diffusive medium by acquiring different im-
ages synchronized for different time delayswith respect to the injection
of the laser pulse. Every image contains the spatial information at a cer-
tain time instant, while the successive values stored in thememory and
referring to the same pixel determine the temporal distribution of the
detected signal. TD NIRS setups based on a time-gated ICCD camera
have been reported for optical imaging of diffusive phantoms
(D'Andrea et al., 2003) or small animals (Niedre et al., 2006). Prelimi-
nary TD fNIRS studies have used the time-gated ICCD camera as
multi-channel device in combination with optical fibers of different
lengths allowing for simultaneous detection of several time-gates
(Selb et al., 2005, 2006), or as an imaging device (Sawosz et al., 2010;
Zhao et al., 2011).
Please cite this article as: Torricelli, A., et al., Time domain functional N
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Nowadays, TCSPC systems are more easily found in prototypes and
instruments for TD fNIRS (see also next section TD fNIRS systems).
Since there is no striking advantage of TCSPC over time-gated ICCD
camera, the choice of the technique is rather determined by an overall
balance between costs, complexity and performances in relation also
to the specific applications.

When the TD null source detector distance approach is considered,
several technological issues should be taken into account. The most se-
vere obstacle is the presence of early photons. With decreasing source
detector distance, early photons increase at a much faster pace than
the late photons and saturate the detection electronics. This prevents
the extraction of long-lived photons that carry information from deep
structures. Thus, an efficient mechanism to gate, or at least to reduce,
the early photons is needed to be able to exploit the advantages of
this approach.

This modality is available for a MCP PMT by acting on its gain, for
an ICCD camera by operating on the gain of the intensifier, and also
for a streak camera by controlling the ramp voltage so as to sweep
electrons corresponding to initial photons out of the active surface
of the CCD detector. In practice, in all these devices, only the detection
stage after the photocathode is altered. Therefore this solution is ef-
fective if the required extinction ratio is not severe, since initial pho-
tons still impinge onto the photocathode and extract electrons,
causing damage to the active surface and increasing significantly the
background noise. An attempt to obtain null distance TD NIRS with
an ICCD based system has been reported (Sawosz et al., 2012).

A possible alternative is the use of a SPAD. A key difference of
SPAD detectors with respect to other approaches is the possibility
to enable the device above threshold very quickly. When the SPAD
is disabled, the avalanche process cannot start, and most of the
electron–hole pairs generated by the incoming photons recombine
within the active area in a few tens of ps. Thus, this device is not dam-
aged by the burst of initial photons, and a strong rejection of early
photons can be achieved.

The first demonstration of the null distance approach with a SPAD
based system has been reported by the research group at Politecnico
di Milano, Milan, Italy (Pifferi et al., 2008).

Finally, we mention that a completely different method for measur-
ing TDoptical quantities has been proposedusingpseudorandombit se-
quences as light source and a cross-correlation scheme to retrieve the
impulse response (Chen and Zhu, 2002, 2003). While, the overall per-
formances of this approach were not satisfactory, this is an interesting
example of cross-contamination between different fields.
Delivery and collection system

Due to the limitations related to the size of TDNIRS light sources and
detectors, it is typically required that the light pulses are delivered to
the sample (e.g. the head) and conveyed to the detectors by some
kind of optical system. The easiest, and most common way, is to couple
light into optical fibers or bundles, which has the additional advantage,
from the point of view of safety, of electrically isolating the measure-
ment site from the device.

Single mode optical fibers are characterized by small core diame-
ter (b10 μm) and typically operate in a narrow spectral range
(b100 nm) centered at a specific operating wavelength in the visible
and NIR range. Multimode optical fibers are built with core diameter
of different sizes (10–1000 μm) and operate over a broad spectral
range (from ultraviolet to NIR). Attenuation, numerical aperture
(NA), and dispersion are the main characteristics related to optical fi-
bers that have to be considered when designing a TD fNIRS system.

Light attenuation in modern low hydroxyl ions fused silica optical
fibers (used in long range data transmission) is below 10 dB/km,
while plastic optical fibers (for short range data transmission) have
higher attenuation (b100 dB/km) (Gowar, 1993). Attenuation is
IRS imaging for human brain mapping, NeuroImage (2013), http://
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therefore negligible for fiber length in the order of 10 m, as used in
fNIRS.

The NA is related to the maximum acceptance angle of an optical
fiber and it influences the light gathering ability of the fiber (Gowar,
1993). To maximize collection efficiency in TD NIRS, high NA values
(e.g. >0.3) and large core diameters (e.g. >500 μm) should be pre-
ferred for the collectionfibers since the total power that can be collected
from a diffusive sample by a fiber scales with the squares of the NA and
of the radius. Multimode fibers have to be preferred to single mode fi-
bers to optimize light transmission efficiency in the TD fNIRS system.

Dispersion is a crucial parameter for TD fNIRS since it broadens the
light pulses traveling in the fiber. When using a narrow bandwidth
source (e.g. laser), total dispersion is dominated by modal dispersion
in a multimode fiber, while material (chromatic) dispersion can be
dominant in a single mode fiber. Modal dispersion can be greatly re-
duced by a proper design of the refraction index profile of the optical
fiber: graded index (GI) fibers should be preferred to step index (SI) fi-
bers. Typical value of dispersion in GI fibers is 1 ps/m, while it increases
to about 100 ps/m in SI fibers (Gowar, 1993).

The optimal solution to reduce pulse broadening and maximize light
transmission for light delivery and collection would be a multimode GI
optical fiber with the highest NA and the largest core diameter.
Multimode GI optical fibers are typically fabricated with 50, 62.5 and
100 μm core diameters, therefore limiting their applications in TD
fNIRS to light delivery. For maximizing TD signal collection from the tis-
sue afiberwith amuch larger diameter is required. Unavoidably, SIfibers
have to be chosen, being commercially available with core diameter up
to 3000 μm. Unfortunately, the bending radius of such large fibers is
not negligible (e.g. >50/>150 mm for momentary/long term bend of a
1000 μm core diameter fiber), resulting in a limited flexibility. For ease
of use, especially in the clinical environment, fiber bundles, made by
gathering hundreds of smaller flexible fibers, have to be preferred.
Modal dispersion turns out to be a limiting factor since SI fibers are
used (the use of GI fibers would not improve the performances due to
waveguide dispersion effects). A trade-off between fiber bundle length
and NA is required, typically obtained by limiting fiber bundle length
to a couple of meters. The use of longer bundles determines an overall
unacceptable temporal resolution, quantified by the full width at half
maximum(FWHM) of the IRF. Values of the IRF larger than 1 ns compro-
mise the accuracy of TD NIRS measurements (Liebert et al., 2003).

Additional components and devices are typically used in delivery
and collection systems. Switches, splitters and galvo mirrors multiplex
light pulses in different locations of the sample (e.g. for mapping pur-
poses). Variable neutral density attenuators are used to equalize the
signals, while lenses help in focusing light to the detection systems.
Band-pass filters prevent room light to interfere with the TD NIRS sig-
nal, and help in collecting the fluorescence signal from endogenous or
exogenous chromophores like indo-cyanine green (Gerega et al.,
2012; Milej et al., 2012). The main effect of these components is the in-
troduction of additional attenuation terms that could reduce the overall
responsivity of the TD fNIRS set-up (Wabnitz et al., 2011), while they
have a negligible effect on the IRF.

TD fNIRS systems

In this section we present a survey of traditional (Table 1),
state-of-the-art (Table 2) and next generation (Table 3) TD fNIRS sys-
tems. With the term traditional we refer to TD fNIRS systems that, to
our knowledge, have been now discontinued, or replaced by novel
upgraded systems, or used for other applications. It is worth noting
that most of these systems represented a breakthrough as compared
to classical TD NIRS laboratory systems, typically based on bulky gas la-
sers and massive accessories. Indeed, they were compact at the level of
being transportable out of the lab (see Fig. 3). In most cases they were
able to operate simultaneously at two ormorewavelengths. Parallel ac-
quisition of up to tens of channels was possible, opening the way to
Please cite this article as: Torricelli, A., et al., Time domain functional NIRS imaging for human brain mapping, NeuroImage (2013), http://
dx.doi.org/10.1016/j.neuroimage.2013.05.106
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sub-optimal performances due to a reduced count rate (on average
b1 MHz) and to low average power (b1 mW) of the light sources. In
many cases theywere used for static imagingwith very long acquisition
times (up to severalminutes), or formonitoring hemodynamic changes
in a few channels with a relatively short acquisition time (b1 s).

We consider then the state-of-the-art TD fNIRS systems that in the
last five years (2008–2012) have been used for research and clinical
fNIRS studies in adults and neonates, as reported in the literature.

Finally we report on the next generation TD systems to present the
work that, to our knowledge, researchers are carrying out to test
novel approaches and to implement advanced technological solutions
aiming at improving performances of TD fNIRS devices. These set-ups
have only provided proof of principle results, while no clinical studies
have been reported.

We conclude this section reporting on the issues related to
multimodality co-registration of TD fNIRS with other techniques and
to performance assessment and standardization of TD fNIRS system.

Traditional TD fNIRS systems

A collaborative effort among the research groups at theDepartment of
Physics, Department of Bioengineering, andDepartment of Biochemistry/
Biophysics at University of Pennsylvania, under the coordination of
Prof. Britton Chance, developed a multi-channel TD instrument
(Ntziachristos et al., 1999). Spatially resolvedmeasurements of contralat-
eral primary motor-cortex activation during voluntary finger tapping
were performed and successfully coregistered with fMRI data. Results
Please cite this article as: Torricelli, A., et al., Time domain functional N
dx.doi.org/10.1016/j.neuroimage.2013.05.106
demonstrated the efficiency of the device in the detection of local optical
variations as well as its good performances in coregistration with fMRI.

The TD fNIRS system developed at Stanford University, Palo Alto,
California, was characterized by a large number of channels (34 × 34),
allowing for the first diffuse optical tomography measurements, but it
suffered for very low sensitivity. The acquisition times were tremen-
dously long and applications were limited to static imaging of hemor-
rhage in newborns (Benaron et al., 2000).

The tomographic TD fNIRS system developed by the research
group at the Department of Medical Physics and Bioengineering,
University College London, overcame most of the limitations of the
previous system, and it was successfully used not only for quasi static
imaging in diseased newborns (Austin et al., 2006; Hebden et al.,
2004) but also for functional studies in healthy newborns (Gibson
et al., 2006).

After a preliminary TD fNIRS studywith a laboratory set-up (Obrig et
al., 1996), the research group at Physikalisch-Technische Bundesanstalt
in Berlin, Germany, developed a compact system that was used for very
relevant studies in which it was first demonstrated the ability of the TD
approach to discriminate intra-cerebral and extra-cerebral contribution
(Liebert et al., 2004; Steinbrink et al., 2001).

The compact 8-channel TD fNIRS system developed at Politecnico di
Milano, Milan, Italy was used for studying the bilateral prefrontal cortex
hemodynamic response to a verbal fluency task (Quaresima et al.,
2005).

The research group in Strasbourg used an eight-channel system
based on picosecond laser sources and a multi-anode MCP PMT to per-
form a single point measurement during a finger tapping experiment
IRS imaging for human brain mapping, NeuroImage (2013), http://

http://dx.doi.org/10.1016/j.neuroimage.2013.05.106
http://dx.doi.org/10.1016/j.neuroimage.2013.05.106
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(Montcel et al., 2005, 2006). An upgraded version of this system is now
being used formolecular imaging of small animals (Montcel and Poulet,
2006).

Several studies on piglets (Ijichi et al., 2005a), infants (Ijichi et al.,
2005b, 2005c) and adult (Hoshi et al., 2006; Kakihana et al., 2010,
2012; Ohmae et al., 2006, 2007; Sato et al., 2007; Yokose et al., 2010)
have been reported with the commercial TD fNIRS instrument TRS-10
developed by Hamamatsu Photonics. Fewer studies were performed
with the modified multi-channel set-up (Oda et al., 1999; Ueda et al.,
2005).

The research group at theMassachusetts General Hospital, Athinoula
A. Martinos Center, Charlestown, Massachusetts, developed a TD fNIRS
system based on an ICCD detector coupled to 18 optical fibers of 7
different lengths creating an optical delay, and enabling simultaneous
detection in 7windows by step of 500 ps. Preliminary singlewavelength
results on adults performing a motor task were reported (Selb et al.,
2005, 2006).

State-of-the-art TD fNIRS systems

Nowadays, there is only one commercial TD fNIRS system, the
TRS-20 developed in Japan by Hamamatsu Photonics and sold (only
in Japan) as an investigational-use only, stand-alone two-channel
system. The TRS-20 employs thermo-electrically controlled picosec-
ond laser diodes, operating at 760 nm, 800 nm, and 830 nm, with
an overall temporal resolution b150 ps (IRF FWHM), and proprietary
fast photomultipliers and TCSPC module (Hamamatsu Photonics,
2013e; Oda et al., 2009).

Existing TD fNIRS systems with clinical applications have been
mainly developed by European research groups located in academic
or public research centers.

The research group at Physikalisch-Technische Bundesanstalt, Berlin,
Germany, has developed a three-wavelength four-detection-channel
TCSPC instrument (Wabnitz et al., 2005, 2010) that has been effectively
used for bedside assessment of cerebral perfusion in stroke patients
(Liebert et al., 2005; Steinkellner et al., 2010), to explore neurovascular
coupling in combination with magneto-encephalography (Mackert et
al., 2008; Sander et al., 2007) and to study systemic artifacts in TD
fNIRS (Kirilina et al., 2012). With little modifications in the light sources
and in the detectors, the system has been also used for fluorescence de-
tection from exogenous chromophores in the adult human brain (Jelzow
et al., 2012; Liebert et al., 2006).

In Warsaw, Poland, a 32-channel configuration has been assem-
bled by doubling the switching and detection elements at the Insti-
tute of Biocybernetics and Biomedical Engineering (Kacprzak et al.,
2007) and used in clinical applications such as brain oxygenation
measurements during carotid endartectomy (Kacprzak et al., 2012)
and detection of brain traumatic lesions (Liebert et al., 2011).

A 16-source and 16-detector TD fNIRS imager with fast acquisition
time (>5 ms per channel) was developed at Politecnico di Milano,
Milan, Italy (Contini et al., 2006; Contini et al., 2009) and used to map
the cortical response in healthy volunteers during cognitive studies
(Butti et al., 2009; Molteni et al., 2012) and in epileptic patients with
movement disorders during motor tasks (Torricelli et al., 2011). The
same group developed a 2-source and 2-detector TD fNIRS system
based on the space-multiplexing approach (Re et al., 2010) with im-
proved sensitivity that was used to investigate the sensitivity of TD
fNIRS to cortical and superficial systemic response (Aletti et al., 2012).

Finally, we mention that a couple of European companies sell
components (pulsed lasers, photo-detectors and TCSPC modules) and
stand-alone TD systems, with up to 4 channels, mainly for standard
fluorescence lifetime applications, single molecule spectroscopy, and
lifetime imaging with scanning microscopes (Becker & Hickl GmbH,
2013c; PicoQuant GmbH, 2013d). These products could be properly
adapted to be used for investigational TD fNIRS studies (Diop et al.,
2010).
Please cite this article as: Torricelli, A., et al., Time domain functional N
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Next generation TD fNIRS systems

The research group at the Department of Medical Physics and Bio-
engineering, University College London, designed and developed an
upgraded version of the tomographic TD fNIRS system (MONSTIR
2). Main improvements with respect to the previous device are the
use of a SC fiber laser equipped with an acousto-optic tunable filter
(AOTF) device allowing a multi-wavelength approach, and the use
of modern TCSPC acquisition boards to replace the obsolete electronic
modules. The system has been tested on preliminary measurements
on newborns (Hebden, 2012a; Hebden et al., 2012b).

The ICCD based TD fNIRS system developed at the Massachusetts
General Hospital, Athinoula A. Martinos Center, Charlestown, Massa-
chusetts, has been recently upgraded by introducing a SC fiber laser to
replace the Ti:Sapphire laser, and a set of band-pass filters on a fast
filter wheel to properly and rapidly select the operating wavelengths
(Selb and Boas, 2012; Selb et al., 2013). The main limitation of the
previous set-up (i.e. the operation at a single wavelength) has been
therefore overcome.

A novel TD fNIRS systemhas been recently developed by researchers
at Politecnico di Milano, Milan, Italy. The use of hybrid PMT with re-
duced afterpulsing allows acquisition of TD fNIRS signals over a larger
dynamic and temporal range. Further, the space-multiplexing approach
implemented by means of a cascade of fast fiber optic switches that se-
quentially delivers the different wavelengths in different injection
channels, eliminates the cross-talk between TD NIRS signal at different
wavelengths (Contini et al., 2013b).

The research group at Physikalisch-Technische Bundesanstalt,
Berlin, Germany has been testing novel approaches for light delivery
and collection. A cascade of splitters is used to illuminate in parallel sev-
eral injection points to potentially reduce power loss. Time-multiplexing
of TD NIRS signal from different channels allows parallel detections.
Moreover, advanced PMT with improved sensitivity in the NIR
(e.g. GaAs surface) or reduced after-pulsing (e.g. hybrid PMT) has
been tested (Steinkellner et al., 2012).

In a different set-up, a novel non-contact system is used that utilizes
a quasi-null source detector separation approach for TD NIRS, taking
advantage of polarization-sensitive detection and a state-of-the-art
fast-gated SPAD to detect late photons only, bearing information
about deeper layers of the biological tissue. Measurements on phan-
toms and preliminary in vivo tests demonstrate the feasibility of the
non-contact approach for the detection of optically absorbing perturba-
tions buried up to a few centimeters beneath the surface of a tissue-like
turbid medium (Mazurenka et al., 2012, 2013).

On the basis of the experience gained with advanced laboratory
setups (Pifferi et al., 2008; Tosi et al., 2011), a next generation TD fNIRS
prototype implementing the null distance approach has been recently
designed and developed at Politecnico diMilano, Milan, Italy. The instru-
ment is based on a custom developed SC fiber laser (Fianium Ltd.,
Southampton, United Kingdom), providing two independent outputs at
710 nm and 820 nm, with a repetition frequency of 40 MHz, 100 mW
average power at each wavelength, and a FWHM of b50 ps. A
fast-gating (b500 ps) front-end electronics and two SPAD detectors are
used to simultaneously acquire photons at different time-windows.
Preliminary in vivo results show, for the first time, the possibility to
non-invasively monitor cortical O2Hb and HHb changes during a motor
task with a source detector distance of b5 mm (Contini et al., 2013a).

The collaboration between Ecole Polytechnique Federale de
Lausanne and University Hospital Zurich, Switzerland, allowed re-
searchers to design a 3D imager based on SPAD imager with
128 × 128 pixels capable of performing TD NIRS measurements
with a resolution of b100 ps. The system is equipped with picosecond
pulsed diode laser and a telecentric objective for non-contact mea-
surements. The main drawback is at present the long time required
to the readout circuitry to process the data. (Mata Pavia et al.,
2011a, 2011b, 2012).
IRS imaging for human brain mapping, NeuroImage (2013), http://
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Co-registration with other modalities

There are no fundamental limitations that prevent the possibility to
co-register fNIRS with other neuroimaging modalities. Multimodality
should be pursued aiming not only at validating fNIRS, but also at better
understanding the physiological processes following brain stimulation
(Yucel et al., 2012) and at the minimization of physiological noise
(Cooper et al., 2012b).

For instance TD fNIRS and electroencephalography (EEG) co-
registration has been performed both for validating the TD fNIRS
(Torricelli et al., 2011) and for the study of the neurovascular coupling
(Bari et al., 2012; Jelzowet al., 2010). Experiments have beenperformed
with pre-mounted EEG caps or mounting of individual electrodes. In
both cases no interferences have been reported, verifying that these
neuroimaging techniques can be easily applied and co-applied. More-
over results of the different techniques showed agreement between
them and with literature. In neurovascular coupling studies, fNIRS
allowed a reliablemeasure of oxy- and deoxyhemoglobin changes, per-
mitting the identification of a cascade of responses and the quantifica-
tion of temporal delays between electrical and vascular response. To
co-register TD fNIRS and functional magnetic resonance imaging
(fMRI), the TD fNIRS instrument should reside and be operated at a
safe distance from the fMRI scanner. Therefore, the use of long
(e.g. 10 m) optical fibers for light delivery and collection from the
head of the subject is required. As discussed, temporal dispersion
in the optical fibers introduces a degradation of the overall perfor-
mance of the TD fNIRS system. A reduction of the NA (e.g. by spatial
filtering the mode propagating in the outer part of the fiber bundle)
is useful to maintaining the IRF at acceptable FWHM values. This
comes unavoidably at the cost of a large loss of signal that has to
be compensated by the use of very sensitive detectors (Brühl et al.,
2005; Jelzow et al., 2009; Torricelli et al., 2007). Further, to fit the
limited space between the head and the MRI cage, 90° bended
optodes or prisms were used. The MR-compatible fNIRS systems
were successfully employed. The combination of the two modalities
introduced advantages for both sides: the analysis of optical data
was validated and improved by using MR results as prior knowl-
edge, while the calibration of the fMRI-BOLD signal could benefit
from the fNIRS measured parameters.

Similarly, in TD fNIRS and magneto-encephalography (MEG)
co-registration the use of 4.5 m long optical fiber bundles, mounted
tangentially to the subject's head via prisms, has been reported since
the instrument was positioned outside the magnetically shielded
room. A modulation-based DC-MEG technique was used with the bed
sinusoidally moved in a horizontal direction by a hydraulic piston.
Only minor movement amplitudes of the head of a few millimeters
were observed during the stimulation periods (Mackert et al., 2008;
Sander et al., 2007). In the reported papers, experiments were
performed inMEG/TD fNIRS coregistration to characterize the dynamics
of the interaction between the cortical neuronal and vascular responses.
The combined analysis provided not only a qualitative, but also a quan-
titative assessment of the temporal behaviors. Furthermore, the depth
resolution of TD fNIRS enabled the separation of systemic and cerebral
hemoglobin concentration changes. This eliminated the uncertainty of
previous MEG/CW fNIRS recordings, where signal contaminations by
extra-cerebral variations could not be excluded definitely.

Simultaneous co-registration of TD fNIRS and positron emission to-
mography (PET) were performed and no particular technical issues
were raised (Ohmae et al., 2006). A good correlation coefficient was
obtained between TD fNIRS-derived cerebral blood volume (CBV) and
PET-derived CBV, while the absolute CBV levels by TD fNIRS were
lower than those by PET.

TD fNIRS signals from cortical regions and changes in micro-
circulatory blood flow dynamics in the scalp as measured by laser
Doppler flowmetry (LDF) were simultaneously recorded in a couple of
recent studies (Aletti et al., 2012; Kirilina et al., 2012), strengthening
Please cite this article as: Torricelli, A., et al., Time domain functional N
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that the model-based separation of TD fNIRS early (superficial) and
late (deep) photons is able to cancel, or at least attenuate, the surface
confounding effects. Since LDF employs CW light sources, proper
solutions (e.g. use of filters, offset positioning of the probes,
time-multiplexing of the techniques) are required to avoid interference
on TD fNIRS signals. Same cautions should also be usedwhen TD fNIRS is
simultaneously co-registered with another optical technique such as
diffuse correlation spectroscopy (Busch et al., 2012; Diop et al., 2011).

Performance assessment and standardization

The compelling need for standardization and quality assessment of
diffuse optics instruments is a key requirement for the translation of
new optical tools to effective clinical use (Hwang et al., 2012). The
definition of common procedures for the performance assessment of
instruments, implemented over a set of highly calibrated and reproduc-
ible phantoms is a key requirement for the grading of system perfor-
mances, the quantitative assessment of instrument upgrades, the
validation of clinical prototypes, the enforcement of quality control
and consistency in clinical studies, and the comparison of clinical results
performedwith different instruments.Within the framework of different
European projects (MEDPHOT, OPTIMAMM, nEUROPt, LaserLabEurope),
common protocols and related phantom kits have been developed to
provide guidelines for the comparison of various diffuse optic systems.
In particular, the performance assessment of TD fNIRS instruments was
addressed in the nEUROPtprojectwith the adoptionof 3 protocols agreed
upon by a cluster of 17 institutions.

These include the “Basic instrumental performance” protocol to
characterize key hardware specifications of TD fNIRS systems (e.g.
FWHM of the IRF, drift of laser power or timing) that are crucial for
the outcome of the clinical measurements (Wabnitz et al., 2011).

The MEDPHOT protocol (Pifferi et al., 2005) was adapted to TD fNIRS
systems in order to characterize the capability of an instrument to mea-
sure the optical properties (absorption coefficient and reduced scattering
coefficient) of a homogeneous diffusive medium by assessing accuracy,
linearity, noise, stability, and reproducibility of these measurements.

Finally, the nEUROPt protocolwas designed to address the capability
of optical brain imagers to detect, localize and quantify changes in the
optical properties of the brain (cerebral cortex) and to eliminate the in-
fluence of extra-cerebral tissues on the measurement. A specific inho-
mogeneous phantom was designed to reliably mimic absorption
changes in the cortex as the most relevant physical quantity in neuro-
logical applications of diffuse optical imaging (Wabnitz et al., 2013).

Common efforts are being currently pursued to further promote
standardization issues in the scientific community both for TD and
CWregimes. A joint initiative of the International Electrotechnical Com-
mission (IEC) and of the International Organization for Standardization
(ISO), led by Prof. Hideo Eda (The Graduate School for the creation of
new Photonics industries, Hamamatsu, Shizuoka, Japan), with the sup-
port of Physikalisch-Technische Bundesanstalt, Berlin and Politecnico di
Milano, Milan, for actions at the local (national) level in Germany and
Italy, has been started, aiming at defining a simple, easy to use standard.
The proposed project is carried out by technical committees ISO/TC 121/
SC 3 and IEC/SC 62D JWG 5 under the IEC lead (IEC, 2013).

Finally it is worthmentioning that TD fNIRS data type (aswell as CW
and FD data types) will be inserted in the Shared Near Infrared File For-
mat Specification, a recent initiative for standardization of data types
triggered by the fNIRS community (Frederick and Boas, 2013).

TD fNIRS features

In this section we present the main features (or fingerprints) of TD
fNIRS, aiming at elucidating the differences and advantages with re-
spect to CW fNIRS and its drawbacks. We focus on the issues of quan-
tification, penetration depth, depth selectivity, spatial resolution, and
contrast-to-noise ratio. As a general aspect we note that these issues
IRS imaging for human brain mapping, NeuroImage (2013), http://
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are strongly entangled since the common underlying physical phe-
nomenon is the interplay between light absorption and light diffusion
at the microscopic scale. However, for the sake of clarity we try to dis-
tinguish the main peculiarity of each presented issue. We conclude
this section with representative in vivo data obtained with a TD
fNIRS system.

Quantification

Probably the oldest argument in favor of the TD approach is that of
discrimination and quantification of the optical properties, namely
the absorption coefficient and reduced scattering coefficient, the for-
mer being related to tissue constituents, the latter to tissue structures
(Jacques, 1989b). Absolute estimate of the absorption coefficient
would allow the derivation of SO2, a crucial parameter for many neu-
rological conditions (Maas and Citerio, 2010).

However this advantage of TD NIRS strictly holds in a homoge-
neous medium. A TD NIRS measurement at a single source detector
distance allows a complete optical characterization of the probed tis-
sue, without the complicated multi-distance arrangements and the
cumbersome calibration procedure that are needed for CW NIRS
and FD NIRS. A few CW NIRS commercial systems have implemented
a multi-distance approach (also called space-resolved spectroscopy,
SRS) and yield parameters related to SO2, assuming a constant and
spectrally flat scattering coefficient (Wolf et al., 2007).

When dealing with more complex geometries, the use of TD NIRS is
likely to become less immediate. In a two-layered medium accurate
estimate of the optical parameters have been obtained, provided a
multi-distance (Martelli et al., 2003, 2004) or a multi-distance and
multi-wavelength (Pifferi et al., 2001). TD approach is used. In the
case of a real tissue, like the human head, a two-layered model could
be a too simple approximation, and the use of priors of the true geom-
etry (e.g. from anatomical 3DMRI maps or atlas), would be a prerequi-
site for setting up the forward problem by numerical methods like FEM
or Monte Carlo. Absolute quantification of the optical properties in a
real head is still an open issue. A recent collaboration among research
groups in the framework of the Europeanproject nEUROPt is addressing
the problemwith a step by step approach involvingmultiple techniques
(e.g. CWNIRS at multiple short distances to provide information on the
superficial layer, to be used as priors for multi-distance and
multi-wavelength TD NIRS in a layered model) (Foschum et al., 2012).

The two-layer approach was implemented on TD NIRS data on the
adult head (Gagnon et al., 2008), and reported a clear distinction be-
tween extra- and intra-cerebral optical properties, even though the
values could not be validated by independent modalities.

In many applications of interest in the neuroimaging community
fNIRS looks for changes with respect to a baseline. Only the few FD or
SRS CW fNIRS systems, implementing the multi-distance approach, aim
at providing absolute changes, while the majority of single source detec-
tor distance CW fNIRS devices just provide relative changes. TD fNIRS can
be of help since, with limited assumptions on the baseline optical proper-
ties (a rough estimate can be always obtained by fitting with the homo-
geneous model), average photon path length (equivalently the average
time spent by photon) can be estimated in different head compartments
(at least the extra-cerebral and the intra-cerebral ones) allowing for abso-
lute estimate of absorption changes. Expressions to estimate the absorp-
tion changes have been reported in Appendix A. In the following Depth
selectivity section we will provide further comments on the quantifica-
tion of absorption changes based on an experimental validation.

Penetration depth

For fNIRS applications aiming at mapping the functioning of
human brain, the ability to probe the measured tissue in depth is of
the utmost importance. NIRS light has in fact to cross through the
scalp, the skull and the cerebrospinal fluid before reaching the
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brain, and NIRS photons have to travel back to the head surface to
be eventually detected. In the adult head the mean thickness of the
skull has been measured in the range from 5.3 mm to 7.5 mm
(Moreira-Gonzalez et al., 2006), and the average distance between
the cortical surface and the head surface along the scalp was estimat-
ed to be in the range of 10–30 mm depending on the location
(Okamoto et al., 2004).

To properly probe the cortical region a source–detector distance of
30–40 mm is typically used in many CW fNIRS devices, while shorter
distances (20–30 mm) proved to be more efficient in newborns taken
into account the reduced head size (Dehaes et al., 2011b; Gervain et
al., 2011). This is in agreement with theoretical expectations. In CW
NIRS, photons emerging at larger source detector distances have trav-
eled longer paths deeper inside the medium, and thus they carry
more information on deeper tissues (Del Bianco et al., 2002; Feng et
al., 1995).

TD fNIRS measurements on adult have been typically reported with
source–detector distance in the range of 20–30 mm. Indeed, in TD NIRS
measurements the information on deeper tissues can be obtained from
photons emerging with longer time-of-flight (Steinbrink et al., 2001),
independently of the source detector distance (Del Bianco et al.,
2002), as also demonstrated by the null distance TD NIRS approach
(Pifferi et al., 2008; Spinelli et al., 2006; Torricelli et al., 2005).

Figs. 4 and 5 show the results of simulations performed to obtain
the sensitivity profiles and maps for different source detector dis-
tances in a homogeneous medium and in a human head, respectively.
It is evident that in both cases penetration depth increases with time
and not with source detector distance.

Fig. 6 presents the results of a simple experiment (from the
nEUROPt protocol) that can be effectively used to test penetration
depth. A black PVC cylinder (volume 500 mm3) is embedded in a liquid
diffusive medium with average optical properties mimicking a human
head (μa = 0.01 mm−1, μs′ = 1.0 mm−1). The cylinder is positioned
in the mid plane between source and detector (at a distance of
30 mm) and its depth is varied in the range of 6–40 mm. The system
setup is described in Contini et al. (2013a). As shown in Fig. 6(a), the
contrast for an early time-gate (500 ps) is high if the perturbation is lo-
cated close to the surface, while it diminishes rapidly as the perturba-
tion depth increases. Conversely a late time-gate (e.g. 2500 ps) has a
lower contrast for perturbation with shallow depth, while the contrast
increases as a function of perturbation depth, reaching a maximum
and then going to zero. We observe that the contrast is small but not
negligible even at a depth of 30 mm for the late gate at 3500 ps. The
contrast for the CW case (obtained by summing photons detected at
any time) is also shown. The dependence of the contrast on the photon
time-of-flight is plotted in Fig. 6(b) for different depths of the perturba-
tion. It is clear that the optimum time-gate moves to longer time as the
perturbation goes deeper in themedium, although the contrast inevita-
bly diminishes.

Further, we recall that in CW fNIRS background absorption strongly
affects penetration depth by preferentially reducing the number of long
lived (i.e. deeper) photons. Instead, in TD fNIRS the penetration depth is
independent from the background absorption (Del Bianco et al., 2002).
Actually, a photon behaves in the same way independently from the
used detection technique. Consequently, as shown in Fig. 1, in TD
fNIRS an increase in absorption determines a reduction in the number
of photons with longer time-of-flight (the longer the time-of-flight,
the higher the probability of being absorbed). Hence absorption does
have an effect on penetration depth in TD fNIRS since it reduces the
temporal dynamics (at the microscopic level). Indeed this effect can
be properly compensated by increasing the injected power (if available,
and if within the safety limits). Nothing can be done in CW fNIRS to
overcome the effect of background absorption. One could argue that it
is unlikely that during an experiment the background absorption varies
significantly. Unfortunately this could be the case for systemic (global)
effects that affect blood perfusion. From a more technical point of
IRS imaging for human brain mapping, NeuroImage (2013), http://
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view, there is an advantage related to the independence of TD fNIRS
from background absorption. For a multi-wavelength approach, where
the use of spectral priors is aimed at improving the accuracy of the esti-
mate of hemodynamic parameters, the TD penetration depth will be to
a first approximation spectrally flat since it would depend only on the
smooth spectral dependence of the scattering.

These considerations hold true not only in a homogeneousmedium,
where the relationship among absorption, photon time-of-flight and
penetration depth can be obvious, but also in more complex situations
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t = 1000 ps; (d) ρ ≅ 40 mm, t = 5000 ps. Monte-Carlo forward simulations in a seg-
mented volumetric 3D domain based on a digital head (Collins et al., 1998) have been cal-
culated using 106 launched photons. We chose realistic optical properties for the brain
structures (Boas et al., 2005). The photons have been simulated as leaving light sources po-
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human head).

Depth selectivity

To improve depth selectivity, that is to reject superficial extra-
cerebral contributions, is a major challenge in fNIRS in both adults and
newborns (Aslin, 2013; Gagnon et al., 2012b; Kirilina et al., 2012;
Takahashi et al., 2011). In CW fNIRS this can be achieved by adding a
short distance (b5 mm) channel with enhanced sensitivity to superfi-
cial layer (Gagnon et al., 2012a; Saager et al., 2011; Scarpa et al., in
press), or by means of a more sophisticated tomographic approach
exploiting a dense arrangement of the optodes (Eggebrecht et al.,
2012). Nonetheless, we stress that no depth selectivity is achievable
with a single source detector distance CW fNIRS device. Postural,
mechanical, and neural changes, which may occur under most investi-
gative maneuvers, alter blood perfusion and/or distribution in the
extra-cranial compartment and affect CW fNIRS variables to the extent
that detected changes in cerebral tissue blood volume and oxygenation
can be frequently reversed (Canova et al., 2011).

On the other hand, in single source detector distance (either large or
small) TD fNIRS depth selectivity is improved by contrasting the signal
obtained after integration of photons detected at early and late
time-windows (Contini et al., 2007; Selb et al., 2005), or, similarly, by
contrasting the moments of the DTOF (Hervé et al., 2012; Liebert et
al., 2004, 2012).

A significant modification of the instrumentation is required in CW
fNIRS to implement the multi-distance approach. Conversely, since TD
fNIRS naturally measures photon time-of-flight, it just requires post
processing analysis to discriminate intra-cranial and extra-cranial con-
tributions. The TD approach based on time-windows or moments is
also efficient for identifying other artifacts related to superficial phe-
nomena, e.g. the detachment of an optode (Gibson et al., 2006).

A simple experiment (from the nEUROPt protocol) can be devised to
test depth selectivity. In a two-layer diffusive phantom (see Del Bianco et
al., 2004 for details on the construction of the phantom) absorption
changes either in the upper or in the lower layer have been produced
by adding known amounts of a calibrated black ink. The corresponding
contrasts for different time-gates (constant width: 500 ps, increasing
delay: 500, 1000, 2000, and 4000 ps) and for the CW case (delay: 0 ps,
width: 0–5000 ps,) have been calculated according to Formula A1
reported in Appendix A and are shown in Fig. 7. When the absorption
changes in the upper layer, all time-gates are affected (all photons
travel in the superficial layer since they are injected from the external
IRS imaging for human brain mapping, NeuroImage (2013), http://

http://dx.doi.org/10.1016/j.neuroimage.2013.05.106
http://dx.doi.org/10.1016/j.neuroimage.2013.05.106


U
N
C
O

R
R
E
C
T
E
D
 P

R
O

O
F

Fig. 6. Penetration depth. (a) Contrast as a function of depth of the perturbation for different time-gates (constant width: 500 ps, increasing delay: 500, 1500, 2500, and 3500 ps),
and for the CW case (delay: 0 ps, width: 0–4500 ps); (b) Contrast as a function of time (at the DTOF scale) for different depths of the perturbation. Background medium: μa =
0.01 mm−1, μs′ = 1.0 mm−1; ρ = 30 mm; perturbation: black PVC cylinder (volume = 500 mm3) positioned at different depths in the mid plane between source and detector.
Formula A1 was used for calculating the contrast.

Fig. 7. Depth selectivity. Contrast (left column) and estimated absorption changes (right column) in a two layered medium (upper layer thickness = 10 mm, lower layer thickness =
40 mm) for different time-gates (constant width: 500 ps, increasing delay: 500, 1000, 2000, and 4000 ps), and for the CW case (delay: 0 ps, width: 0–5000 ps). Top row: absorption was
changed only in the upper layer. Bottom row: absorption was changed only in the bottom layer. For both cases, but only for the latest time-gate (delay: 4000 ps, width: 500 ps) we have
also applied the corrections A6 and A7 introduced by Selb et al. (2005) and Contini et al. (2007), indicated with “*” and “**”, respectively. Background medium: μa = 0.01 mm−1, μs′ =
1.0 mm−1; ρ = 30 mm.
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upper surface). In particular we observe that the contrast is even higher
for late gates, since long lived photons have a higher probability of being
absorbed, independently of the location of the absorption perturbation.
When the absorption changes are produced in the lower layer, the
early gates have negligible or small contrast, as expected, since they
have a reduced probability to reach the lower layer and then be
reemitted at the surface. The contrast for the CW case is also reported
and it is in general closer to the early than to the late gates (themajority
of photons are in fact collected at early gates and they contribute largely
to the CW signal). The changes in the absorption coefficient are then
estimated with the Formulas A3–A7 reported in Appendix A. The use
of an early time-window can provide a sufficiently accurate estimate of
the absorption changes when they affect the upper layer (see
Fig. 7(b)). In the same situation, a very late time-window is able to
yield an estimate of the absorption changes in the lower layer that is
minimally affected by the changes in the upper layer (especially if cor-
rectionmethods, described by Eqs. (A6) and (A7) are used). The problem
of accuracy related to the estimate of photon path-length in the different
layers of themedium is still an open issue in the case of changes affecting
the lower layer. As shown in Fig. 7(d), linearity with the perturbation is
achieved, but quantification is definitely poor. Nonetheless, the estimates
obtained with the TD approach are catching the phenomenological ef-
fects occurring either in the upper or in the lower layer. More accurate
estimates could be obtained with methods based on the moments of
the DTOF (Liebert et al., 2012).

Spatial resolution

Light diffusion is the enabling mechanism in fNIRS since it allows
photons to penetrate deeply in biological tissues and to be diffusely
reemitted, carrying the information on deep structures. However,
light diffusion itself strongly limits the achievable spatial resolution
in fNIRS to a value of the order of 10 mm (Boas et al., 1994).

When dealing with spatial resolution in fNIRS it is useful to distin-
guish between lateral and depth resolution. Lateral resolution de-
pends on source detector distance, therefore it can be improved by
the use of multi-distance or tomographic detection schemes in both
TD and CW fNIRS (Arridge et al., 2011; Gao et al., 2004) or of the
null distance approach in TD fNIRS (Torricelli et al., 2005). This pa-
rameter is also influenced by penetration depth and depth selectivity,
therefore comparisons of lateral resolutions should be made at a fixed
depth, typically 10 mm to mimic the average equivalent distance of
brain cortex to the scalp (Wabnitz et al., 2013).

Depth resolution explores the direction orthogonal to and beneath
the (head) surface. In TD fNIRS depth resolution depends on photon
time-of-flight and scattering properties (Liebert et al., 2004; Spinelli et
al., 2009b; Steinbrink et al., 2001), while for CW fNIRS it depends on
source detector distance, scattering and absorption (Del Bianco et al.,
2002). Similarly to lateral resolution, depth resolution can be influenced
by the ability of the system to reject confounding superficial phenome-
na (i.e. extra-cerebral, systemic responses).

Broadening of the IRF has detrimental effects on depth resolution as
well as on penetration depth, depth selectivity, and contrast, and its in-
fluence is larger for smaller source detector distance (Pifferi et al.,
2010). A simple intuitive reason for this later aspect is the fact that
the larger the source detector distance, the broader in time the mea-
sured DTOF is compared to the IRF.

If a better systemwith a narrower IRF cannot be designed, the possi-
bility remains to partially overcome these limitations by employing con-
volution or deconvolution procedures. Convolution of the IRF with a
theoretical model before fitting experimental DTOF proved to be effec-
tive for an accurate estimate of optical properties (Cubeddu et al.,
1996; Spinelli et al., 2009a). In the past, deconvolution algorithms had
the reputation of introducing noise in the computation and were rarely
used. Recently improved deconvolution algorithmshave been developed
and tested (Bodi and Bérubé-Lauzière, 2009; Diop and St Lawrence,
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2012; Hebden et al., 2003). To tackle the IRF problem, an elegant
method is the use of moments of the DTOF since no deconvolution
of the DTOF by the measured IRF is needed. The moments calculated
from the measured DTOFs can, in fact, be corrected for the IRF simply
by subtracting the corresponding moments of the IRF to obtain the
true moments (Hervé et al., 2012; Liebert et al., 2004). However,
since the moments are global parameters calculated by integrating
the DTOF (therefore mixing early and late arriving photons), this
semi-empirical approach can not totally circumvent the uncertainty
in photon timing due to a broad IRF, therefore depth resolution is not
likely to improve.

Finally, we observe that for TD fNIRS the fundamental physical
limit to depth resolution is imposed by scattering. In the ideal case
of a delta-like IRF (in practice a temporal resolution of b1 ps that
could be obtained, for instance by using ultrafast laser with fs pulse
duration and a streak camera system, coupled to zero dispersion op-
tical fibers), it would be impossible to discriminate deep absorbing
structures with a resolution better than 5 mm. The possibility to fine-
ly discriminate deep structures in diffusive media is therefore limited
to the very superficial layers (i.e. depth ≪ 5 mm), but in this case
other advanced optical techniques like optical coherence tomography
(Aguirre et al., 2006; Fujimoto et al., 1995) and laminar optical to-
mography (Dunn and Boas, 2000; Hillman et al., 2004) are able to
provide sharp results. These methods can be used for in vivo optical
imaging of the exposed cortex. A review on the effect of light scatter-
ing on depth resolution is provided by Hillman et al. (2011).
E
DContrast-to-noise ratio

The overall ability of an fNIRS system of detecting a cortical response
depends onmany factors (e.g. depth, simultaneous presence of superfi-
cial systemic response, IRF), as discussed in the previous sections. A sin-
gle parameter to synthetically gage an fNIRS system can be the
contrast-to-noise ratio (CNR). The CNR takes into account the sensitiv-
ity of the system to changes in the measured quantity (e.g. light atten-
uation in CW fNIRS, intensity integrated in a given time-window in TD
fNIRS) and it relates this change (contrast) to the noise level, as deter-
mined – for instance – by the standard deviation of themeasured quan-
tity, typically estimated during a resting period (baseline).

The contrast for a TD fNIRS measurement can be higher than for
the CW case, simply because it is possible to extract long-lived pho-
tons that have traveled a larger fraction of their path in the deeper
cortical region as compared to the mean photon distribution collected
in a CW measurement. Also, tighter spatial confinement attainable
upon reducing the source detector distance – for a fixed photon trav-
eling time – leads to an increase in contrast.

0.09pt?>Conversely, the real bottleneck of actual TD systems is the
noise level. If the TCSPC technique is used – possibly the most popular
choice – the maximum count rate per channel is limited to a few
106 photons/s due to the single-photon counting statistics and mini-
mum dead time of the electronics. This limits the maximum signal
level that can be extracted in a TD measurement and thus constrains
the CNR. Further, amplitude stability and overall detection responsivity
are typically worse in a TD system simply because the need to achieve
temporal information reduces the choice of sources and detectors. Fi-
nally, the total number of parallel running sources and detectors is typ-
ically lower due to the intrinsic higher complexity and cost of single
devices.

Fig. 8 shows the CNR as a function of depth for different time
gates. We observe that the CNR value reported for the CW case is
not the best estimate, since CW data have been obtained with a TD
system by integrating all the detected photons. We expect that a
real CW system performs in a much better way. An experimental
comparison of the TD and CW approaches would be appropriate,
but it is not within the scope of this review.
IRS imaging for human brain mapping, NeuroImage (2013), http://
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Fig. 8. Contrast-to-noise ratio. Contrast-to-noise ratio (CNR) as a function of depth, for
different time gates (constant width: 500 ps, increasing delay: 500, 1500, 2500, and
3500 ps), and for the CW case (delay: 0 ps, width: 0–4500 ps); Background medium:
μa = 0.01 mm−1, μs′ = 1.0 mm−1; ρ = 30 mm; perturbation: black PVC cylinder
(volume = 500 mm3) positioned at different depths in the mid plane between source
and detector. Formula A1 was used for the calculation of the contrast.
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Representative in vivo data

To better illustrate the specific information that can be obtained
by TD fNIRS we report on two simple case studies: a motor task ex-
periment and a Valsalva maneuver.
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Fig. 9. Finger tapping experiment. Contrast at 690 nm (blue) and 830 nm (red) for differe
(c) 500 ps, (d) 750 ps, (e) 1000 ps, (f) 1500 ps, (g) 2000 ps. Contrast for the moments of th
changes in HHb (blue) and O2Hb (red) as calculated from photons integrated in: (k) an early
case (delay: 0 ps, width: 2500 ps); (m) a late time window (delay: 1750 ps, width: 750 ps, m
correction for changes in early time window (delay: 0 ps, width: 500 ps), Formula A6; (o) sam
for all plotted parameters. The black vertical lines and the green horizontal line mark the task
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For both studies the TD fNIRS medical device (working at 690 nm
and 830 nm) described in Contini et al. (2006) was used, a single
channel (source detector distance 20 mm) was centered over the C3
point, and data were acquired at 1 Hz.

In the motor task experiment the protocol consisted a 20 s base-
line, 20 s finger tapping with the right hand at 2 Hz, and 40 s recov-
ery. Ten repetitions were performed and averaged. In the Valsalva
maneuver experiment the protocol consisted a 20 s baseline, 20 s
expiring through a closed mouthpiece, and 40 s recovery. Five repeti-
tions were performed and averaged.

In both experiments, for each wavelength and all repetitions, we cal-
culated the contrast C, the absorption changes in the intra-cerebral and
extra-cerebral region, and the O2Hb and HHb time courses as described
in Appendix A.

Figs. 9(a–g) report the contrast C during the finger tapping exper-
iment for different time-gates with constant width (250 ps) and in-
creasing delay (from 0 to 1000 in 250 ps steps, then 1500 ps and
2000 ps). For both 690 nm and 830 nm the contrast is rather flat
and close to zero during the baseline, as expected. Then during the
task it increases at 830 nm, while it decreases at 690 nm. These
changes are greater for later time-gates. The maximum value of the
contrast during the task period at 830 nm in fact almost doubles its
value, from 0.04 at the earliest gate (delay 0 ps) to 0.07 for the latest
time-gate (delay 2000 ps). Similarly, at 690 nm the contrast is three
times higher at the latest time-gate (C = −0.06) with respect to
the earliest time-gate (C = −0.02). This is an indication that a deep
perturbation is present. Indeed by looking at the contrast at the
very early time-gates, it is possible to observe that the contrast at
830 nm presents large periodic changes, only partially related to the
E
D

nt time-gates with constant width (250 ps) and increasing delay: (a) 0 ps, (b) 250 ps,
e DTOF: (h) 0th order moment, (i) 1st order moment, (j) 2nd order moment. Estimated
time window (delay: 0 ps, width: 500 ps, mean time-of-flight: 250 ps); (l) for the CW
ean time-of-flight: 2125 ps); (n) late time window (delay: 1750 ps, width: 750 ps) with
e as (n), but Formula A7. Average and standard deviation over 10 repetitions are shown
period.
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task, with a triangular or saw-tooth shape, not resembling a typical
task-evoked cerebral hemodynamic response. We note that the
same time course is present at least qualitatively also at longer
time-gates, and this is expected since superficial changes affect
photons detected at any time, as described in previous sections. Con-
versely, the time course for 690 nm does not present this features. As
recently reported by Kirilina et al. (2012), this could likely be the ef-
fect of task-evoked systemic changes.

Figs. 9(h–j) report the time course of the moments of the DTOF.
The contrast from the lowest order moment (related to the CW inten-
sity) is greatly affected by systemic changes, while higher order mo-
ments are less affected.

Figs. 9(k–o) report the time course for the estimates of O2Hb and
HHb for the extra-cerebral region, for the intra-cerebral region (without
and with correction for changes in the extra-cerebral region), and the
global estimate from the CW case. In the extra-cerebral region the
O2Hb signal presents the task-evoked changes, while the HHb presents
a limited decrease. In the intra-cerebral region the task-evoked pertur-
bation in O2Hb still appears, while it is almost canceled if we use the
correction for the superficial disturbances. In the CW, the systemic
task-evoked effect is clearly visible.

Figs. 10(a–g) report the contrast C during the Valsalva maneuver for
different time-gates with constant width (250 ps) and increasing delay
(from 0 to 1000 in 250 ps steps, then 1500 ps and 2000 ps). For both
690 nm and 830 nm the contrast during the task greatly increases
with respect to the baseline period. This holds true at any time-gate,
with a limited increase when moving from early to late gate: the con-
trast at 690 nm changes from 0.15 to 0.25, at 830 nm from 0.10 to
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Fig. 10. Valsalva maneuver experiment. Contrast at 690 nm (blue) and 830 nm (red) for diffe
(c) 500 ps, (d) 750 ps, (e) 1000 ps, (f) 1500 ps, (g) 2000 ps. Contrast for the moments of th
changes in HHb (blue) and O2Hb (red) as calculated from photons integrated in: (k) an early
case (delay: 0 ps, width: 2500 ps); (m) a late time window (delay: 1750 ps, width: 750 ps, m
correction for changes in early time window (delay: 0 ps, width: 500 ps), Formula A6; (o) sa
for all plotted parameters. The black vertical lines and the green horizontal line mark the task
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0.15. This suggests the presence of a superficial absorption perturbation
with a limited effect on deeper regions, as expected (Canova et al.,
2011). This is confirmed by the time courses of the moments of the
DTOF (see Figs. 10(h–j)) and by the time courses of O2Hb and HHb for
the extra-cerebral region and for the intra-cerebral region, if for the lat-
ter case the correction for changes in superficial layers is applied. We
note that both the uncorrected intra-cerebral response and the CW re-
sponse are largely affected by the superficial effects (see Figs. 10(k–o)).

Future perspectives

In this section we briefly present the foreseen advances at both
the technological and modeling levels from which TD fNIRS could
benefit in the next years.

There are several technological improvements in light sources, de-
tection techniques and delivery and collection systems that could sig-
nificantly enhance TD fNIRS's overall performances in the next years.

The SC fiber laser (Fianium UK Ltd., 2013b; NKT Photonics, 2013b)
has been recently introduced in TD fNIRS systems and their potential
has not been fully proved. They are compact and could nicely fit in a
trolley and a rack for medical device. They provide narrow pulses at
any level of power, without degrading the IRF. Indeed, they are to
some extent a very inefficient solution since the available power is
spread over a wavelength range much larger than the useful range.
On the one hand, excess power in unused wavelength intervals (e.g.
b600 nm, >900 nm) has to be properly attenuated (e.g. by using di-
chroic mirror of hot filter) so as not to direct it to the sample under
test. On the other hand, power spectral density is limited and
E
D

rent time-gates with constant width (250 ps) and increasing delay: (a) 0 ps, (b) 250 ps,
e DTOF: (h) 0th order moment, (i) 1st order moment, (j) 2nd order moment. Estimated
time window (delay: 0 ps, width: 500 ps, mean time-of-flight: 250 ps); (l) for the CW
ean time-of-flight: 2125 ps); (n) late time window (delay: 1750 ps, width: 750 ps) with
me as (n), but Formula A7. Average and standard deviation over 5 repetitions are shown
period.

IRS imaging for human brain mapping, NeuroImage (2013), http://

http://dx.doi.org/10.1016/j.neuroimage.2013.05.106
http://dx.doi.org/10.1016/j.neuroimage.2013.05.106


T

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351Q12
1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420Q13

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

18 A. Torricelli et al. / NeuroImage xxx (2013) xxx–xxx
U
N
C
O

R
R
E
C

sufficient power levels for application in the real environment are
obtained summing up the power at adjacent wavelengths (up to
40 nm in some cases), at the cost of reducing the spectral purity
of the injected pulses, and the overall accuracy in the reconstruction
if the bandwidth is not taken into account (Farina et al., 2009). Conse-
quently, a SC with reduced width, covering the proper spectral range
while maintaining a high conversion rate, is desirable.

As an alternative to SC lasers, picosecond pulsed laser diode heads
based on a master oscillator fiber amplifier concept can offer pulse
widths b100 ps and average powers up to 1 W (depending on wave-
length). The drawback at themoment of writing is the limited availabil-
ity of wavelengths (e.g. 531 nm, 710 nm, 766 nm, 1064 nm and
1530 nm) (Fianium UK Ltd., 2013a; PicoQuant GmbH, 2013c).

The silicon photonics field is promising compact and scalable de-
vices and components for telecommunications, but unfortunately they
are not produced in the wavelength range of interest for fNIRS (Fang
and Zhao, 2012). Similarly several optical components and devices for
properly handling light pulses at the picosecond level have been de-
vised in the fields of photonics and communications by exploiting the
recent studies on metamaterials (Liu and Zhang, 2011), and chalcogen-
ide materials (Eggleton et al., 2011). Again, there are no fundamental
limitations that prevent the designing of specific components for
operation in the spectral range of interest for fNIRS.

Also delivery and collection systems could be positively influenced
by the advances in Photonics. To mention a specific case, we observe
that nowadays commercial products exist that are able to overcome
someof the basic limitations of classical opticalfiber. Photonic crystalfi-
bers (PCF) have in fact been recently produced operating as singlemode
over a broad spectral range (NKT Photonics, 2013a). A conventional sin-
gle mode optical fiber is actually multimode for wavelengths shorter
than the second-mode cutoff wavelength, limiting the useful operating
wavelength range in many applications. With PCF we could think to
overcome most of the limitations of multimode SI fiber bundles that
are used for light collection in TD fNIRS.

For what concerns the detection techniques, we observe that the
main drawbacks of existing TCSPC systems are actually not set by phys-
ical limits, and they could be overcome by technological advancements.
As a side product of the research on the null distance TD approach,
ultra-fast time gating circuits and electronics have been developed,
that could improve the performances of modern detection techniques
like TCSPC (the limits in photon counting statistics holds but with the
time gating approach we are for example able to count only useful pho-
tons in specific time-windows). In particular time-to-digital conversion
(TDC) electronics, could replace modern TCSPC modules for aiming at a
higher integration level (Mata Pavia et al., 2012). Similarly advanced
photodetectors, like SPAD with enhanced sensitivity, large area SPAD,
SPAD array or matrix with improved performances could be designed
and fabricated (Micro Photon Devices, 2013a, 2013c).

Similarly, themodeling used for the interpretation of real data is now-
adays too elementary. Advanced computational tools for modeling light
propagation in the head are available, but to date they have been used
mostly for simulations, while rarely for the in vivo data analysis. The sit-
uation is different for the CW case where sophisticated approaches to
data analysis have been successfully proposed (Cooper et al., 2012a;
Custo et al., 2010; Tsuzuki et al., 2007, 2012). In most clinical studies
the head is approximated as homogeneous or two layered medium.
This approach might have the advantage of robustness but it definitely
fails in terms of accuracy. The use of priors (e.g. anatomical, optical, or
spectral) would greatly improve the accuracy of the results, but in most
cases at the cost of a very high computational load. Parallel computing al-
gorithms and platforms are therefore required to make this affordable.

Conclusions

We have presented a comprehensive and critical review on TD
fNIRS in which we have highlighted that TD fNIRS could play a
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significant role not only as a complex research tool at the laboratory
stage, but also as a powerful instrument for all fNIRS applications.

As a general comment we note that an ideal TD fNIRS system
might not exist. However, the design of novel instruments can be
properly tailored to the specific needs of the end-users at both re-
search and clinical levels. The performances, the complexity, as well
as the costs of a TD fNIRS system can significantly vary depending
for example on the number of independent channels.

Interestingly, TD NIRS systems and devices have found applications
in other fields such as optical mammography, andmolecular imaging of
small animals. The eventual growth and broader diffusion of these ap-
plications would further foster TD fNIRS. By synergic and collaborative
efforts among experts in Photonics, Electronics, Information technology
and Neuroscience we foresee a flourishing future for TD fNIRS.

We persuasively conclude this review by quoting the 17th century
English philosopher and scientist Francis Bacon: “Truth is rightly
named the daughter of time” (Novum Organum, 1620).
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Appendix A

The concentration changes of O2Hb and HHb were obtained from
the changes in light attenuation after integrating photons in different
time-windows.
IRS imaging for human brain mapping, NeuroImage (2013), http://
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For each wavelength, we calculated the contrast, defined as

C d;w;T;λð Þ ¼ − ln N d;w;T;λð Þ=N0 d;w;λð Þ½ � ðA1Þ

where N(d,w;T;λ) is the number of photons collected in a timewindow
with delay d and width w, at macroscopic (experiment) time T for
wavelength λ, and N0(d,w;λ) is the number of photons collected in
the very same time window and for the same wavelength, averaged
over the baseline period of the protocol.

Changes in the absorption coefficient for each wavelength λ and at
any time T are estimated with the formula

Δμa T;λð Þ ¼ C d;w; T;λð Þ=L ðA2Þ

where L is the photon path-length (Nomura et al., 1997).
A rough assumption for the path-length is L = vt, where v is the

speed of light in the medium and t is the average photon-time-
of-flight. Taking into account the dependence of penetration depth on
photon time-of-flight, by properly selecting an early time-gate it is pos-
sible to estimate changes in more superficial layers (i.e. extra-cerebral),
while a late time-gate yields information on deeper regions (i.e.
intra-cerebral). The formulas for the absorption changes can then be
specified as follows:

ΔμEXTRA
a T;λð Þ ¼ C dE;wE; T;λð Þ=LE ðA3Þ

Δμ INTRA
a T;λð Þ ¼ C dL;wL;T;λð Þ=LL ðA4Þ

where dE, wE, and LE (dL, wL, and LL) are proper delay, width and
path-length of the time-gate to select early (late) arriving photons.

By integrating all detected photons (e.g. selecting a time-window
with delay dCW = 0 ps and width wCW = 5000 ps) it is possible to
address the CW case. As photon path-length we use LCW = v bt>,
where bt> is the mean time-of-flight (first order moment of the
DTOF). The corresponding absorption change is then calculated as

ΔμCW
a T;λð Þ ¼ C dCW ;wCW ; T;λð Þ=LCW : ðA5Þ

This is equivalent to themodified Beer–Lambert lawwith differential
path-length factors (DPF) not taken from the literature but estimated
directly by the DTOF.

To enhance the contribution fromdeep layers and to remove possible
disturbances caused by superficial ones, correction methods (Contini et
al., 2007; Selb et al., 2005) are also used for the intra-cerebral changes:

Δμ INTRA
a T;λð Þ ¼ C dL;w;T;λð Þ−C dE;w;T;λð Þ½ �=LL ðA6Þ

Δμ INTRA
a T;λð Þ ¼ f ln N dL;wL;T;λð Þ=N0 dL;wL;λð Þ½ �

− ln N dE;wE; T;λð Þ=N0 dE;wE;λð Þ½ � þ 1g=LL:
ðA7Þ

Finally, making the assumption that hemoglobin is the only chromo-
phore contributing to absorption, O2Hb and HHb concentration changes
are then derived by Lambert–Beer law, using the hemoglobin absorption
spectra from Prahl (2013).

Changes of moments of DTOFs are defined as in Liebert et al.
(2004):

ΔA T;λð Þ ¼ − ln N T;λð Þ=N0 λð Þ½ � ðA8Þ

Δbt T;λð Þ >¼ b t T;λð Þ > −b t0 T;λð Þ > ðA9Þ

ΔV T;λð Þ ¼ V T;λð Þ−V0 T;λð Þ ðA10Þ

where ΔA is the change in attenuation, N is the total number of pho-
tons (0th order moment of DTOF, corresponding to the number of
photons collected in a time window with delay 0 and width ∞), bt>
the mean photon time-of-flight (1st order moment) and V is the
Please cite this article as: Torricelli, A., et al., Time domain functional N
dx.doi.org/10.1016/j.neuroimage.2013.05.106
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with index 0 refer to the signal recorded during a reference period
(e.g. the rest period before stimulation).
E
D
 P

R
O

O
F

References

Advanced Laser Diode Systems GmbH, 2013. PiLas. http://www.alsgmbh.com/pilas.htm.
Advanced Research Technologies (ART), 2013. OptixMX3— pre-clinical optical molecular

imager. http://www.art.ca.
Aguirre, A.D., Chen, Y., Fujimoto, J.G., Ruvinskaya, L., Devor, A., Boas, D.A., 2006. Depth-

resolved imaging of functional activation in the rat cerebral cortex using optical
coherence tomography. Opt. Lett. 31 (23), 3459–3461.

Alerstam, E., Andersson-Engels, S., Svensson, T., 2008a. Improved accuracy in time-
resolved diffuse reflectance spectroscopy. Opt. Express 16 (14), 10440–10454.

Alerstam, E., Svensson, T., Andersson-Engels, S., 2008b. Parallel computing with graphics
processing units for high-speedMonte Carlo simulation of photonmigration. J. Biomed.
Opt. 13 (6), 060504.

Aletti, F., Re, R., Pace, V., Contini, D., Molteni, E., Cerutti, S., Maria Bianchi, A., Torricelli,
A., Spinelli, L., Cubeddu, R., Baselli, G., 2012. Deep and surface hemodynamic signal
from functional time resolved transcranial near infrared spectroscopy compared to
skin flowmotion. Comput. Biol. Med. 42 (3), 282–289.

Alphalas GmbH, 2013. PICOPOWER™-LD Series. http://www.alphalas.com/products/
lasers/picosecond-pulse-diode-lasers-with-driver-picopower-ld-series.html.

Arridge, S.R., 1999. Optical tomography in medical imaging. Inverse Prob. 15, R41–R93.
Arridge, S.R., Schweiger, M., Hiraoka, M., Delpy, D.T., 1993. A finite element approach

for modeling photon transport in tissue. Med. Phys. 20 (2), 299–309.
Arridge, S.R., Schweiger,M., Schotland, J.C., 2011. Inversemodel in light transport. In: Boas,

D.A., Pitris, C., Ramanujam, N. (Eds.), Handbook of Biomedical Optics, Part III, Chap. 17.
CRC Press, Boca Raton, Florida.

Aslin, R.N., 2013. Questioning the questions that have been asked about the infant
brain using NIRS. Cogn. Neuropsychol. 29, 7–33.

Austin, T., Gibson, A.P., Branco, G., Yusof, R.Md., Arridge, S.R., Meek, J.H., Wyatt, J.S.,
Delpy, D.T., Hebden, J.C., 2006. Three-dimensional optical imaging of blood volume
and oxygenation in the preterm brain. NeuroImage 31 (4), 1426–1433.

Bari, V., Calcagnile, P., Molteni, E., Re, R., Contini, D., Spinelli, L., Caffini, M., Torricelli, A.,
Cubeddu, R., Cerutti, S., Bianchi, A.M., 2012. From neurovascular coupling to
neurovascular cascade: a study on neural, autonomic and vascular transients in
attention. Physiol. Meas. 33, 1379–1397.

Bassi, A., Brida, D., D'Andrea, C., Valentini, G., Cubeddu, R., De Silvestri, S., Cerullo, G.,
2010. Time-gated optical projection tomography. Opt. Lett. 35, 2732–2734.

Becker, W., 2005. Advanced Time-correlated Single-photon Counting. Springer, Berlin,
Heidelberg, New York.

Becker & Hickl GmbH, 2013a. BHLP-700. http://www.becker-hickl.de/lasers.htm#
BHLP-700.

Becker & Hickl GmbH, 2013b. Detectors for photon counting. http://www.becker-hickl.
de/detectors.htm#HPM100-50.

Becker & Hickl GmbH, 2013c. Simple-Tau 130 Table-Top TCSPC Systems. http://www.
becker-hickl.com/simpleTau.htm#st140.

Becker & Hickl GmbH, 2013d. Time-correlated single photon counting devices. http://
www.becker-hickl.de/tcspc.htm.

Benaron, D.A., Hintz, S.R., Villringer, A., Boas, D., Kleinschmidt, A., Frahm, J., Hirth, C.,
Obrig, H., van Houten, J.C., Kermit, E.L., 2000. Noninvasive functional imaging of
human brain using light. J. Cereb. Blood Flow Metab. 20, 469–477.

Boas, D.A., Dale, A.M., 2005. Simulation study of magnetic resonance imaging-guided
cortically constrained diffuse optical tomography of human brain function. Appl.
Opt. 44 (10), 1957–1968.

Boas, D.A., O'Leary, M.A., Chance, B., Yodh, A.G., 1994. Scattering of diffuse photon density
waves by spherical inhomogeneitieswithin turbidmedia: analytic solution and appli-
cations. Proc. Natl. Acad. Sci. U. S. A. 91, 4887–4891.

Boas, D.A., Culver, J., Stott, J., Dunn, A., 2002. Three dimensional Monte Carlo code for
photon migration through complex heterogeneous media including the adult
human head. Opt. Express 10, 159–170.

Bodi, G., Bérubé-Lauzière, Y., 2009. A new deconvolution technique for time-domain
signals in diffuse optical tomography without a priori information. Proc. SPIE
7369, 736914.

Brühl, R., Kummrow, A., Möller, M., Wabnitz, H., Liebert, A., Ittermann, B., Seifert, F.,
Rinneberg, H., 2005. Concurrent time-resolved near-infrared spectroscopy and fMRI
measurements of visually stimulated humans. Proceedings of the 13th Scientific
Meeting and Exhibition of the International Society for Magnetic Resonance in
Medicine (ISMRM), p. 499.

Busch, D.R., Choe, R., Durduran, T., Baker, W.B., Foster, E.K., Averna, T.A., Friedman, D.,
Rosen, M.A., Schnall, M.D., Yodh, A.G., 2012. Microvascular blood flow changes in
human breast during simulated mammography. Biomedical Optics and 3D Imaging
OSA 2012 (Paper JM3A.13).

Butti, M., Contini, D., Molteni, E., Caffini, M., Spinelli, L., Baselli, G., Bianchi, A.M., Cerutti,
S., Cubeddu, R., Torricelli, A., 2009. Effect of prolonged stimulation on cerebral
hemodynamic: a time-resolved fNIRS study. Med. Phys. 36, 4103–4114.

Canova, D., Roatta, S., Bosone, D., Micieli, G., 2011. Inconsistent detection of changes
in cerebral blood volume by near infrared spectroscopy in standard clinical tests.
J. Appl. Physiol. 110, 1646–1655.

Chance, B., Leigh, J.S., Miyake, H., Smith, D.S., Nioka, S., Greenfeld, R., Finander, M.,
Kaufmann, K., Levy, W., Young, M., Cohen, P., Yoshioka, H., Boretsky, R., 1988. Com-
parison of time-unresolved measurements of deoxyhemoglobin in brain. Proc.
Natl. Acad. Sci. U. S. A. 85, 4971–4975.
IRS imaging for human brain mapping, NeuroImage (2013), http://

http://www.alsgmbh.com/pilas.htm
http://www.art.ca
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0005
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0005
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0005
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0010
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0010
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0015
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0015
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0015
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0020
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0020
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0020
http://www.alphalas.com/products/lasers/picosecond-pulse-diode-lasers-with-driver-picopower-ld-series.html
http://www.alphalas.com/products/lasers/picosecond-pulse-diode-lasers-with-driver-picopower-ld-series.html
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0025
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0865
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0865
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0870
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0870
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0870
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0035
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0035
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0040
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0040
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0045
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0045
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0045
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0050
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0055
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0055
http://www.becker-hickl.de/lasers.htm#BHLP-700
http://www.becker-hickl.de/lasers.htm#BHLP-700
http://www.becker-hickl.de/detectors.htm#HPM100-50
http://www.becker-hickl.de/detectors.htm#HPM100-50
http://www.becker-hickl.com/simpleTau.htm#st140
http://www.becker-hickl.com/simpleTau.htm#st140
http://www.becker-hickl.de/tcspc.htm
http://www.becker-hickl.de/tcspc.htm
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0060
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0060
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0075
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0075
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0075
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0065
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0065
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0065
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0070
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0070
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0070
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0080
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0080
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0080
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0895
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0895
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0895
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0895
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0900
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0900
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0900
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0085
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0085
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0090
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0090
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0090
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0095
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0095
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0095
http://dx.doi.org/10.1016/j.neuroimage.2013.05.106
http://dx.doi.org/10.1016/j.neuroimage.2013.05.106


T

1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686

1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772

20 A. Torricelli et al. / NeuroImage xxx (2013) xxx–xxx
U
N
C
O

R
R
E
C

Chen, G.N., Zhu, Q., 2002. Time-resolved optical measurements with spread spectrum
excitation. Opt. Lett. 27 (20), 1806–1808.

Chen, G.N., Zhu, Q., 2003. Time-resolved diffusive optical imaging using pseudo-
random bit sequences. Opt. Express 11 (25), 3445–3454.

Coherent Inc., 2013. Ultrafast Ti:sapphire oscillators. http://www.coherent.com/
Products/index.cfm?365/Ultrafast-Ti-Sapphire-Oscillators.

Collins, D.L., Zijdenbos, A.P., Kollokian, V., Sled, J., Kabani, N., Holmes, C., Evans, A., 1998.
Design and construction of a realistic digital brain phantom. IEEE Trans. Med. Im-
aging 17 (3), 463–468.

Contini, D., Torricelli, A., Pifferi, A., Spinelli, L., Paglia, F., Cubeddu, R., 2006.
Multichannel time-resolved system for functional near infrared spectroscopy.
Opt. Express 14, 5418–5432.

Contini, D., Torricelli, A., Pifferi, A., Spinelli, L., Cubeddu, R., 2007. Novel method for depth-
resolved brain functional imaging by time-domain NIRS. Proc. SPIE 6629, 662908.

Contini, D., Spinelli, L., Caffini, M., Cubeddu, R., Torricelli, A., 2009. A multichannel time-
domain brain oximeter for clinical studies. Proc. SPIE SPIE 7369, 73691D.

Contini, D., Zucchelli, L., Spinelli, L., Caffini, M., Re, R., Pifferi, A., Cubeddu, R., Torricelli,
A., 2012. Review: brain and muscle near infrared spectroscopy/imaging tech-
niques. J. Near Infrared Spectrosc. 20 (1), 15–27.

Contini, D., Dalla Mora, A., Di Sieno, L., Tosi, A., Boso, G., Torricelli, A., Spinelli, L.,
Cubeddu, R., Pifferi, A., 2013a. Time resolved functional near infrared spectroscopy
by means of time gated system at small interfiber distance. Oral Communication at
SPIE BiOS 2013 Conference 8578 Optical Tomography and Spectroscopy of Tissue
X, 3 February 2013, Paper 8578-82.

Contini, D., Re, R., Turola, M., Spinelli, L., Romano, G., Cubeddu, R., Torricelli, A., 2013b.
Multi-channel time-resolved functional near infrared spectroscopy system. Oral
Communication at SPIE BiOS 2013 Conference 8578 Optical Tomography and
Spectroscopy of Tissue X, 3 February 2013, Paper 8578-114.

Cooper, R.J., Caffini, M., Dubb, J., Fang, Q., Custo, A., Tsuzuki, D., Fischl, B., Wells III, W.,
Dan, I., Boas, D.A., 2012a. Validating atlas-guided DOT: a comparison of diffuse
optical tomography informed by atlas and subject-specific anatomies. NeuroImage
62 (3), 1999–2006.

Cooper, R.J., Gagnon, L., Goldenholz, D., Boas, D.A., Greve, D.N., 2012b. The utility of
near-infrared spectroscopy in the regression of low-frequency physiological
noise from functional magnetic resonance imaging data. NeuroImage 59 (4),
3128–3138.

Cubeddu, R., Pifferi, A., Taroni, P., Torricelli, A., Valentini, G., 1996. Experimental test of
theoretical models for time-resolved reflectance. Med. Phys. 23 (9), 1625–1633.

Cubeddu, R., Pifferi, A., Taroni, P., Torricelli, A., Valentini, G., 1999. A compact tissue oximeter
based on dual-wavelength multichannel time-resolved reflectance. Appl. Opt. 38,
3670–3680.

Custo, A., Boas, D.A., Tsuzuki, D., Dan, I., Mesquita, R., Fischl, B., Grimson, W.E.L., Wells III,
W., 2010. Anatomical atlas-guided diffuse optical tomography of brain activation.
NeuroImage 49, 561–567.

D'Andrea, C., Comelli, D., Pifferi, A., Torricelli, A., Valentini, G., Cubeddu, R., 2003. Time-
resolved optical imaging through turbid media using a fast data acquisition system
based on a gated CCD camera. J. Phys. D: Appl. Phys. 36, 1675–1681.

Dehaes, M., Gagnon, L., Lesage, F., Pelegrini-Issac, M., Vignaud, A., Valabregue, R., Grebe,
R., Wallois, F., Benali, H., 2011a. Quantitative investigation of the effect of the extra-
cerebral vasculature in diffuse optical imaging: a simulation study. Biomed. Opt.
Express 2 (3), 680–695.

Dehaes, M., Grant, P.E., Sliva, D.D., Roche-Labarbe, N., Pienaar, R., Boas, D.A.,
Franceschini, M.A., Selb, J., 2011b. Assessment of the frequency-domain multi-
distance method to evaluate the brain optical properties: Monte Carlo simulations
from neonate to adult. Biomed. Opt. Express 2 (3), 552–567.

Del Bianco, S., Martelli, F., Zaccanti, G., 2002. Penetration depth of light re-emitted by a
diffusive medium: theoretical and experimental investigation. Phys. Med. Biol. 47,
4131–4144.

Del Bianco, S., Martelli, F., Cignini, F., Zaccanti, G., Sansone, G., Pifferi, A., Torricelli, A.,
Bassi, A., Taroni, P., Cubeddu, R., 2004. Liquid phantom for investigating light prop-
agation through layered diffusive media. Opt. Express 12, 2102–2111.

Delpy, D.T., Cope, M., van der Zee, P., Arridge, S., Wray, S., Wyatt, J., 1988. Estimation of
optical pathlength through tissue from direct time of flight measurement. Phys.
Med. Biol. 33, 1433–1442.

Diop, M., St Lawrence, K., 2012. Deconvolution method for recovering the photon
time-of-flight distribution from time-resolved measurements. Opt. Lett. 37
(12), 2358–2360.

Diop, M., Tichauer, K.M., Elliott, J.T., Migueis, M., Lee, T.Y., St Lawrence, K., 2010. Compari-
son of time-resolved and continuous-wave near-infrared techniques for measuring
cerebral blood flow in piglets. J. Biomed. Opt. 15 (5), 057004.

Diop, M., Verdecchia, K., Lee, T., St Lawrence, K., 2011. Calibration of diffuse correlation
spectroscopy with a time-resolved near-infrared technique to yield absolute cerebral
blood flow measurements. Biomed. Opt. Express 2 (7), 2068–2082.

Dunn, A.K., Boas, D.A., 2000. Transport-based image reconstruction in turbid media
with small source–detector separations. Opt. Lett. 25 (24), 1777–1779.

Durduran, T., Choe, R., Baker, W.B., Yodh, A.G., 2010. Diffuse optics for tissue monitoring
and tomography. Rep. Prog. Phys. 73 (076701) (43 pp).

Eda, H., Oda, I., Ito, Y., Wada, Y., Oikawa, Y., Tsunazawa, Y., Takada, M., Tsuchiya, Y.,
Yamashita, Y., Oda, M., Sassaroli, A., Yamada, Y., Tamura, M., 1999. Multichannel
timeresolved optical tomographic imaging system. Rev. Sci. Instrum. 70, 3595–3602.

Edinburgh Photonics, 2013. The EPL series, picosecond pulsed diode lasers. http://
www.edinburghphotonics.com/files/file/technical-specifications/EPL%20Series%20
Flyer.pdf.

Eggebrecht, A.T., White, B.R., Ferradal, S.L., Chen, C., Zhan, Y., Snyder, A.Z., Dehghani, H.,
Culver, J.P., 2012. A quantitative spatial comparison of high-density diffuse optical
tomography and fMRI cortical mapping. NeuroImage 61 (4), 1120–1128.
Please cite this article as: Torricelli, A., et al., Time domain functional N
dx.doi.org/10.1016/j.neuroimage.2013.05.106
E
D
 P

R
O

O
F

Eggleton, B.J., Luther-Davies, B., Richardson, K., 2011. Chalcogenide photonics. Nat.
Photonics 5, 141–148.

Enfield, L.C., Gibson, A.P., Everdell, N.L., Delpy, D.T., Schweiger, M., Arridge, S.R., Richardson,
C., Keshtgar,M., Douek,M., Hebden, J.C., 2007. Three-dimensional time-resolved optical
mammography of the uncompressed breast. Appl. Opt. 46, 3628–3638.

Excelitas Technologies Corp, 2013. Single photon counting modules. http://www.
excelitas.com/Pages/Product/Single-Photon-Counting-Modules-SPCM.aspx.

Fang, Q., 2010. Mesh-based Monte Carlo method using fast ray-tracing in Plücker coor-
dinates. Biomed. Opt. Express 1 (1), 165–175.

Fang, Q., Boas, D.A., 2009. Monte Carlo simulation of photonmigration in 3D turbidmedia
accelerated by graphics processing units. Opt. Express 17 (22), 20178–20190.

Fang, Q., Kaeli, D.R., 2012. Accelerating mesh-based Monte Carlo method on modern
CPU architectures. Biomed. Opt. Express 3 (12), 3223–3230.

Fang, Z., Zhao, C.Z., 2012. Recent progress in silicon photonics: a review. ISRN Optics
2012 (2012), Article ID 428690.

Farina, A., Bassi, A., Pifferi, A., Taroni, P., Comelli, D., Spinelli, L., Cubeddu, R., 2009. Bandpass
effects in time-resolved diffuse spectroscopy. Appl. Spectrosc. 63 (1), 48–56.

Feng, S., Zeng, F., Chance, B., 1995. Photon migration in the presence of a single defect:
a perturbation analysis. Appl. Opt. 34 (19), 3826–3837.

Ferrari, M., Quaresima, V., 2012. A brief review on the history of human functional
near-infrared spectroscopy (fNIRS) development and fields of application.
NeuroImage 63, 921–935.

Ferrari, M., De Blasi, R.A., Safoue, F., Wei, Q., Zaccanti, G., 1993. Towards human brain
near infrared imaging: time resolved and unresolved spectroscopy during hypoxic
hypoxia. Adv. Exp. Med. Biol. 333, 21–31.

Ferrari,M., Norris, K.H., Sowa,M.G. (Eds.), 2012.Medical Applications ofNIR Spectroscopy:
J. Near Infrared Spectrosc, vol. 20 (Issue 1).

Fianium UK Ltd., 2013a. ALP (advanced laser platform). http://www.fianium.com/alp.
htm.

Fianium UK Ltd., 2013b. WhiteLAse SC sources and accessories. http://www.fianium.
com/supercontinuum.htm.

Foschum, F., Fugger, O., Jäger, M., Simon, E., Kienle, A., Pifferi, A., Spinelli, L., Torricelli,
A., Farina, A., Bargigia, I., Cubeddu, R., Jelzow, A., Wabnitz, H., Macdonald, R.,
Martelli, F., Zaccanti, G., Heiskala, J., Arridge, S.R., Liebert, A., Sawosz, P., Milej, D.,
2012. In vivo optical spectroscopy of the head. Oral Communication to the
nEUROPt Workshop, Non-invasive Imaging of Brain Function and Disease by
Pulsed Near Infrared Light, Milan, 12–13 March 2012.

Frederick, B., Boas, D.A., 2013. http://fnirs.org/software/.
Fujimoto, J.G., Brezinski, M.E., Tearney, G.J., Boppart, S.A., Bouma, B.E., Hee,M.R., Southern,

J.F., Swanson, E.A., 1995. Optical biopsy and imaging using optical coherence tomog-
raphy. Nat. Methods 1, 970–972.

Fukui, Y., Ajichi, Y., Okada, E., 2003. Monte Carlo prediction of near-infrared light
propagation in realistic adult and neonatal head models. Appl. Opt. 42, 2881–2887.

Gagnon, L., Gauthier, C., Hoge, R.D., Lesage, F., 2008. Double-layer estimation of intra- and
extracerebral hemoglobin concentration with a time-resolved system. J. Biomed. Opt.
13 (5), 054019.

Gagnon, L., Cooper, R.J., Yucel, M.A., Perdue, K.L., Greve, D.N., Boas, D.A., 2012a. Short
separation channel location impacts the performance of short channel regression
in NIRS. NeuroImage 59, 2518–2528.

Gagnon, L., Yucel, M.A., Dehaes, M., Cooper, R.J., Perdue, K.L., Selb, J., Huppert, T.J., Hoge,
R.D., Boas, D.A., 2012b. Quantification of the cortical contribution to the NIRS signal
over the motor cortex using concurrent NIRS-fMRI measurements. NeuroImage 59,
3933–3940.

Gao, F., Zhao, H., Tanikawa, Y., Yamada, Y., 2004. Optical tomographicmapping of cerebral
haemodynamics by means of time-domain detection: methodology and phantom
validation. Phys. Med. Biol. 49 (2004), 1055–1078.

Gerega, A., Milej, D., Weigl, W., Botwicz, M., Zolek, N., Kacprzak, M., Wierzejski, W.,
Toczylowska, B., Mayzner-Zawadzka, E., Maniewski, R., Liebert, A., 2012.
Multiwavelength time-resolved detection of fluorescence during the inflow of
indocyanine green into the adult's brain. J. Biomed. Opt. 17 (8), 87001.

Gervain, J., Mehler, J., Werker, J.F., Nelson, C.A., Csibra, G., Lloyd-Fox, S., Shukla, M.,
Aslin, R.A., 2011. Near-infrared spectroscopy: a report from the McDonnell infant
methodology consortium. Dev. Cogn. Neurosci. 1, 22–46.

Gibson, A.P., Austin, T., Everdel, N.L., Schweiger, M., Arridge, S.R., Meek, J.H., Wyatt, J.S.,
Delpy, D.T., Hebden, J.C., 2006. Three-dimensional whole-head optical tomography
of passive motor evoked responses. NeuroImage 30, 521–528.

Golovko, D., Meier, R., Rummeny, E., Daldrup-Link, H., 2011. Optical imaging of rheuma-
toid arthritis. Int. J. Clin. Rheumatol. 6 (1), 67–75.

Gowar, J., 1993. Optical Communication Systems, 2nd edition. Prentice Hall, Hemel
Hempstead.

Hamamatsu Photonics, K.K., 2013a. Guide to streak camera. http://sales.hamamatsu.
com/assets/pdf/catsandguides/e_streakh.pdf.

Hamamatsu Photonics, K.K., 2013b. Microchannel plates. http://sales.hamamatsu.
com/en/products/electron-tube-division/detectors/microchannel-plates-mcps.
php.

Hamamatsu Photonics, K.K., 2013c. Photomultiplier modules. http://sales.hamamatsu.
com/en/products/electron-tube-division/detectors/photomultiplier-modules.php.

Hamamatsu Photonics, K.K., 2013d. Picosecond light pulser. http://sales.hamamatsu.
com/assets/pdf/hpspdf/e_plp10.pd.f.

Hamamatsu Photonics, K.K., 2013e. TRS-20. http://jp.hamamatsu.com/products/life-
science/1002/index_en.html.

Hebden, J.C., Gonzalez, F.M., Gibson, A., Hillman, E.M.C., Yusof, R.M., Everdell, N., Delpy,
D.T., Zaccanti, G., Martelli, F., 2003. Assessment of an in situ temporal calibration
method for time-resolved optical tomography. J. Biomed. Opt. 8 (1), 87–92.

Hebden, J.C., Gibson, A.P., Austin, T., Yusof, R.M., Everdell, N., Delpy, D.T., Arridge, S.R.,
Meek, J.H., Wyatt, J.S., 2004. Imaging changes in blood volume and oxygenation
IRS imaging for human brain mapping, NeuroImage (2013), http://

http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0100
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0100
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0105
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0105
http://www.coherent.com/Products/index.cfm?365/Ultrafast-Ti-Sapphire-Oscillators
http://www.coherent.com/Products/index.cfm?365/Ultrafast-Ti-Sapphire-Oscillators
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0110
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0110
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0125
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0125
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0120
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0120
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0115
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0115
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0130
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0130
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0910
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0910
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0910
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0910
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0915
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0915
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0915
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0135
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0135
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0135
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0140
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0140
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0140
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0140
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0145
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0145
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0150
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0150
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0150
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0155
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0155
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0160
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0160
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0160
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0165
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0165
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0165
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0170
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0170
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0170
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0175
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0175
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0175
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0180
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0180
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0185
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0185
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0185
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0190
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0190
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0190
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0195
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0195
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0195
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0200
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0200
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0200
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0205
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0205
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0920
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0920
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0210
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0210
http://www.edinburghphotonics.com/files/file/technical-specifications/EPL%20Series%20Flyer.pdf
http://www.edinburghphotonics.com/files/file/technical-specifications/EPL%20Series%20Flyer.pdf
http://www.edinburghphotonics.com/files/file/technical-specifications/EPL%20Series%20Flyer.pdf
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0215
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0215
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0930
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0930
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0225
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0225
http://www.excelitas.com/Pages/Product/Single-Photon-Counting-Modules-SPCM.aspx
http://www.excelitas.com/Pages/Product/Single-Photon-Counting-Modules-SPCM.aspx
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0235
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0235
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0230
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0230
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0240
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0240
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0940
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0940
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0945
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0945
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0245
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0245
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0255
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0255
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0255
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0250
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0250
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0250
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0950
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0950
http://www.fianium.com/alp.htm
http://www.fianium.com/alp.htm
http://www.fianium.com/supercontinuum.htm
http://www.fianium.com/supercontinuum.htm
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0965
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0965
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0965
http://fnirs.org/software/
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0975
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0975
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0265
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0265
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0275
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0275
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0275
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0270
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0270
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0270
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0280
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0280
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0280
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0285
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0285
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0285
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0290
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0290
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0295
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0295
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0300
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0300
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0305
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0305
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0980
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0980
http://sales.hamamatsu.com/assets/pdf/catsandguides/e_streakh.pdf
http://sales.hamamatsu.com/assets/pdf/catsandguides/e_streakh.pdf
http://sales.hamamatsu.com/en/products/electron-tube-division/detectors/microchannel-plates-mcps.php
http://sales.hamamatsu.com/en/products/electron-tube-division/detectors/microchannel-plates-mcps.php
http://sales.hamamatsu.com/en/products/electron-tube-division/detectors/microchannel-plates-mcps.php
http://sales.hamamatsu.com/en/products/electron-tube-division/detectors/photomultiplier-modules.php
http://sales.hamamatsu.com/en/products/electron-tube-division/detectors/photomultiplier-modules.php
http://sales.hamamatsu.com/assets/pdf/hpspdf/e_plp10.pd.f
http://sales.hamamatsu.com/assets/pdf/hpspdf/e_plp10.pd.f
http://jp.hamamatsu.com/products/life-science/1002/index_en.html
http://jp.hamamatsu.com/products/life-science/1002/index_en.html
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0315
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0315
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0320
http://dx.doi.org/10.1016/j.neuroimage.2013.05.106
http://dx.doi.org/10.1016/j.neuroimage.2013.05.106


T

1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858

1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944

21A. Torricelli et al. / NeuroImage xxx (2013) xxx–xxx
U
N
C
O

R
R
E
C

in the newborn infant brain using three-dimensional optical tomography. Phys.
Med. Biol. 49 (7), 1117–1130.

Hebden, J.C., Magazov, S., Everdell, N., Varela, M., 2012a. A time-domain system for op-
tical tomography of the newborn infant brain. Oral Communication to the
nEUROPt Workshop, Non-invasive Imaging of Brain Function and Disease by
Pulsed Near Infrared Light, Milan, 12–13 March 2012.

Hebden, J.C., Varela, M., Magazov, S., Everdell, N., Gibson, A., Meek, J., Austin, T.,
2012b. Diffuse optical imaging of the newborn infant brain. Proc. of 9th IEEE In-
ternational Symposium, “Biomedical Imaging: from Nano to Macro”, 2–5 May
2012 (Barcelona).

Hervé, L., Puszka, A., Planat-Chrétien, A., Dinten, J.M., 2012. Time-domain diffuse optical
tomography processing by using the Mellin–Laplace transform. Appl. Opt. 51 (25),
5978–5988.

Hielscher, A.H., Klose, A.D., Beuthan, J., 2000. Evolution strategies for optical tomography
characterization of homogeneous media. Opt. Express 7, 507–518.

Hielscher, A.H., Kim, H.K., Klose, A.H., 2011. Forward models of light transport in bio-
logical tissue. In: Boas, D.A., Pitris, C., Ramanujam, N. (Eds.), Handbook of Biomed-
ical Optics, Part III, Chap. 16. CRC Press, Boca Raton, Florida.

Hillman, E.M.C., Boas, D.A., Dale, A.M., Dunn, A.K., 2004. Laminar optical tomography:
demonstration of millimeter-scale depth-resolved imaging in turbid media. Opt.
Lett. 29 (14), 1650–1652.

Hillman, E.M.C., Amoozegar, C.B., Wang, T., McCaslin, A.F.H., Bouchard, M.B., Mansfield,
J., Levenson, R.M., 2011. In vivo optical imaging and dynamic contrast methods for
biomedical research. Phil. Trans. R. Soc. A 369, 4620–4643.

Hintz, S.R., Benaron, D.A., van Houten, J.C., Duckworth, J.L., Liu, F.W.H., Spilman, S.D.,
Stevenson, D.K., Cheong, W., 1998. Stationary headband for clinical time-of-flight
optical imaging at the bedside. Photochem. Photobiol. 68 (3), 361–369.

Ho, P.P., Baldeck, P., Wong, K.S., Yoo, K.M., Lee, D., Alfano, R.R., 1989. Time dynamics of
photon migration in semiopaque random media. Appl. Opt. 28, 2304–2310.

Hoshi, Y., Shinba, T., Sato, C., Doi, N., 2006. Resting hypofrontality in schizophrenia: a study
using near-infrared time-resolved spectroscopy. Schizophr. Res. 84, 411–420.

Hwang, J., Ramella-Roman, J., Nordstrom, R., 2012. Introduction: feature issue on phantoms
for the performance evaluation and validation of optical medical imaging devices.
Biomed. Opt. Express 3, 1399–1403.

ID Quantique SA, 2013. id100 SERIES. http://www.idquantique.com/instrumentation/
product/id100-silicon-apd-single-photon-detector.html.

Ijichi, S., Kusaka, T., Isobe, K., Islam, F., Okubo, K., Okada, H., Namba, M., Kawada, K., Imai, T.,
Itoh, S., 2005a. Quantification of cerebral hemoglobin as a function of oxygenation using
near-infrared time-resolved spectroscopy in a piglet model of hypoxia. J. Biomed. Opt.
10 (2), 024026.

Ijichi, S., Kusaka, T., Isobe, K., Okubo, K., Kawada, K., Namba, M., Okada, H., Nishida, T.,
Imai, T., Itoh, S., 2005b. Developmental changes of optical properties in neonates
determined by near-infrared time-resolved spectroscopy. Pediatr. Res. 58 (3),
568–573.

Ijichi, S., Kusaka, T., Isobe, K., Okubo, K., Yasuda, S., Kawada, K., Itoh, S., 2005c. Develop-
mental changes of optical properties in infants determined by near-infrared time-
resolved spectroscopy. J. Cereb. Blood Flow Metab. 25, S228.

International Electrotechnical Commission, 2001. IEC 60825-1, Edition 1.2. Safety of
Laser Products — Part 1: Equipment Classification, Requirements and User's Guide.

International Electrotechnical Commission, 2013. IEC 80601-2-71 Ed. 1.0. Medical elec-
trical equipment — Part 2-71: particular requirements for the basic safety and es-
sential performance of functional oximeter equipment. http://www.iec.ch/dyn/
www/f?p=103:38:0::::FSP_ORG_ID,FSP_APEX_PAGE,FSP_LANG_ID,FSP_PROJECT:
1365,23,25,IEC%2080601-2-71%20Ed.%201.0.

Intes, X., 2005. Time-domain optical mammography SoftScan: initial results. Acad.
Radiol. 12, 934–947.

Jacques, S.L., 1989a. Time resolved propagation of ultrashort laser pulses within turbid
tissues. Appl. Opt. 28, 2223–2239.

Jacques, S.L., 1989b. Time-resolved reflectance spectroscopy in turbid tissues. IEEE
Trans. Biomed. Eng. 36, 1155–1161.

Jelzow, A., Kirilina, E., Wabnitz, H., Kummrow, A., Bruehl, R., Ittermann, B.,
Macdonald, R., 2009. Towards improved quantification of functional activation
in human brain by concurrent fMRI and time-resolved NIRS. 446. WE-Heraeus-
Seminar “Optical Imaging of Brain Function” December 7th-10th, 2009, Bad
Honnef, Germany.

Jelzow, A., Koch, S., Wabnitz, H., Steinbrink, J., Obrig, H., Macdonald, R., 2010. Combined
EEG and time-resolved NIRS to study neurovascular coupling in the adult brain. Inter-
national Summer School on Multimodal Approaches in Neuroscience July 19th–21st,
2010 (Leipzig, Germany).

Jelzow, A., Wabnitz, H., Obrig, H., Macdonald, R., Steinbrink, J., 2012. Separation of
indocyanine green boluses in the human brain and scalp based on time-resolved
in-vivo fluorescence measurements. J. Biomed. Opt. 17 (5), 057003.

Kacprzak, M., Liebert, A., Sawosz, P., Zolek, N., Maniewski, R., 2007. Time-resolved op-
tical imager for assessment of cerebral oxygenation. J. Biomed. Opt. 12, 034019.

Kacprzak, M., Liebert, A., Staszkiewicz, W., Gabrusiewicz, A., Sawosz, P., Madycki, G.,
Maniewski, R., 2012. Application of a time-resolved optical brain imager for mon-
itoring cerebral oxygenation during carotid surgery. J. Biomed. Opt. 17 (1), 016002.

Kakihana, Y., Kiyonaga, N., Yasuda, T., Imabayashi, T., Ohryoji, T., Nakahara, M., Okayama,
N., Kanmura, Y., Kikuchi, T., Yonemitsu, T., 2010. Dynamic changes in cerebral oxygen-
ation by two methods during cardiac surgery and postoperative cognitive decline.
Crit. Care 14 (Suppl. 1), P334.

Kakihana, Y., Okayama, N., Matsunaga, A., Yasuda, T., Imabayashi, T., Nakahara, M.,
Kiyonaga, N., Ikoma, K., Kikuchi, T., Kanmura, Y., Oda, M., Ohmae, E., Suzuki, T.,
Yamashita, Y., Tamura, M., 2012. Cerebral monitoring using near-infrared time-
resolved spectroscopy and postoperative cognitive dysfunction. Adv. Exp. Med.
Biol. 737, 19–24.
Please cite this article as: Torricelli, A., et al., Time domain functional N
dx.doi.org/10.1016/j.neuroimage.2013.05.106
E
D
 P

R
O

O
F

Kiguchi, M., Ichikawa, N., Atsumori, H., Kawaguchi, F., Sato, H., Maki, A., Koizumi, H., 2007.
Comparison of light intensity on the brain surface due to laser exposure during optical
topography and solar irradiation. J. Biomed. Opt. 12 (6), 062108.

Kirilina, E., Jelzow, A., Heine, A., Niessing, M., Wabnitz, H., Brühl, R., Ittermann, B.,
Jacobs, A.M., Tachtsidis, I., 2012. The physiological origin of task-evoked systemic
artefacts in functional near infrared spectroscopy. NeuroImage 61 (1), 70–81.

Kuga, Y., Ishimaru, A., Bruckner, A.P., 1983. Experiments on picosecond pulse propagation
in a diffuse medium. J. Opt. Soc. Am. A 73, 1812–1815.

Lapointe, E., Pichette, J., Bérubé-Lauzière, Y., 2012. A multi-view time-domain non-
contact diffuse optical tomography scanner with dual wavelength detection for in-
trinsic and fluorescence small animal imaging. Rev. Sci. Instrum. 83, 063703.

LaVision BioTec GmbH, 2013. Ultra-fast gated cameras. http://www.lavision.de/
products/cameras/ultrafast_gated_cameras.php.

Liebert, A., Wabnitz, H., Grosenick, D., Macdonald, R., 2003. Fiber dispersion in time do-
main measurements compromising the accuracy of determination of optical prop-
erties of strongly scattering media. J. Biomed. Opt. 8 (3), 512–516.

Liebert, A., Wabnitz, H., Steinbrink, J., Obrig, H., Möller, M., Macdonald, R., Villringer, A.,
Rinneberg, H., 2004. Time-resolved multidistance near-infrared spectroscopy of
the adult head: intracerebral and extracerebral absorption changes from moments
of distribution of times of flight of photons. Appl. Opt. 43 (15), 3037–3047.

Liebert, A., Wabnitz, H., Steinbrink, J., Möller, M., Macdonald, R., Rinneberg, H.,
Villringer, A., Obrig, H., 2005. Bed-side assessment of cerebral perfusion in stroke
patients based on optical monitoring of a dye bolus by time-resolved diffuse reflec-
tance. NeuroImage 24 (2), 426–435.

Liebert, A., Wabnitz, H., Obrig, H., Erdmann, R., Möller, M., Macdonald, R., Rinneberg,
H., Villringer, A., Steinbrink, J., 2006. Non-invasive detection of fluorescence from
exogenous chromophores in the adult human brain. NeuroImage 31 (2),
600–608.

Liebert, A., Sawosz, P., Milej, D., Kacprzak, M., Weigl, W., Botwicz, M., Mączewska, J.,
Fronczewska, K., Mayzner-Zawadzka, E., Królicki, L., Maniewski, R., 2011. Assess-
ment of inflow and washout of indocyanine green in the adult human brain by
monitoring of diffuse reflectance at large source–detector separation. J. Biomed.
Opt. 16 (4), 046011.

Liebert, A., Wabnitz, H., Elster, C., 2012. Determination of absorption changes from mo-
ments of distributions of times of flight of photons: optimization of measurement
conditions for a two-layered tissue model. J. Biomed. Opt. 17 (5), 057005.

Liemert, A., Kienle, A., 2012. Green's function of the time-dependent radiative transport
equation in terms of rotated spherical harmonics. Phys. Rev. E 86, 036603.

Liu, Y., Zhang, X., 2011. Metamaterials: a new frontier of science and technology. Chem.
Soc. Rev. 40, 2494–2507.

Maas, A.I.R., Citerio, G., 2010. Noninvasive monitoring of cerebral oxygenation in trau-
matic brain injury: a mix of doubts and hope. Intensive Care Med. 36, 1283–1285.

Mackert, B., Leistner, S., Sander, Tilmann, Liebert, A., Wabnitz, H., Burghoff, M., Trahms,
L., Macdonald, R., Curio, G., 2008. Dynamics of cortical neurovascular coupling an-
alyzed by simultaneous DC-magnetoencephalography and time-resolved near-
infrared spectroscopy. NeuroImage 39 (3), 979–986.

Martelli, F., Del Bianco, S., Zaccanti, G., 2003. Procedure for retrieving the optical prop-
erties of a two-layered medium from time-resolved reflectance measurements.
Opt. Lett. 28 (14), 1236–1238.

Martelli, F., Del Bianco, S., Zaccanti, G., Pifferi, A., Torricelli, A., Bassi, A., Taroni, P.,
Cubeddu, R., 2004. Phantom validation and in vivo application of an inversion pro-
cedure for retrieving the optical properties of diffusive layered media from time-
resolved reflectance measurements. Opt. Lett. 29 (17), 2037–2039.

Martelli, F., Del Bianco, S., Ismaelli, A., Zaccanti, G., 2009. Light Propagation through Bi-
ological Tissue and Other Diffusive Media: Theory, Solutions, and Software. SPIE
Press, Washington, USA.

Martelli, F., Del Bianco, S., Zaccanti, G., 2012. Retrieval procedure for time-resolved
near-infrared tissue spectroscopy based on the optimal estimation method. Phys.
Med. Biol. 57 (10), 2915–2929 (May 21).

Mata Pavia, J., Charbon, E., Wolf, M., 2011a. 3D near-infrared imaging based on a single-
photon avalanche diode array sensor. Proc. SPIE 8088, 808811.

Mata Pavia, J., Niclass, C., Favi, C., Wolf, M., Charbon, E., 2011b. 3D near-infrared imag-
ing based on a SPAD image sensor. International Image Sensor Workshop (IISW),
Hokkaido, Japan, 08 June 2011–11 June 2011, p. R42.

Mata Pavia, J., Charbon, E., Wolf, M., 2012. 3D near-infrared imaging based on a single-
photon avalanche diode array sensor: a new perspective on reconstruction algo-
rithms. Conference Paper, Biomedical Optics, Miami, Florida, April 28, 2012,
Nevel Techniques and Models (BW1A), BW1A.5.

Mazurenka, M., Jelzow, A., Wabnitz, H., Contini, D., Spinelli, L., Pifferi, A., Cubeddu, R.,
Dalla Mora, A., Tosi, A., Zappa, F., Macdonald, R., 2012. Non-contact time-resolved
diffuse reflectance imaging at null source–detector separation. Opt. Express 20
(1), 283–290.

Mazurenka, M., Di Sieno, L., Boso, G., Contini, D., Pifferi, A., Dalla Mora, A., Tosi, A.,
Wabnitz, H., Macdonald, R., 2013. Development of an optical non-contact time-
resolved diffuse reflectance scanning imaging system: first in vivo tests. Oral Com-
munication at SPIE BiOS 2013 Conference 8578 Optical Tomography and Spectros-
copy of Tissue X, 6 February 2013, Paper 8578-88.

MCML, 2013. http://omlc.ogi.edu/software/mc/.
Micro Photon Devices, 2013a. PDM series. http://www.micro-photon-devices.com/

products_pdm.asp.
Micro Photon Devices, 2013b. PDM-R series. http://www.micro-photon-devices.com/

products_pdm-r.asp.
Micro Photon Devices, 2013c. SPC2 series. http://www.micro-photon-devices.com/

products_spc2.asp.
Milej, D., Gerega, A., Zołek, N., Weigl, W., Kacprzak, M., Sawosz, P., Mączewska, J.,

Fronczewska, K., Mayzner-Zawadzka, E., Królicki, L., Maniewski, R., Liebert, A.,
IRS imaging for human brain mapping, NeuroImage (2013), http://

http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0320
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0320
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1010
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1010
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1010
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1010
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1015
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1015
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1015
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0330
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0330
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0330
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0335
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0335
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1020
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1020
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1020
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0345
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0345
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0345
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0340
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0340
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0350
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0350
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0355
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0355
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0360
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0360
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0365
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0365
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0365
http://www.idquantique.com/instrumentation/product/id100-silicon-apd-single-photon-detector.html
http://www.idquantique.com/instrumentation/product/id100-silicon-apd-single-photon-detector.html
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0370
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0370
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0370
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0375
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0375
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0375
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0380
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0380
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0380
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1030
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1030
http://www.iec.ch/dyn/www/f?p=103:38:0::::FSP_ORG_ID,FSP_APEX_PAGE,FSP_LANG_ID,FSP_PROJECT:1365,23,25,IEC%2080601-2-71%20Ed.%201.0
http://www.iec.ch/dyn/www/f?p=103:38:0::::FSP_ORG_ID,FSP_APEX_PAGE,FSP_LANG_ID,FSP_PROJECT:1365,23,25,IEC%2080601-2-71%20Ed.%201.0
http://www.iec.ch/dyn/www/f?p=103:38:0::::FSP_ORG_ID,FSP_APEX_PAGE,FSP_LANG_ID,FSP_PROJECT:1365,23,25,IEC%2080601-2-71%20Ed.%201.0
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0385
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0385
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0390
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0390
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0395
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0395
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1040
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1040
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1040
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1040
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1045
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1045
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1045
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1045
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0405
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0405
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0405
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0410
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0410
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0415
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0415
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1050
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1050
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1050
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0420
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0420
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0420
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0425
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0425
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1055
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1055
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0430
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0430
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1060
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1060
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1060
http://www.lavision.de/products/cameras/ultrafast_gated_cameras.php
http://www.lavision.de/products/cameras/ultrafast_gated_cameras.php
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0450
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0450
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0450
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0465
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0465
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0465
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0460
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0460
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0460
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0455
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0455
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0455
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0440
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0440
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0440
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0440
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0445
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0445
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0445
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0470
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0470
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0475
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0475
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0480
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0480
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0485
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0485
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0485
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0495
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0495
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0495
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0500
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0500
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0500
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1070
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1070
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1070
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1075
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1075
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1075
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0505
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0505
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1080
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1080
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1080
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1085
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1085
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1085
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1085
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0510
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0510
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0510
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1090
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1090
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1090
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1090
http://omlc.ogi.edu/software/mc/
http://www.micro-photon-devices.com/products_pdm.asp
http://www.micro-photon-devices.com/products_pdm.asp
http://www.micro-photon-devices.com/products_pdm-r.asp
http://www.micro-photon-devices.com/products_pdm-r.asp
http://www.micro-photon-devices.com/products_spc2.asp
http://www.micro-photon-devices.com/products_spc2.asp
http://dx.doi.org/10.1016/j.neuroimage.2013.05.106
http://dx.doi.org/10.1016/j.neuroimage.2013.05.106


T

1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030

2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066Q15
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116

22 A. Torricelli et al. / NeuroImage xxx (2013) xxx–xxx
U
N
C
O

R
R
E
C

2012. Time-resolved detection of fluorescent light during inflow of ICG to the brain
—a methodological study. Phys. Med. Biol. 57 (20), 6725–6742.

Molteni, E., Contini, D., Caffini, M., Baselli, G., Spinelli, L., Cubeddu, R., Cerutti, S.,
Bianchi, A.M., Torricelli, A., 2012. Load-dependent brain activation assessed by
time-domain functional near-infrared spectroscopy during a working memory
task with graded levels of difficulty. J. Biomed. Opt. 17 (5), 056005.

Montcel, B., Poulet, P., 2006. An instrument for small-animal imaging using time-
resolved diffuse and fluorescence optical methods. Nucl. Instrum. Methods Phys.
Res., Sect. A 569 (2), 551–556.

Montcel, B., Chabrier, R., Poulet, P., 2005. Detection of cortical activation with time-
resolved diffuse optical methods. Appl. Opt. 44 (10), 1942–1947.

Montcel, B., Chabrier, R., Poulet, P., 2006. Time-resolved absorption and hemoglobin
concentration difference maps: a method to retrieve depth-related information
on cerebral hemodynamics. Opt. Express 14 (25), 12271–12287.

Moreira-Gonzalez, A., Papay, F.E., Zins, J.E., 2006. Calvarial thickness and its relation to
cranial bone harvest. Plast. Reconstr. Surg. 117 (6), 1964–1971.

Mottin, S., Montcel, B., de Chatellus, H.G., Ramstein, S., 2011. Functional white-laser im-
aging to study brain oxygen uncoupling/recoupling in songbirds. J. Cereb. Blood
Flow Metab. 31 (2), 393–400.

Newport Corporation, 2013. Ultrafast lasers. http://www.newport.com/Ultrafast-
Lasers/989320/1033/content.aspx.

Niedre, M.J., Turner, G.M., Ntziachristos, V., 2006. Time-resolved imaging of optical co-
efficients through murine chest cavities. J. Biomed. Opt. 11 (1), 064017.

NIRFAST, 2013. http://www.dartmouth.edu/~nir/nirfast/.
NKT Photonics, 2013a. Large Mode Area (LMA) fibers. http://www.nktphotonics.com/

lmafibers-specifications.
NKT Photonics, 2013b. SuperK supercontinuum sources. http://www.nktphotonics.

com/supercontinuum_sources.
Nomura, Y., Hazekiy, O., Tamura, M., 1997. Relationship between time-resolved and

non-time-resolved Beer–Lambert law in turbid media. Phys. Med. Biol. 42,
1009–1022.

Ntziachristos, V., Ma, X., Yodh, A.G., Chance, B., 1999. Multichannel photon counting
instrument for spatially resolved near infrared spectroscopy. Rev. Sci. Instrum. 70
(1), 193–201.

O'Connor, D.V., Phillips, D., 1984. Time Correlated Single Photon Counting. Academic
Press, London.

Obrig, H., Hirth, C., Ruben, J., Dirnagl, U., Villringer, A., Wabnitz, H., Grosenick, D.,
Rinneberg, H., 1996. Near-infrared spectroscopy in functional activation studies:
new approaches. NeuroImage 3 (Suppl. 1), S 403.

Oda, M., Yamashita, Y., Nakano, T., Suzuki, A., Shimizu, K., Hirano, I., Shimomura, F.,
Ohmae, E., Suzuki, T., Tsuchiya, Y., 1999. Near infrared time-resolved spectroscopy
system for tissue oxygenation monitor. Proc. SPIE 3597, 611–617.

Oda, M., Ohmae, E., Suzuki, H., Suzuki, T., Yamashita, Y., 2009. Tissue oxygenation mea-
surements using near-infrared time-resolved spectroscopy. J. Jpn. Coll. Angiol. 49,
131–137.

Ohmae, E., Ouchi, Y., Oda, M., Suzuki, T., Nobesawa, S., Kanno, T., Yoshikawa, E.,
Futatsubashi, M., Ueda, Y., Okada, H., Yamashita, Y., 2006. Cerebral hemodynamics
evaluation by near-infrared time-resolved spectroscopy: correlation with simulta-
neous positron emission tomography measurements. NeuroImage 29, 697–705.

Ohmae, E., Oda, M., Suzuki, T., Yamashita, Y., Kakihana, Y., Matsunaga, A., Kanmura, Y.,
Tamura, M., 2007. Clinical evaluation of time-resolved spectroscopy by measuring
cerebral hemodynamics during cardiopulmonary bypass surgery. J. Biomed. Opt.
12 (6), 062112.

Okamoto, M., Dan, H., Sakamoto, K., Takeo, K., Shimizu, K., Kohno, S., Oda, I., Isobe, S.,
Suzuki, T., Kohyama, K., Dan, I., 2004. Three-dimensional probabilistic anatomical
cranio-cerebral correlation via the international 10–20 system oriented for trans-
cranial functional brain mapping. NeuroImage 21, 99–111.

Patterson, M.S., Chance, B., Wilson, B.C., 1989. Time resolved reflectance and transmit-
tance for the non-invasive measurement of tissue optical properties. Appl. Opt. 28,
2331–2336.

PicoQuant GmbH, 2013a. Hybrid photomultiplier detector assembly. http://www.
picoquant.com/products/hpd/hpd.htm.

PicoQuant GmbH, 2013b. LDH series. http://www.picoquant.com/products/ldh/ldhseries.
htm.

PicoQuant GmbH, 2013c. LDH-FA series. http://www.picoquant.de/products/ldh_fa/
ldh-fa.htm.

PicoQuant GmbH, 2013d. Multichannel picosecond event timer & TCSPC module.
http://www.picoquant.com/products/hydraharp400/hydraharp400.htm.

PicoQuant GmbH, 2013e. Single photon counting module. http://www.picoquant.com/
products/tau_spad/tau_spad.htm.

Pifferi, A., Torricelli, A., Taroni, P., Cubeddu, R., 2001. Reconstruction of absorber con-
centrations in a two-layer structure by use of multidistance time-resolved reflec-
tance spectroscopy. Opt. Lett. 26 (24), 1963–1965.

Pifferi, A., Torricelli, A., Bassi, A., Taroni, P., Cubeddu, R., Wabnitz, H., Grosenick, D.,
Möller, M., MacDonald, R., Swartling, J., Svensson, T., Andersson-Engels, S., van
Veen, R.L.P., Sterenborg, H.J.C.M., Tualle, J., Nghiem, H.L., Avrillier, S., Whelan, M.,
Stamm, H., 2005. Performance assessment of photon migration instruments: the
MEDPHOT protocol. Appl. Opt. 44, 2104–2114.

Pifferi, A., Torricelli, A., Spinelli, L., Contini, D., Cubeddu, R., Martelli, F., Zaccanti, G., Tosi,
A., Dalla Mora, A., Zappa, F., Cova, S., 2008. Time-resolved diffuse reflectance at null
source–detector separation using a fast gated single-photon avalanche diode. Phys.
Rev. Lett. 100, 138101.

Pifferi, A., Contini, D., Spinelli, L., Torricelli, A., Cubeddu, R., Martelli, F., Zaccanti, G.,
Dalla Mora, A., Tosi, A., Zappa, F., 2010. The spread matrix: a method to predict
the effect of a non time-invariant measurement system. Biomedical Optics, OSA
Technical Digest (CD). Optical Society of America, pp. 1–3 (paper BSuD22).
Please cite this article as: Torricelli, A., et al., Time domain functional N
dx.doi.org/10.1016/j.neuroimage.2013.05.106
E
D
 P

R
O

O
F

Prahl, S., 2013. Optical absorption of hemoglobin. http://omlc.ogi.edu/spectra/
hemoglobin/index.html.

Quaresima, V., Ferrari, M., Torricelli, A., Spinelli, L., Pifferi, A., Cubeddu, R., 2005. Bilater-
al prefrontal cortex oxygenation responses to a verbal fluency task: a multichannel
time-resolved near-infrared topography study. J. Biomed. Opt. 10, 11012.

Re, R., Contini, D., Caffini, M., Cubeddu, R., Spinelli, L., Torricelli, A., 2010. A compact
time-resolved system for near infrared spectroscopy based on wavelength space
multiplexing. Rev. Sci. Instrum. 81 (11), 113101.

Ren, N., Liang, J., Qu, X., Li, J., Lu, B., Tian, J., 2010. GPU-based Monte Carlo simulation for
light propagation in complex heterogeneous tissues. Opt. Express 18 (7), 6811–6823.

Saager, R.B., Telleri, N.L., Berger, A.J., 2011. Two-detector Corrected Near Infrared Spec-
troscopy (C-NIRS) detects hemodynamic activation responses more robustly than
single-detector NIRS. NeuroImage 55 (4), 1679–1685.

Sander, T.H., Liebert, A., Mackert, B.M., Wabnitz, H., Leistner, S., Curio, G., Burghoff, M.,
Macdonald, R., Trahms, L., 2007. DC-magnetoencephalography and time-resolved
near-infrared spectroscopy combined to study neuronal and vascular brain re-
sponses. Physiol. Meas. 28 (6), 651–664.

Sassaroli, A., Martelli, F., 2012. Equivalence of four Monte Carlo methods for photon mi-
gration in turbid media. JOSA A 29 (10), 2110–2117.

Sassaroli, A., Martelli, F., Fantini, S., 2010. Perturbation theory for the diffusion equation
by use of the moments of the generalized temporal point-spread function. III.
Frequency-domain and time-domain results. JOSA A 27 (7), 1723–1742.

Sato, C., Yamaguchi, T., Seida, M., Ota, Y., Yu, I., Iguchi, Y., Nemoto, M., Hoshi, Y., 2007.
Intraoperative monitoring of depth dependent hemoglobin concentration changes dur-
ing carotid endartectomy by time-resolved spectroscopy. Appl. Opt. 46 (14), 2785–2792.

Sawosz, P., Kacprzak, M., Zolek, N., Weigl, W., Wojtkiewicz, S., Maniewski, R., Liebert, A.,
2010. Optical system based on time-gated, intensified charge-coupled device cam-
era for brain imaging studies. J. Biomed. Opt. 15 (6), 066025.

Sawosz, P., Zolek, N., Kacprzak, M., Maniewski, R., Liebert, A., 2012. Application of time-
gated CCD camera with image intensifier in contactless detection of absorbing in-
clusions buried in optically turbid medium which mimics local changes in oxygen-
ation of the brain tissue. Opto-Electron. Rev. 20 (4), 309–314.

Scarpa, F., Brigadoi, S., Cutini, S., Scatturin, P., Zorzi, M., Dell'Acqua, R., Sparacino, G.,
2013. A reference-channel based methodology to improve estimation of event re-
lated hemodynamic response from fNIRS measurements. NeuroImage. http://
dx.doi.org/10.1016/j.neuroimage.2013.01.021 (in press).

Schmidt, F.E.W., Fry, M.E., Hillman, E.M.C., Hebden, J.C., Delpy, D.T., 2000. A32-chan-
nel time resolved instrument for medical optical tomography. Rev. Sci. Instrum.
71, 256–265.

Selb, J., Boas, D.A., 2012. A second generation time-domain imaging system from MGH.
Oral Communication to the nEUROPt Workshop, Non-invasive Imaging of Brain
Function and Disease by Pulsed Near Infrared Light, Milan, 12–13 March 2012.

Selb, J., Gibson, A., 2011. Diffuse optical tomography: time domain. In: Boas, D.A., Pitris,
C., Ramanujam, N. (Eds.), Handbook of Biomedical Optics, Part III, Chap. 20. CRC
Press, Boca Raton, Florida.

Selb, J., Stott, J.J., Franceschini, M.A., Sorensen, A.G., Boas, D.A., 2005. Improved sensitivity
to cerebral hemodynamics during brain activation with a time-gated optical system:
analytical model and experimental validation. J. Biomed. Opt. 10 (1), 11013.

Selb, J., Joseph, D.K., Boas, D.A., 2006. Time-gated optical system for depth-resolved
functional brain imaging. J. Biomed. Opt. 11, 044008.

Selb, J., Dale, A., Boas, D.A., 2007. Linear 3D reconstruction of time-domain diffuse op-
tical imaging differential data: improved depth localization and lateral resolution.
Opt. Express 15, 16400–16412.

Selb, J., Zimmermann, B.B., Martino, M., Ogden, T.M., Boas, D.A., 2013. Functional brain
imaging with a supercontinuum time-domain NIRS system. Oral Communication
at SPIE BiOS 2013 Conference 8578 Optical Tomography and Spectroscopy of Tis-
sue X, 3 February 2013, Paper 8578-7.

SensL, 2013a. Measurement instruments. http://sensl.com/products/measurement-
instruments/.

SensL, 2013b. Photon counting systems. http://sensl.com/products/photon-counting-
systems/.

Siesler, H.W., Ozaki, Y., Kawata, S., Heise, H.M. (Eds.), 2002. Near-infrared Spectrosco-
py: Principles, Instruments, Apps. Wiley-VCH Verlag GmbH, Weinheim
(Germany).

Simon, E., Foschum, F., Kienle, A., 2013. Hybrid Green's function of the time-dependent
radiative transfer equation for anisotropically scattering semi-infinite media.
J. Biomed. Opt. 18 (1), 015001.

Spinelli, L., Martelli, F., Del Bianco, S., Pifferi, A., Torricelli, A., Cubeddu, R., Zaccanti, G.,
2006. Absorption and scattering perturbations in homogeneous and layered diffu-
sive media probed by time-resolved reflectance at null source–detector separation.
Phys. Rev. E 74, 021919.

Spinelli, L., Martelli, F., Torricelli, A., Pifferi, A., Zaccanti, G., 2009a. Nonlinear fitting procedure
for accurate time-resolved measurements in diffusive media. Proc. SPIE 7369, 73691C.

Spinelli, L., Pifferi, A., Contini, D., Cubeddu, R., Torricelli, A., 2009b. Time-resolved opti-
cal stratigraphy in turbid media. Proc. SPIE 7371, 73710A.

Steinbrink, J., Wabnitz, H., Obrig, H., Villringer, A., Rinneberg, H., 2001. Determining
changes in NIR absorption using a layered model of the human head. Phys. Med.
Biol. 46, 879–896.

Steinkellner, O., Gruber, C., Wabnitz, H., Jelzow, A., Steinbrink, J., Fiebach, J.B.,
Macdonald, R., Obrig, H., 2010. Optical bedside monitoring of cerebral perfusion:
technological and methodological advances applied in a study on acute ischemic
stroke. J. Biomed. Opt. 15 (6), 061708.

Steinkellner, O., Jelzow, A., Wabnitz, H., Macdonald, R., 2012. A time-domain brain im-
ager for various clinical applications. Oral Communication to the nEUROPt Work-
shop, Non-invasive Imaging of Brain Function and Disease by Pulsed Near
Infrared Light, Milan, 12–13 March 2012.
IRS imaging for human brain mapping, NeuroImage (2013), http://

http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0515
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0515
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0520
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0520
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0520
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0535
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0535
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0535
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0525
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0525
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0530
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0530
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0530
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0540
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0540
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0545
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0545
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0545
http://www.newport.com/Ultrafast-Lasers/989320/1033/content.aspx
http://www.newport.com/Ultrafast-Lasers/989320/1033/content.aspx
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0550
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0550
http://www.dartmouth.edu/~nir/nirfast/
http://www.nktphotonics.com/lmafibers-specifications
http://www.nktphotonics.com/lmafibers-specifications
http://www.nktphotonics.com/supercontinuum_sources
http://www.nktphotonics.com/supercontinuum_sources
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0560
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0560
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0560
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0555
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0555
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0555
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0565
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0565
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1135
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1135
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0575
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0575
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0570
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0570
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0570
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0585
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0585
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0585
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0580
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0580
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0580
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0590
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0590
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0590
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0595
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0595
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0595
http://www.picoquant.com/products/hpd/hpd.htm
http://www.picoquant.com/products/hpd/hpd.htm
http://www.picoquant.com/products/ldh/ldhseries.htm
http://www.picoquant.com/products/ldh/ldhseries.htm
http://www.picoquant.de/products/ldh_fa/ldh-fa.htm
http://www.picoquant.de/products/ldh_fa/ldh-fa.htm
http://www.picoquant.com/products/hydraharp400/hydraharp400.htm
http://www.picoquant.com/products/tau_spad/tau_spad.htm
http://www.picoquant.com/products/tau_spad/tau_spad.htm
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0610
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0610
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0610
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0600
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0600
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0605
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0605
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0605
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1165
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1165
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1165
http://omlc.ogi.edu/spectra/hemoglobin/index.html
http://omlc.ogi.edu/spectra/hemoglobin/index.html
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0615
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0615
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0615
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0620
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0620
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0620
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0625
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0625
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0630
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0630
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0630
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0635
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0635
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0635
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0640
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0640
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0645
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0645
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0645
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0650
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0650
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1175
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1175
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1180
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1180
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1180
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1180
http://dx.doi.org/10.1016/j.neuroimage.2013.01.021
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1190
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1190
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1190
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1195
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1195
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1195
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1200
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1200
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1200
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0675
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0675
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0675
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0670
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0670
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0665
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0665
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0665
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1205
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1205
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1205
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1205
http://sensl.com/products/measurement-instruments/
http://sensl.com/products/measurement-instruments/
http://sensl.com/products/photon-counting-systems/
http://sensl.com/products/photon-counting-systems/
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1220
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1220
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1220
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0685
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0685
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0685
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0690
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0690
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0690
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0695
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0695
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0700
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0700
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0705
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0705
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0705
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0710
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0710
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0710
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1225
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1225
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1225
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1225
http://dx.doi.org/10.1016/j.neuroimage.2013.05.106
http://dx.doi.org/10.1016/j.neuroimage.2013.05.106


T

2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164

2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212

2214

23A. Torricelli et al. / NeuroImage xxx (2013) xxx–xxx
C

Takahashi, T., Takikawa, Y., Kawagoe, R., Shibuya, S., Iwano, T., Kitazawa, S., 2011. Influ-
ence of skin blood flow on near-infrared spectroscopy signals measured on the
forehead during a verbal fluency task. NeuroImage 57, 991–1002.

Taroni, P., Pifferi, A., Quarto, G., Spinelli, L., Torricelli, A., Cubeddu, R., 2012. Chapter 9, dif-
fuse optical imaging: application to breast imaging. In: Anastasio, A., La Riviere, P.
(Eds.), Emerging Imaging Technologies in Medicine. CRC Press, Boca Raton, Florida.

TOAST, 2013. http://web4.cs.ucl.ac.uk/research/vis/toast/index.html.
Tolguenec, G.L., Lantz, E., Devaux, F., 1997. Imaging through scattering media by para-

metric amplification of images: study of the resolution and the signal-to-noise
ratio. Appl. Opt. 36, 8292–8297.

Toninelli, C., Vekris, E., Ozin, G.A., John, S., Wiersma, D.S., 2008. Exceptional reduction of the
diffusion constant inpartially disordered photonic crystals. Phys. Rev. Lett. 101, 123901.

Torricelli, A., Pifferi, A., Taroni, P., Giambattistelli, E., Cubeddu, R., 2001. In vivo optical
characterization of human tissues from 610 to 1010 nm by time-resolved reflec-
tance spectroscopy. Phys. Med. Biol. 46, 2227–2237.

Torricelli, A., Quaresima, V., Pifferi, A., Biscotti, G., Spinelli, L., Taroni, P., Ferrari, M.,
Cubeddu, R., 2004. Mapping of calf muscle oxygenation and haemoglobin content
during dynamic plantar flexion exercise by multi-channel time-resolved near in-
frared spectroscopy. Phys. Med. Biol. 49, 685–699.

Torricelli, A., Pifferi, A., Spinelli, L., Cubeddu, R., Martelli, F., Del Bianco, S., Zaccanti, G.,
2005. Time-resolved reflectance at null source–detector separation: improving
contrast and resolution in diffuse optical imaging. Phys. Rev. Lett. 95, 078101.

Torricelli, A., Contini, D., Pifferi, A., Spinelli, L., Cubeddu, R., Nocetti, L., Manginelli, A.A.,
Baraldi, P., 2007. Simultaneous acquisition of time-domain fNIRS and fMRI during
motor activity. Proc. SPIE 6631, 66310A.

Torricelli, A., Contini, D., Caffini, M., Zucchelli, L., Cubeddu, R., Spinelli, L., Molteni, E.,
Bianchi, A.M., Baselli, G., Cerutti, S., Visani, E., Gilioli, I., Rossi Sebastiano, D., Schiaffi,
E., Panzica, F., Franceschetti, S., 2011. Assessment of cortical response during motor
task in adults by a multimodality approach based on fNIRS–EEG, fMRI–EEG, and
TMS. Proc. SPIE 8088, 808802.

Tosi, A., Dalla Mora, A., Zappa, F., Gulinatti, A., Contini, D., Pifferi, A., Spinelli, L.,
Torricelli, A., Cubeddu, R., 2011. Fast-gated single-photon counting technique
widens dynamic range and speeds up acquisition time in time-resolved measure-
ments. Opt. Express 19 (11), 10735–10746.

Tsuzuki, D., Jurcak, V., Singh, A.K., Okamoto, M., Watanabe, E., Dan, I., 2007. Virtual spatial
registration of stand-alone fNIRS data to MNI space. NeuroImage 34 (4), 1506–1518.

Tsuzuki, D., Cai, D.S., Dan, H., Kyutoku, Y., Fujita, A., Watanabe, E., Dan, I., 2012. Stable
and convenient spatial registration of stand-alone NIRS data through anchor-
based probabilistic registration. Neurosci. Res. 72 (2), 163–171.

Tuchin, V., 2010. Handbook of Photonics for Biomedical Science. CRC Press, Taylor &
Francis Group, London.

Ueda, Y., Yamanaka, T., Yamashita, D., Suzuki, T., Ohmae, E., Oda, M., Yamashita, Y.,
2005. Reflectance diffuse optical tomography: its application to human brain map-
ping. Jpn. J. Appl. Phys. 44, 1203–1206.

van der Zee, P., Cope, M., Arridge, S.R., Essenpreis, M., Potter, L.A., Edwards, A.D., Wyatt,
J.S., McCormick, D.C., Roth, S.C., Reynolds, E.O., 1992. Experimentally measured op-
tical pathlengths for the adult head, calf and forearm and the head of the newborn
infant as a function of inter optode spacing. Adv. Exp. Med. Biol. 316, 143–153.
U
N
C
O

R
R

2213

Please cite this article as: Torricelli, A., et al., Time domain functional N
dx.doi.org/10.1016/j.neuroimage.2013.05.106
E
D
 P

R
O

O
F

Vignal, C., Boumans, T., Montcel, B., Ramstein, S., Verhoye, M., Van Audekerke, J.,
Mathevon, N., Van der Linden, A., Mottin, S., 2008. Measuring brain hemodynamic
changes in a songbird: responses to hypercapnia measured with functional MRI
and near-infrared spectroscopy. Phys. Med. Biol. 53 (10), 2457–2470.

Wabnitz, H., Möller, M., Liebert, A., Walter, A., Erdmann, R., Raitza, O., Drenckhahn, C.,
Dreier, J., Obrig, H., Steinbrink, J., Macdonald, R., 2005. A time-domain NIR brain
imager applied in functional stimulation experiments. Proc. OSA-SPIE Biomed.
Opt. Presented at the Photon Migration and Diffuse-Light Imaging II, pp. 70–78.

Wabnitz, H., Möller, M., Liebert, A., Obrig, H., Steinbrink, J., Macdonald, R., 2010. Time-
resolved near-infrared spectroscopy and imaging of the adult human brain. Adv.
Exp. Med. Biol. 662, 143–148.

Wabnitz, H., Pifferi, A., Torricelli, A., Taubert, D.R., Mazurenka, M., Steinkellner, O., Jelzow,
A., Farina, A., Bargigia, I., Contini, D., Caffini, M., Zucchelli, L., Spinelli, L., Sawosz, P.,
Liebert, A.,Macdonald, R., Cubeddu, R., 2011. Assessment of basic instrumental perfor-
mance of time-domain optical brain imagers. Proc. SPIE 7896, 789602.

Wabnitz, H., Jelzow, A., Mazurenka, M., Steinkellner, O., Taubert, D.R., Macdonald, R.,
Pifferi, A., Torricelli, A., Contini, D., Zucchelli, L., Spinelli, L., Cubeddu, R., Milej, D.,
Zolek, N., Kacprzak, M., Sawosz, P., Liebert, A., Magazov, A., Hebden, J.C., Martelli,
F., Di Ninni, P., Zaccanti, G., 2013. Performance assessment of time-domain optical
brain imagers: a multi-laboratory study. Invited Paper at SPIE BiOS 2013 Confer-
ence 8578 Optical Tomography and Spectroscopy of Tissue X, 3 February 2013,
Paper 8583-21.

Wang, L., Ho, P.P., Liu, C., Zhang, G., Alfano, R.R., 1991. Ballistic 2-d imaging through
scattering walls using an ultrafast optical kerr gate. Science 253, 769–771.

Wang, L., Jacques, S.L., Zheng, L.-Q., 1995. MCML—Monte Carlomodeling of photon trans-
port in multi-layered tissues. Comput. Methods Programs Biomed. 47, 131–146.

Wolf, M., Ferrari, M., Quaresima, V., 2007. Progress of near-infrared spectroscopy and
topography for brain and muscle clinical applications. J. Biomed. Opt. 12, 062104.

Wyatt, J.S., Cope, M., Delpy, D.T., van der Zee, P., Arridge, S., Edwards, A.D., Reynolds,
E.O., 1990. Measurement of optical path length for cerebral near-infrared spectros-
copy in newborn infants. Dev. Neurosci. 12, 140–144.

Yamashita, D., Yamanaka, T., Suzuki, T., Ohmae, E., Ueda, Y., Oda, M., Yamashita, Y.,
2003. Development of multi-channel time resolved spectroscopy system and ap-
plication of this system to measurement of brain function. Proc. Opt. Jpn. Symp.
Biomed. Opt. 3, 72–73.

Yokose, N., Sakatani, K., Murata, Y., Awano, T., Igarashi, T., Nakamura, S., Hoshino, T.,
Katayama, Y., 2010. Bed-side monitoring of cerebral blood oxygenation and hemo-
dynamics after aneurysmal subarachnoid hemorrhage by quantitative time-
resolved near infrared spectroscopy. World Neurosurg. 73, 508–513.

Yucel, M.A., Huppert, T.J., Boas, D.A., Gagnon, L., 2012. Calibrating the BOLD signal dur-
ing a motor task using an extended fusion model incorporating DOT, BOLD and ASL
data. NeuroImage 61 (4), 1268–1276.

Zhao, Q., Spinelli, L., Torricelli, A., Cubeddu, R., Pifferi, A., 2010. Reconstruction in diffuse
optical tomography using genetic algorithm. Conference Paper Biomedical Optics,
Sunday Poster Session (BSuD), Miami, Florida, April 11, 2010.

Zhao, Q., Spinelli, L., Bassi, A., Valentini, G., Contini, D., Torricelli, A., Cubeddu, R.,
Zaccanti, G., Martelli, F., Pifferi, A., 2011. Functional tomography using a time-
gated ICCD camera. Biomed. Opt. Express 2 (3), 705–716.
E

IRS imaging for human brain mapping, NeuroImage (2013), http://

http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0720
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0720
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0720
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0725
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0725
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0725
http://web4.cs.ucl.ac.uk/research/vis/toast/index.html
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0730
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0730
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0730
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0735
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0735
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0755
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0755
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0755
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0760
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0760
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0760
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0750
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0750
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0745
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0745
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0740
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0740
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0740
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0765
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0765
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0765
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0770
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0770
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0775
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0775
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0775
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0780
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0780
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0785
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0785
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0790
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0790
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0790
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0795
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0795
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0795
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1235
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1235
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1235
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0800
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0800
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0800
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0805
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0805
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1240
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1240
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1240
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1240
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0810
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0810
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0815
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0815
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0820
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0820
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0825
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0825
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0830
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0830
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0830
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0835
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0835
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0835
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0840
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0840
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0840
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1245
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1245
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf1245
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0845
http://refhub.elsevier.com/S1053-8119(13)00609-5/rf0845
http://dx.doi.org/10.1016/j.neuroimage.2013.05.106
http://dx.doi.org/10.1016/j.neuroimage.2013.05.106

	Time domain functional NIRS imaging for human brain mapping
	Introduction)
	Principles of TD fNIRS
	Basics of NIRS
	The classical TD NIRS approach
	The null source detector distance TD NIRS approach

	TD fNIRS modeling and data analysis
	Forward model
	Inverse model
	Semi-empirical approaches

	TD fNIRS instrumentation
	Light sources
	Detection techniques
	Delivery and collection system

	TD fNIRS systems
	Traditional TD fNIRS systems
	State-of-the-art TD fNIRS systems
	Next generation TD fNIRS systems
	Co-registration with other modalities
	Performance assessment and standardization

	TD fNIRS features
	Quantification
	Penetration depth
	Depth selectivity
	Spatial resolution
	Contrast-to-noise ratio
	Representative in vivo data

	Future perspectives
	Conclusions
	Uncited references
	Acknowledgments
	Appendix A
	References


