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ABSTRACT

Processes taking place in subduction zones are the main controller of the 
chemical cycle of volatile and incompatible elements in the Earth system. 
Meta morphic devolatilization reactions occurring during slab burial play a key 
role in the transfer of elements to the supra-subduction mantle, from forearc 
to sub-arc depth. Here, we discuss the elements released in fluids and melts 
from oceanic (i.e., sediments, altered oceanic crust, and hydrated lithospheric 
mantle) and continental slab materials during prograde subduction and the 
consequent implications in the chemical evolution of the supra-subduction 
mantle. We use bulk data and fluid and melt inclusions analyses to show and 
to constrain the mobility of elements from top to bottom in the subduction 
zone setting. The development of mélange domains at the slab-mantle inter-
face and its influence in the element cycle are also taken into account. Coupled 
with trace-element mobility, we review the redox evolution of slab materials 
during subduction and its implication in the redox conditions of the supra-sub-
duction mantle due to fluid and melt infiltration down to sub-arc depth.

INTRODUCTION

Subduction processes are the main controller of the chemical cycle of 
volatile and incompatible elements in the Earth system (Stern, 2002; Elliott, 
2004; Bebout, 2013; Schmidt and Poli, 2014; Hermann and Rubatto, 2014). The 
release of elements through dehydration and/or partial melting processes of 
the subducted materials is the main factor responsible for the metasomatism 
of the supra-subduction mantle. Generally, the subduction of oceanic lith-
osphere is promoted by its high density, thickness, and lower temperature 
with respect to the continental crust (e.g., Stern, 2002). However, the sub-
duction of slices of continental crust up to ultra-high pressure (UHP) condi-
tions is documented in several terranes by the discovery of UHP polymorphs 
such as coesite and diamond in gneisses or marbles (Chopin, 1984; Smith, 
1984; Sobolev and Shatsky, 1990; Stöckhert et al., 2001). During the subduc-
tion path, slab rocks undergo chemical and physical transformations that are 
typical of high-pressure and low-temperature conditions, along a geotherm 

gradient from ~5–10  °C/km up to 20  °C/km (Peacock, 1996; Syracuse et  al., 
2010; Van Keken et al., 2011). Devolatilization reactions are the main processes 
promoting the slab-to-mantle element transfer and strongly depend on tem-
perature. The temperature gradient of the subducting slab is consequently a 
key parameter controlling chemical evolution of the slab materials and the 
release of elements in the supra-subduction mantle (e.g., Van Keken et al., 
2011). A full understanding of these transfer processes requires suitable rock 
samples that record inter actions between mantle peridotites and incoming 
subduction fluids from forearc to sub-arc depths. Such samples correspond to 
metasomatized peridotites cropping out in orogenic environments, which are 
associated with crust-derived rocks both equilibrated at HP and UHP. More-
over, the investigation of the fluid phases produced by subducted oceanic 
lithosphere (i.e., by an tigorite breakdown) and continental crust (i.e., aqueous 
fluids and supercritical liquids) and their interaction with the supra-subduc-
tion mantle enables us to unravel the possible metasomatic processes down 
to depths corresponding to arc magma sources.

The purpose of this contribution is to characterize the different geochemi-
cal fingerprints of the subducted oceanic lithosphere and continental crust 
through an overview of their trace-element signature and isotopic imprint. 
Also, we will consider the chemistry of fluid inclusions in both oceanic HP 
serpentinites and metasediments as representative of the composition of fluid 
phases able to metasomatize the supra-subduction mantle. To complete the 
picture, we will also present trace-element and isotopic data of supra-subduc-
tion peridotites affected by fluid phases derived from the continental crust at 
HP and UHP from three unique localities: Ulten Zone (Italian Central Alps), 
Sulu (Eastern China), and Bardane (Western Gneiss Region). All these results 
will be discussed in the framework of recent data available on the oxidizing 
capability of slab-derived fluid phases and of the oxidation state of the supra- 
subduction mantle at sub-arc depth.

In this contribution, we will try to address some important questions that 
are still under debate by the scientific community:

(1) How can the evolution of the subducting materials along the slab- mantle 
interface (from oceanic to continental crust) modify their geochemical 
features?
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(2) What is the role of subducted mineral assemblages as carriers of ele-
ments to depth?

(3) How can such evolution influence the geochemical features of the 
supra- subduction mantle?

(4) What is the redox state of the subducting lithosphere, and how does it 
evolve from oceanic to continental subduction?

(5) How can the redox-state evolution influence the speciation of elements 
in the metasomatic fluids infiltrating the supra-subduction mantle?

GEOCHEMISTRY OF SUBDUCTING MATERIALS

Subduction input materials are mainly constituted by the oceanic litho-
sphere, subdivided, from top to bottom, in oceanic sediments, altered oceanic 
crust, and hydrated lithospheric mantle. During the formation of an ocean by 
rifting processes, slices of continental crust from the margins may also oc-
cur as extensional allochthons in the newly formed basin (Peron-Pinvidic and 
Manatschal, 2010; Lundin and Doré, 2011; Beltrando et al., 2014). In this context, 
the subduction of the oceanic lithosphere can be associated with subduction of 
slices of continental crust (Dal Piaz, 1999; Mohn et al., 2014). Moreover, when 
the oceanic materials are consumed and entirely buried at depth, the subse-
quent continent-continent collision allows the subduction of portions of conti-
nental crust. In the following sections, the key points concerning the geochem-
istry of the oceanic lithosphere and continental crust, as “input subduction 
materials,” are briefly described.

Oceanic Lithosphere

Sedimentary materials on the ocean floor represent the result of the ero-
sion of continents and of biogeochemistry and marine life. The chemical com-
position of these materials can be considered as a mixing between multiple 
end-members of sediments that strongly depend on their source, such as 
continental and volcaniclastic detritus, biogenic carbonate and opal, Fe-Mn 
oxides, siliceous materials, and many others. As proposed by Plank and Lang-
muir (1998) and recently updated by Plank (2014), detrital components can pro-
vide alkali elements (K, Rb, and Cs), B, Be, Pb, and high field strength elements 
(HFSE: Hf, Zr, Nb, Ta, and Ti), whereas biogenic phases and biological produc-
tivity strongly affect the Ba and Sr contents. Lithium and rare-earth elements 
(REEs) are typical of the upper continental crust or average shales, while U 
seems mainly linked to organic C-rich sediments. Another key feature of sedi-
mentary materials is their enrichment in some fluid-mobile elements, such as 
As and Sb (Li, 1991; Plank and Ludden, 1992). As will be discussed in the next 
sections, these elements play an important role in understanding the chemical 
exchange between different geochemical reservoirs during the subduction of 
oceanic lithosphere (Hattori and Guillot, 2007; Deschamps et al., 2011; Scam-
belluri et al., 2014; Cannaò et al., 2015; Scambelluri et al., 2015; Cannaò et al., 
2016). From an isotopic point of view, the sedimentary material is character-
ized by strong enrichment in radiogenic isotopes, such as high 87Sr/86Sr ratios 

(0.7123 GLOSS II value) and Pb isotopes (e.g., Plank, 2014), due to the presence 
of micas that are the most important carrier of their parental elements Rb and 
Th-U, respectively. On the contrary, geochemical isotopic systematics of ele-
ments with high mantle affinity, such as Sm-Nd and Lu-Hf, are less radiogenic 
than mantle composition.

The oceanic crust forms at mid-ocean ridges by magmatism. Although 
quite homogeneous, its composition is related to the magma supply rates: 
In fast spreading ridges, magmas are generally more fractionated than those 
generated in slow spreading ridges (Perfit and Chadwick, 1998). Studies of the 
oceanic crust are accomplished through the collection of in situ drill cores, 
dredging of ocean floor, and by sampling and analyses of obducted ophiolitic 
sequences (e.g., Troodos in Cyprus and Samail in Oman). Based on major- and 
trace-element geochemistry analyses of these rocks, the average composition 
of the oceanic crust is typically mid-ocean ridge basalt (MORB), even if com-
position of MORB can vary substantially. The most important process able to 
strongly modify the elemental budget of the oceanic crust is the interaction 
with seawater or seawater-like fluids during hydrothermal alteration processes, 
contributing to the major addition of H2O and CO2 via crystallization of sec-
ondary hydrous- and carbon-bearing minerals (Staudigel, 2003, and references 
therein). In terms of trace elements, the formation of these alteration minerals 
allows the storage of elements derived from the seawater and the underlying 
sedimentary package. In this way, the oceanic crust may display positive anom-
alies in alkali elements, such as Cs, Rb, and K, and enrichment in B, Ba, Th, U, 
and S (Alt and Teagle, 2003). Also Li is a good indicator of hydrothermal inter-
action with seawater-derived fluids (Vils et al., 2008). Moreover, enrichment of 
some immobile elements such as REEs has been identified in extremely altered 
basalts dredged from some seamounts (Staudigel et al., 1996).

During the alteration process at the oceanic stage, the oceanic crust is 
affected by partial to complete resetting of its isotopic signature, which may 
diverge significantly from its original mantle value. Modification of stable 
(e.g., δ18O, δD, δ13C, δ11B, and δ37Cl) and radiogenic (e.g., 87Sr/86Sr) isotopes 
may provide information about the oceanic alteration history of the crust. 
Subsequent subduction of these altered materials to mantle depth introduces 
significant geochemical anomalies with important consequence in the global 
element fluxes.

For the purpose of this review, we focus our attention on one of the most 
important isotopic systematics affected by alteration processes—the Sr ratio 
(Staudigel, 2003). Fresh crust shows the same Sr isotopic ratios of the depleted 
mantle (87Sr/86Sr = 0.7025; Klein, 2003), whereas the Sr signature of the altered 
oceanic crust will be close to that of the interacting fluids, which is much more 
radiogenic (e.g., present-day seawater 87Sr/86Sr = 0.7092; Bruland et al., 2013). It 
is important to note that the Sr isotope ratio of seawater is affected by secular 
variation (McArthur et al., 2001). Due to the absence of isotopic fractionation 
during fluid production in subduction setting, the Sr isotopic signature of the 
fluids will be the same as that of the starting altered materials.

The lithospheric mantle is composed of depleted ultramafic rocks and 
therefore represents a poor geochemical reservoir (Niu, 2004). However, the 
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hydration of the ocean floor strongly modifies the initial chemical composi-
tion of mantle rocks, and consequently, it changes their role in the subduc-
tion factory concept (Tatsumi, 2005). The hydration of mantle peridotites, i.e., 
serpentinization, is characterized by the development of serpentine minerals 
(plus minor amounts of brucite, chlorite, talc, tremolite, and magnetite), at the 
expense of olivine and pyroxenes. Serpentinites are mainly formed at slow to 
ultra-slow spreading ridges due to the exposure of the mantle on the seafloor 
by the occurrence of normal faults related to the extension and thinning of the 
crust along major scarps and transform faults (Bonatti, 1976; Morishita et al., 
2009). These structures promote the infiltration of fluids enhancing the alter-
ation of mantle rocks. More than ten years ago, Ranero et al. (2003) indicated 
that the presence of strike-normal faults near the trench, due to the bending 
of the subducting plate, promotes the deep hydration of the mantle with sub-
sequent enrichment in some sediment-like elements, such as Cs, As, and Sb 
(Deschamps et al., 2011; Cannaò et al., 2016), with important implications in the 
subduction-related water cycle (Rüpke et al., 2004; Faccenda et al., 2009) and 
in the intermediate-depth seismicity (Ranero et al., 2005).

The presence of ~11%–15% of water into the crystal structure of serpentine 
minerals (e.g., chrysotile, lizardite, and antigorite) produces the most important 
chemical change in the oceanic lithospheric mantle prior to subduction. The 
geochemistry of serpentinites is quite homogeneous in terms of major ele-
ments, and the experimental study of Allen and Seyfried (2005) suggests that 
during seawater-peridotite interaction, the change in REE budget still reflects 
the geochemical imprint of the protolith. In this way, only the leftover trace-ele-
ment contents will be affected by chemical depletion and/or enrichment, pro-
viding information about their geodynamic setting of formations (Deschamps 
et al., 2013). The entry of water in the crystal structure of serpentine miner-
als implies an increase of their molar volume, and therefore of the volume 
of the entire protolith (O’Hanley, 1992; Andreani et al., 2007), together with a 
decrease of density from 3.3 to 2.5 g/cm3. This change of the mineral structure 
allows serpentine, in all its forms, to increase its trace-element budget (Mével, 
2003; Niu, 2004; Scambelluri et al., 2004, 2014; Boschi et al., 2008; Vils et al., 
2008; Deschamps et al., 2012; Kodolányi et al., 2012). As pointed out by Poli and 
Schmidt (2002), a peculiar, but relevant, lithology as CO2 “input material” is 
represented by ophicarbonates. They consist of breccias of serpentinite clasts 
and micritic pelloids, cemented by a calcitic matrix, and often occur in ophiolite 
sequences (Schwarzenbach et al., 2013; Lafay et al., 2017). Despite their modest 
volume with respect to the rest of the oceanic lithosphere, they are able to 
transport high amounts of carbonates during subduction (Collins et al., 2015).

Hydration of the forearc mantle above the downgoing slab due to the up-
rising of slab-derived fluids may lead to the formation of supra-subduction 
serpentinites, such as in the Mariana forearc (Savov et al., 2007) or in now- 
exhumed mantle rocks (Hattori and Guillot, 2007). These serpentinites are 
characterized by enrichment in fluid-mobile elements, such as As, Sb, Cs, Pb, 
Th, U, and radiogenic Sr and Pb, with respect to the primitive mantle (PM) 
and abyssal serpentinites (Deschamps et al., 2012). In this respect, Peters et al. 
(2017) document that the use of U/alkali ratios may be a useful tool to unravel 

oceanic versus forearc origin of serpentinized mantle rocks. This approach is 
based on the redox-sensitive behavior of U in the two different geological set-
tings  coupled with the alkali-enriched source of the fluids hydrating the forearc 
region. The downward dragging of these materials at depth by subduction 
forces makes these rocks “a new” input material in subduction zones (Scam-
belluri and Tonarini, 2012). The original trace-element budget of the abyssal 
serpentinites can be modified by the interaction with slab fluids already at shal-
low depth, in correspondence with the lizardite to antigorite transition (e.g., 
Deschamps et al., 2011), as well as during a second event of serpentinization of 
partially oceanic serpentinized rocks (Hattori and Guillot, 2007; Cannaò et al., 
2016). The typical sedimentary signature of these fluids allows serpentinites to 
increase their content of As and Sb, making these elements good candidates 
to track these processes (e.g., Hattori and Guillot, 2003).

As for the altered oceanic crust, the isotopic signature of the mantle rocks 
is reset due to hydration processes along the seafloor or in a forearc setting. 
In this way, the oceanic and forearc serpentinites will be characterized by dif-
ferent isotopic signatures (in particular for the 87Sr/86Sr ratio and Pb isotopes) 
that will be similar to those of the oceanic seawater for abyssal serpentinites 
or similar to those of the metamorphic fluids in the case of forearc and/or sub-
ducted serpentinites (e.g., Hattori and Guillot, 2007; Deschamps et al., 2012; 
Cannaò et al., 2016).

Continental Crust

Concerning the subduction of continental crust, Hermann and Rubatto 
(2014) highlighted that felsic crust, which typically consists of orthogneisses 
and paragneisses, is the predominant lithotype in UHP terrains, with a good 
affinity to the upper-middle continental crust (see Rudnick and Gao, 2014). The 
main mineral assemblage is represented by phengite  + coesite  + kyanite  + 
garnet + clinopyroxene, where phengite is the most important carrier of large 
ion lithophile elements (LILEs), volatile and fluid-mobile elements, followed 
by clinopyroxene. Apatite, rutile, zircon, and allanite and/or monazite are the 
accessory phases that play an important role in the cycle of elements such as 
Ti, P, Th, and LREE (more than clinopyroxene, Hermann, 2002; Hermann and 
 Rubatto, 2009). The presence of aqueous-rich fluids deriving from the destabili-
zation of phengite or uprising from the subducting oceanic lithosphere at T > 
650–700 °C, can trigger the wet partial melting of the subducted continental 
crust with very important implications on the slab-to-mantle mass transfer 
(Nichols et al., 1994; Schmidt et al., 2004; Auzanneau et al., 2006; Hermann 
et al., 2006; Hermann and Spandler, 2007; Hermann et al., 2013). Due to the 
high stability of phengite at dry conditions during deep subduction (Domanik 
and Holloway, 1996), the continental crust can provide large amounts of hy-
drous melt extremely enriched in LILE (Hermann et al., 2013; Zheng and Her-
mann, 2014). The capability of continental rocks to store H2O is related to their 
composition in terms of MgO, K2O, and CaO, which in turn controls the stabili-
zation of talc, phengite, and epidote and/or amphibole, respectively (Hermann, 
2002; Ferrando, 2012).
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The isotopic signature of the continental crust resembles that of the 
metasediments due to the high amount of minerals hosting Rb and Th-U, 
which decay during time in daughter 87Sr and radiogenic Pb isotopes (206Pb, 
207Pb, and 208Pb), respectively.

SLAB FINGERPRINT PRESERVED IN FLUIDS 
RELEASED TO THE MANTLE

Fluids Produced by Oceanic Lithosphere versus Continental Crust: 
The Role of Phase Assemblages

To unravel the composition of the fluid phases released from the subducted 
oceanic lithosphere and continental crust to the supra-subduction mantle, we 
need to investigate their compositional evolution during subduction. The ma-
jor- and trace-element concentration of slab-derived fluids strongly depends 
on their partitioning with stable assemblages. For this reason, in Figure 1, we 
report simplified phase diagrams for the different chemical constituents of 
the subducting slab (Fig. 1A: global subducted sediment [GLOSS]/continen-
tal crust; Fig. 1B: MORB + H2O; Fig. 1C: peridotite + H2O) and the elements 
released in the fluid phase after the complete breakdown of key hydrous min-
erals. The most representative reference works are reported in Table 1. Each 
pressure-temperature (P-T) diagram also reports the top-slab paths for hot and 
cold subduction zone (hot SZ and cold SZ, respectively) from Syracuse et al. 
(2010). The release of elements by mineral devolatilization in the following 
sections is described considering a static view of the subduction zone, with 
the hydrated lithospheric mantle at the bottom and the altered oceanic crust 
and metasediments lying above. Information about elements released from 
complex subduction setting, such as HP mélange, will be discussed in the next 
sections. Note that C-bearing phases are not considered in the following sec-
tion, but we will treat their role in the redox evolution of the slab and supra- 
subduction mantle.

Metasediments

Metasediments are a complex and very heterogeneous lithology, and a 
global overview of the amount of elements transported to depth by subduc-
tion is difficult to obtain. The global subducted sediment (GLOSS and GLOSS 
II, Plank and Langmuir, 1998; Plank, 2014) may be considered as a proxy of the 
average starting materials of what are now the metamorphosed sedimentary 
rocks. At relatively low temperature (<200 °C) and below 1 GPa, the compac-
tion of sediments enhances the release of elements hosted in the pore fluids 
(Fig. 1A; B, As, Sb, and Cs; Moore and Vrolijk, 1992), which are subsequently 
released during the evolution of subduction. The main minerals in the GLOSS/
continental crust system able to release considerable amounts of elements 
during prograde to peak subduction are, in order of destabilization, amphibole, 

lawsonite, and phengite (and to a lesser extent biotite). Amphibole (glauco-
phane) breakdown occurs at ~500 °C, at very different pressures, from 1.0 GPa  
to 2.5 GPa, depending if in warm or cold subductions, respectively. The re-
leased fluid phase should be enriched in Be, B, and LILE (and possibly As and 
Sb and halogens; Bebout et al., 2007). The destabilization of lawsonite occurs 
at different P-T conditions: at high thermal conditions it is similar to those 
of amphibole, but in cold subductions lawsonite is stable up to 2.8 GPa at a 
temperature of ~600 °C (Fig. 1A; Martin et al., 2014). Similarly to amphibole, 
the main trace elements released by lawsonite destabilization are Be, B, LILE, 
U, Th, and Ce (and possibly As and Sb; Bebout et al., 2007). Phengite is the 
key phase able to provide high amounts of trace elements (LILE, LREE, B, and 
Li) during its breakdown. In wet conditions, phengite-out reaction occurs at 
~650–700 °C and 2.0 or 3.0 GPa, in warm and cold subduction thermal settings, 
respectively (Fig. 1A). At dry conditions and in a closed system, phengite is 
stable down to UHP and ~1000 °C in warm subductions; whereas in cold sub-
duction settings, it can reach depths compatible with pressures of 10 GPa (or 
even more), before melting (Domanik and Holloway, 1996).

Figure 2A reports the trace-element patterns of some prograde and HP 
metasediments from Catalina Schist (California, USA), Cima di Gagnone 
(Central Alps), and Schistes Lustrés (Western Alps), normalized to the GLOSS 
II. These terranes are representative of warm (Catalina Schist) versus cold 
( Alpine suite) subduction zone thermal settings at different peak conditions. 
In the Catalina Schist, Bebout and Barton (1993) and Bebout et al. (1999) docu-
ment the loss of B, Be, As, Sb, Cs, and N during metamorphic devolatilization 
from lawsonite-albite and lawsonite-blueschist to epidote-amphibolite and 
amphibolite facies (see also Fig. 3). Due to the relatively warm subduction path 
followed by the Catalina Schist unit, the release of these elements occurs at T 
> 350 °C at ~1 GPa (Fig. 1A; Table 1). Examples of metasediments subducted at 
higher pressures along a cold subduction path are represented by paragneiss 
and micaschists from Cima di Gagnone (Central Alps), showing evidence of 
metamorphic peak conditions at ~2 GPa and 750 °C (Cannaò et al., 2015). These 
rocks are strongly depleted in fluid-mobile elements, such as Li, B, As, and Sb, 
and Zr-Hf, whereas they are enriched in Rb and K as well as LREE (and also 
U) due to the presence of stable white mica (mainly phengite) in the mineral 
assemblage. As shown in Figure 2A, compared to the Catalina Schist and the 
Cima di Gagnone metasediments, the Schistes Lustrés metasediments form 
the Western Alps do not display significant loss of elements from the sedimen-
tary protoliths (Busigny et al., 2003; Chalot-Prat et al., 2003; Bebout et al., 2013). 
This could be due to the cold thermal regime of the fossil Alpine subduction 
zone with respect, for instance, to those of the Catalina Schist (e.g., Bebout 
et al., 2013). However, Lafay et al. (2013) and Cannaò et al. (2016) document de-
pletion in some key fluid-mobile elements (As and Sb) in metasediments from 
the Queyras (Western Alps) and the Voltri Massif (Ligurian Western Alps), re-
spectively (Fig. 3). Concerning this discrepancy, Busigny et al. (2003) proposed 
that the release of LILE and other incompatible elements may be controlled 
by the lithology of each sample, which, in turn, affects the devolatilization 
processes.

Downloaded from https://pubs.geoscienceworld.org/gsa/geosphere/article-pdf/14/6/2311/4578874/2311.pdf
by guest
on 23 December 2019

http://geosphere.gsapubs.org


Re
se

ar
ch

 Pa
pe

r

23
15

C
an

na
ò 

an
d 

M
al

as
pi

na
 |

 I
m

pl
ic

at
io

ns
 fo

r t
he

 g
eo

ch
em

ic
al

 a
nd

 re
do

x 
ev

ol
ut

io
n 

of
 th

e 
su

pr
a-

su
bd

uc
tio

n 
m

an
tle

G
E

O
S

P
H

E
R

E
 |

 V
ol

um
e 

14
 |

 N
um

be
r 6

hot SZ

cold SZ

300 400 500 600 700 800 900

1

2

3

4

5

6

7

8

9

10

T (°C)

P 
(G

Pa
) La
w

Epi

Zo

Amp

Ctd

Solidus

K-holl
Pheng

Chl

MORB + H2O

Phe
ng

Be, B, Rb, Pb, F, Cl

Sr, PbCe

Be
, B

, B
a,

 S
r, 

Ce
, T

h,
 U

hi
gh

 L
/H

RE
E 

(A
s 

?,
 S

b 
?)

Be, B, Rb

Li
, C

l, 
B

LILE, L
REE, B

hot SZ

cold SZ

500
0

T (°C)
400300200 600 700 800 900 1000 1100 1200

1

2

3

4

5

6

7

8

P 
(G

Pa
)

C
hl Amph

Atg

Atg-in

O
l-i

n

Phase - A

Tl
c

T12 KH97

G10

NG99

F09

G06

K68, 70

Melt

10 A - phase

Be, B, Rb, Cs
Pb, F, Cl, As, Sb

Li, Cl, B
Sr, As, Sb

B,
 L

i, 
 A

s,
 S

b,
 S

r, 
Cs

Li, B, LILE, LREE,

U, As, Sb

high LREE/HREE

PERIDOTITE+ H2O

hot SZ

cold SZ

2

3

4

5

6

7

8

9

10

1

700600 800 900 1000 1100 1200 1300200 300 400 500
La

w

Amp

Ph
en

g 
(d

ry
)

Pheng
Bt (dry)Ph

en
g 

(w
et

 - 
1 

wt
.%

 H
2O

)
K

-fsp+cpx+coes+cc

P 
(G

Pa
)

T (°C)

GLOSS / CONTINENTAL CRUST

Be, B, Rb, Pb
F, Cl (As ?, Sb ?)

B
e,

 B
, B

a,
 S

r, 
C

e,
 T

h,
 U

(A
s 

?,
 S

b 
?)

LI
LE

, L
REE

, B
, L

i, B
a

Fe, Ti

pore
fluids

B, As, Sb, Cs

LI
LE

, L
REE

, B
, L

i, B
a

A

B

C

Figure 1. Pressure and temperature phase 
diagrams showing the released elements 
by different subducted lithologies in re-
lation to the breakdown of major phases 
(see also Table 1). (A) Global subducted 
sediment (GLOSS)/continental crust 
(modified from Rüpke et al., 2004; Schmidt 
and Poli, 2014). (B) Mid-ocean ridge basalt 
(MORB) + H2O (modifed from Schmidt and 
Poli, 2014). (C) Peridotites  + H2O (from 
Scambelluri et al., 1995; Schmidt and Poli, 
2014 and references therein). Dotted gray 
lines in each pressure-temperature (P-T) 
diagram represent the range of the global 
array of top-slab geotherms of the D80 
model of Syracuse et al. (2010). SZ—sub-
duction zone; Amp—amphibole; Law—
lawsonite; Pheng—phengite; Bt—biotite; 
Chl—chlorite; Epi—epidote; Zo—zoisite; 
Ctd—chloritoid; Atg—antigorite; Ol—oliv-
ine; Tlc—talc. LILE—large ion lithophile 
element; LREE—light rare-earth element; 
HREE—heavy rare-earth element.
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Metabasalts

In a MORB + H2O system (Fig. 1B; modified from Schmidt and Poli, 2014), 
the minerals able to transport at great depth significant amounts of trace and 
volatile elements are amphibole, lawsonite, phengite (in K-bearing system), to-
gether with chlorite, chloritoid, and epidote. As for the sedimentary system, the 
thermal setting of the subduction zone is crucial for the stability of lawsonite. In  
warm subduction zones, its breakdown reaction may occur at low temperature 
(400 °C) and pressure (1.0 GPa), whereas in cold subduction zones, its destabili-
zation occurs at ~600 °C and 2.5 GPa (Fig. 1B; Schmidt and Poli, 1994). This is 
one of the most important reactions in a mafic system able to release consider-
able amounts of aqueous fluids enriched in incompatible elements (Be, B, Ba, 
U, Th, Ce, and Pb) and LREE at depth (e.g., Bebout et al., 2007; Vitale-Brovarone 
et al., 2014). Sodium-amphibole stability is P-dependent, occurring at ~2.0–2.5 

GPa, for T ranging between 400 and 700 °C. Even if the amphibole/ liquid parti-
tion coefficient for incompatible and LILE during amphibole formation in mag-
matic process is very low (Tiepolo et al., 2007), the formation of secondary 
amphibole on the ocean floor is associated with the incorporation of a rela-
tively high amount of incompatible elements and halogens (e.g., Debret et al., 
2016). The trace elements released in this reaction are similar to those for the 
sedimentary system (Figs. 1A and 1B). Also, Debret et al. (2016) document par-
tial release of halogens and boron during prograde amphibole transformation 
from low-pressure polytype to glaucophane at ~1 GPa and 300–400 °C. There-
fore, the real budget of element transfer to depth during complete amphibole 
dehydration may be influenced by these early stages of release.

At conditions of 550–600 °C and 1.0–2.5 GPa, chlorite destabilizes, releasing 
mainly Li, Cl, and B in the fluid phase (Fig. 1B). For Al-rich protoliths, at higher 
temperature and pressure conditions (600–650 °C; 2.5–4.0 GPa), the  subduction 

TABLE 1. TRACE ELMENTS RELEASED DURING PROGRADE SUBDUCTION BY THE DIFFERENT SUBDUCTED LITHOLOGIES

Lithology Elements
Temperature

(°C)
Pressure

(Gpa) References Terranes

Marine sediments B, As, Sb, Cs <200 — Moore and Vrolijk (1992) Pore fluids
B, Cs 200–300 0.9–1.2 Bebout et al. (1999) Catalina Schist
As, Sb 350–400 0.9–1.2 Bebout et al. (1999) Catalina Schist

Rb, Cs, B 300 <1.0 Sadofsky and Bebout (2003) Franciscan Complex
B, Li, Cs, Sr, As, Sb 350–400 0.9–1.5 Lafay et al. (2013) Schistes Lustrés (Western Alps)

B 350–450 2.0 Bebout et al. (2013) Western Alps
Sr, Li, B 300–400 0.9–1.2 Bebout et al. (2007) Catalina Schist

B, As, Sb, Pb, Sr 300–400 0.9–1.2 Cannaò et al. (2016) Voltri Massif (Ligurian Alps)
Li, B, Ba, As, Sb, Pb 300–400 0.9–1.2 Cannaò et al. (2015) Cima di Gagnone (Central Alps)

Mafic oceanic crust REE, Sr, Pb, U, Th 550–600 <1.6 Spandler et al. (2003) New Caledonia
Rb, Ba, Sr <600 1.3–2.0 Arculus et al. (1999) Raspas Complex (Ecuador)

K, Rb, Ba, Pb <600–700 1.3–1.5 Becker et al. (2000) Different terranes
Cs, Rb, Ba, K, B (?), High 

LREE/HREE, Sr
600–800 2.0–3.0 Vitale-Brovarone et al. (2014) Alpine Corsica

LILE, B, 700–800 4.0 Kessel et al. (2005a) Experiment
LILE, LREE, HFSE, Li, 

Be, B, Pb, Th, U
900–1000 4.0 Kessel et al. (2005a) Experiment

LILE, LREE, Li, Be, B, 
Nb, Ta, Pb, Th, U

800–900 6.0 Kessel et al. (2005a) Experiment

LILE, LREE, Li, Be, B, 
HFSE, Pb, Th, U

1000–1200 6.0 Kessel et al. (2005a) Experiment

Oceanic lithospheric 
mantle

B, Li, Cl, Sr 550–600 2.0–2.5 Scambelluri et al. (2001, 2004) Erro-Tobbio (Ligurian Alps)/ 
Almirez (Betic Cordillera)

B, As, Sb, Cs, Sr, Pb 600–700 1.7–2.0 Peters et al. (2017) Almirez (Betic Cordillera)
Cs, Rb, Ba, U, Th, B, Pb, As, Sb, Li 700–800 2.3–3.0 Scambelluri et al. (2015) Cima di Gagnone (Central Alps)

Li, B, Sr, Cs, Ba, Pb, Th, U 700–900 3.5–4.0 Spandler et al. (2014) Experiment
Continental crust Cs, Rb, Pb, Sr 700–750 4.0–4.3 Ferrando et al. (2009) Dora-Maira

Rb, Ba, K, Pb, Th, U, Sr, LREE 1000 5.0 Stepanov et al. (2016) Kokchetav Massif
Cs, Rb, Ba, Pb, Th, U 600–650 2.2 Spandler et al. (2007) Experiment
LILE, LREE, Pb, Th, U 750–1050 2.5–4.5 Hermann and Rubatto (2009) Experiment
Cs, Rb, Ba, K, Th, U 750–1000 2.5–4.5 Zheng and Hermann (2014) Experiment

Abbreviations: HFSE—high field strength element; LILE—large ion lithophile element; LREE—light rare-earth element; HREE—heavy rare-earth element; REE—rare-earth
element.
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A B
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Figure 2. Trace-element composition of subduction input materials. (A) Metasediments normalized to global subducted sediment (GLOSS) II (Plank, 2014). Cima di Gagnone from Cannaò et al. 
(2015); Western Alps from Bebout et al. (2013) and Lafay et al. (2013); Catalina Schist from Bebout et al. (1999). (B) High-pressure mafic rocks normalized to altered oceanic crust (Onishi and Sandell, 
1955; Smith et al., 1995; Kelley et al., 2003). Blueschist and eclogite rocks from Becker et al. (2000), Spandler et al. (2004), and John et al. (2010). (C) Abyssal, subducted, and supra-subduction ser-
pentinites normalized to primitive mantle (McDonough and Sun, 1995). Abyssal serpentinite from Paulick et al. (2006) and Kodolányi et al. (2012); subducted serpentinites from Lafay et al. (2013), 
Debret et al. (2013), and Cannaò et al. (2016); supra-subduction serpentinites from Ishii et al. (1992), Lagabrielle et al. (1992), Parkinson and Pearce (1998), Pearce et al. (2000, 2005), Guillot et al. 
(2001), Savov et al. (2005, 2007), Hattori and Guillot (2003, 2007), Marchesi et al. (2006, 2009), Saumur et al. (2010), Deschamps et al. (2012), Blanco-Quintero et al. (2011), and Kodolányi et al. (2012). 
(D) Continental crust normalized to upper continental crust (Rudnick and Gao, 2014). Dora-Maira from Ferrando et al. (2009); Kokchetav gneiss from Stepanov et al. (2014); Chinese Continental 
Scientific Drilling Pre-Pilot Hole 1 (CCSD-PPH1) of the Sulu Belt from Zhang et al. (2005).
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path reaches the breakdown of chloritoid, which is able to release trace ele-
ments such as Be, B, and Rb (Xiao et al., 2016). At similar pressures but at T = 
650–750 °C, epidote (zoisite) breakdown provides significant amounts of Sr, Pb, 
and Ce (and light rare-earth elements [LREEs]; e.g., Xiao et al., 2016). Recent 
experimental studies by Carter et al. (2015) propose that Fe3+-bearing epidote 
may be stable at higher temperature (up to 900 °C) at 3 GPa, controlling the 
release of LREE and Th to the fluid phase. The destabilization of phengite cor-
responds to the partial melting condition of mafic systems at water-saturated 
conditions and occurs at relatively HT-HP (>700 °C and >2 GPa). During this 
process, phengite transfers large quantities of trace elements in the melt phase 

(LILE, LREE, and B). Similarly to what happens in the metasedimentary system, 
minor accessory phases are able to play an important role in the partitioning 
of Ti, Nb, Ta (rutile), LREE, Th, Sr, Pb (allanite), P, LREE, Th, U (apatite), and 
Zr, Hf (zircon) (Hermann, 2002; Zack et al., 2002; Rubatto and Hermann, 2003; 
Spandler et al., 2003; Klimm et al., 2008). Recently, Tsay et al. (2017) proposed 
that the addition of various ligands into the fluid phase, such as Cl and F, might 
affect the solubility of elements thus controlling their partitioning and mobility.

Figure 2B portrays the trace-element composition of blueschist- and eclogite- 
facies mafic rocks from several metamorphic terranes (Raspas Complex, West-
ern Alps, and New Caledonia; data from Becker et al., 2000; Spandler et al., 
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Figure 3. (A–D) As and Sb versus As/Ce 
and Sb/Ce diagrams for metasedimentary 
rocks from Western Alps (WA; B13: Bebout 
et  al., 2013; L13: Lafay et  al., 2013; C16: 
Cannaò et al., 2016), Catalina Schist (B99: 
Bebout et al., 1999) and Cima di Gagnone 
(C15: Cannaò et al., 2015), compared with 
pelagic clays and shales (L91: Li, 1991). 
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prograde subduction processes.
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2004; John et al., 2010) normalized to the altered oceanic crust (AOC; Smith 
et al., 1995; Onishi and Sandell, 1955; Kelley et al., 2003). It must be specified 
that the composition of AOC could be extremely variable, depending on the 
alteration degree of the original protolith. In order to better unravel the poten-
tial trace-element release from subducted oceanic mafic crust affected by the 
major dehydration process within the downgoing slab (the blueschist- eclogite 
transition; Peacock, 1993), in Figure 2B, we consider rocks showing affinity 
with the enriched and normal MORB (enriched [E]- and normal [N]-MORB, re-
spectively), as well as alkali basalt. Blueschist mafic rocks display a relatively 
narrow pattern of element concentration variability for Li, B, Be, and As to-
gether with the REE. The concentration of these elements is close to 1 × AOC 
up to 10 × AOC values. The most incompatible and fluid-mobile elements show 
a wide range of concentrations, with Cs, Rb, K, and U characterized by negative 
anomalies, and Sb, Ba, Pb, and Th showing an opposite behavior. Mafic rocks 
re-equilibrated under eclogite-facies conditions show similar trace-element 
patterns even if they are characterized by the depletion in almost all elements 
(except Sb, Pb, and Th). Garnet-bearing blueschist mafic rocks showing affinity 
with alkali basalt are strongly enriched in LREE and LILE reflecting the high 
modal amount of phengite and amphibole in the mineral assemblages. This 
lithology is expected to introduce high amounts of incompatible elements into 
depth during phengite and amphibole destabilization.

In contrast to this evidence, Spandler et al. (2003) document insignificant 
element mobility during prograde metamorphism from lawsonite-blueschist 
to eclogite facies in HP metabasalts from New Caledonia. These authors 
provide evidence that the trace elements released during blueschist mineral 
breakdown reactions are retained in the newly formed major and accessory 
minerals, such as epidote, phengite, garnet, rutile, and zircon. This implies 
that eclogitic minerals still retain significant amounts of elements leading to 
the release of huge quantities of aqueous fluids depleted in trace elements 
( Spandler et al., 2003).

Serpentinites

In the hydrous peridotite system (Fig. 1C), serpentine is the most important 
mineral capable of trapping, transporting, and releasing volatiles and key trace 
elements at great depth (Ulmer and Trommsdorff, 1995; Scambelluri and Philip-
pot, 2001; Scambelluri et al., 2001, 2004, 2007, 2014, 2015). The phase transition 
from lizardite and/or chrysotile to antigorite at T <300 °C and low P, is associated 
with the partial release of Li, Cl, B, Sr, As, and Sb from the system, due to changes 
in the mineral structure and the loss of ~2 wt% of water (Kodolányi and Pettke, 
2011). During the olivine-in reaction (400–500 °C; 0.5–2.5 GPa), these elements are 
lost (Deschamps et al., 2011; Lafay et al., 2013) even if metamorphic olivine is still 
able to retain a significant amount of them (e.g., B, As, and Sb, Tenthorey and 
Hermann, 2004; Scambelluri et al., 2014). The complete breakdown of an tigorite 
is mainly temperature dependent (Ulmer and Trommsdorff, 1995;  Wunder and 
Schreyer, 1997) and occurs at T between 600 and 700  °C, in relation to its Al 
content (Padrón-Navarta et al., 2013). Due to the “sponge-like” behavior charac-

terizing serpentine (e.g., Deschamps et al., 2011; Lafay et al., 2013; Cannaò et al., 
2015, 2016), the fluid-mediated mass transfer processes, occurring during pro-
grade subduction in a top slab mélange setting, as well as in peridotites from a 
supra-subduction setting, allow serpentinites to be enriched in exogenous ele-
ments (LILE, LREE, and fluid-mobile element). All these elements will then be 
released upon complete antigorite destabilization.

In addition to serpentine, chlorite and amphibole are also able to release some 
trace elements after their breakdown. Chlorite destabilization occurs at higher 
temperature (700–800 °C) and in the presence of garnet may provide high LREEs 
and heavy rare-earth elements (HREEs) in the fluid phase coupled with Cl and Li. 
Calcic amphibole can be present in the HP mineral assemblage of subducted- 
derived metaperidotite (i.e., the product of complete dehydration of serpentinite 
precursor; Scambelluri et al., 2014) and represents the last hydrous phase en-
riched in incompatible elements, able to release B, As, Sb, LILE, and Pb (and 
potentially halogens). As for the other systems, its stability is mainly P-depen dent 
(2.5–3.0 GPa) at T up to 900–1000 °C (Fumagalli and Poli, 2005). Among acces-
sory phases, the most important ultramafic systems are the humite- type miner-
als (clinohumite, humite, chondrodite, and norbergite). It is indeed well known 
that the stability of clinohumite increases with the increase of its F/OH  ratio, 
acting as carrier of volatiles and halogens into the deeper parts of the mantle 
(Engi and Lindsley, 1980; Trommsdorff and Evans, 1980; Evans and Trommsdorff, 
1983; Weiss, 1997; Stalder and Ulmer, 2001; López Sánchez-Vizcaíno et al., 2005; 
Hermann et al., 2007; John et al., 2011). The new experimental data by Grützner 
et al. (2017) suggest that F-bearing humites could be stable even at conditions 
corresponding to the transition zone (up to 1800 °C at 17 GPa).

In Figure 2C, the primitive mantle (PM) normalized (McDonough and Sun, 
1995) trace-element patterns of subducted HP serpentinites and from supra- 
subduction settings are compared with those of abyssal serpentinites. Abyssal 
serpentinites, before subduction, may be enriched in halogens (not shown in the 
plot; Kendrick et al., 2011, 2013, 2017; John et al., 2011) and B, As, Sb, Sr, U, and Li 
(Paulick et al., 2006; Delacour et al., 2008; Vils et al., 2008; Kodolányi and Pettke, 
2011; Augustin et al., 2012). Boron and As are the only elements always above the 
PM values, whereas Be shows a negative anomaly and is always below the PM 
value as well as other LILEs (Cs, Rb, and Ba). During subduction, serpentinites 
maintain the trace-element budget acquired from oceanic serpentinization (cf. 
purple and yellow patterns of Fig. 2C) and thus are even more enriched in As, 
Sb, and Cs. Also supra-subduction serpentinites record enrichment in these ele-
ments, reaching absolute values of As, Sb, Pb, Th, and U > 1000 × PM. The pre-
viously mentioned characteristics are likely acquired during the fluid-mediated 
mass transfer at the slab-mantle interface, between serpentinites and the other 
slab reservoirs (altered oceanic crust and/or sediments). This exchange allows HP 
and supra- subduction serpentinites to acquire hybrid and unusual geochemical 
signature also in terms of B, Sr, and Pb isotopic compositions (e.g., Deschamps 
et al., 2011, 2012; Lafay et al., 2013; Cannaò et al., 2015, 2016). Evidence of these 
interactions is well recorded in several Alpine mélange-type terranes and seems 
to have occurred during their prograde subduction (Lafay et al., 2013; Cannaò 
et al., 2015, 2016).
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Continental Crust

The main difference between the oceanic lithosphere and the continental 
crust in terms of dehydration during prograde subduction is that sediments 
and altered oceanic crustal rocks progressively lose H2O during their burial, 
due to water-conservative metamorphic reactions taking place within the 
slab (e.g., Schmidt and Poli, 2014). At the same time, beyond the antigorite 
and chlorite breakdown (and phase-A at low T), H2O can be stored only in 
continental crust lithologies (in phengite, talc, and amphibole). In particular, 
Hermann (2002) suggested that the hydration of dry continental crust by meta-
morphic slab fluids is able to stabilize phengite at the expense of K-feldspar, as 
documented, for example, in the Dora-Maira Massif (Biino and Compagnoni, 
1992; Compagnoni et al., 1995; Ferrando et al., 2009). Similarly, chloritization 
of granitic rocks and formation of talc and phlogopite in Mg-rich system are 
processes that provide a significant amount of water even in continental rocks 
at H2O-undersaturated conditions (Schertl and Schreyer, 2008). In this way, 
the continental crust may also become an important reservoir for H2O. Sub-
duction of portions of continental crust is able to reach UHP conditions in a 
cold subduction thermal setting prior to phengite-dehydration melting. In this 
way, deep element transfer from continental crust allows the release of a high 
amount of LILE and incompatible elements to the supra-subduction region.

The most famous terranes where exhumation of UHP continental crust 
occurs are the Kokchetav Massif (Northern Kazakhstan), Dora-Maira (Western 
Alps), and Sulu Belt (Eastern China). As shown in Figure 2D, the gneiss from 
Kokchetav (Stepanov et al., 2014) normalized to the upper continental crust (UCC, 
Rudnick and Gao, 2014) displays quite uniform middle–heavy rare-earth element 
(M-HREE) patterns ranging from 1 to 3 times the UCC values (except for Sm with 
a slight negative anomalies). On the other hand, the compositional range of the 
LREE is much more widespread, with a strong negative anomaly down to two 
orders of magnitude with respect to the UCC. This high variability in the LREE 
budget is related to the amount of white mica present in the gneisses coupled 
with the complete dissolution of monazite and allanite during melt production in 
the most restitic portion of the rocks (Stepanov et al., 2014). Strontium, Pb, and 
Th show a similar trend to that of the LREE, whereas U may reach up to 10 times 
the UCC value. The LILE pattern is scattered, with negative anomalies in Cs and 
Ba and positive anomalies for Rb and K. Antimony is always positive up to one 
order of magnitude higher than the UCC value, whereas As and Be range from 
2 to 0.2 times the UCC values (Fig. 2D). No data about Li and B are available in 
the literature. The metagranite from Dora-Maira (Ferrando et al., 2009) normal-
ized to the UCC shows relative depletion in M- and HREE and almost flat LREE 
pattern with a negative Eu anomaly (Fig. 2D), with concentrations always above 
those of the UCC. Lead and Th are slightly enriched, and U is close to the UCC 
value. Barium and Sr display negative anomalies, whereas other LILEs appear 
enriched. Continental crustal rocks from the Sulu Belt display almost flat REE 
patterns, with no significant depletion in LREE in some samples. A negative Eu 
anomaly is present for a couple of samples. Uranium, Th, and Sr show a rela-
tively wide range of variation and values always below the UCC, whereas the 

other LILE are mostly above UCC. No data for Li, B, Be, As, and Sb from these 
two massifs are currently available in literature.

Overall, it seems that the gneiss from Kokchetav massif is much more de-
pleted in LREE. This is probably due to the partial melting that occurred during 
their subduction and exhumation history, as testified by the presence of multi-
ple melt inclusions in garnet (Stepanov et al., 2014, 2016). Nevertheless, their 
LILE concentrations are still comparable with those of the UCC. Compared to 
the Kokchetav Massif, the gneiss and metagranite from Sulu and Dora-Maira 
do not show evidence of partial melting consistent with the relative enrich-
ment in LILE characterized by the occurrence of stable phengite in these rocks.

Slab-Derived Fluid Composition: Evidence from Fluid/Melt Inclusions

The occurrence of fluid/melt or multiphase solid inclusions in the newly 
formed metamorphic anhydrous minerals, such as garnet or omphacite in 
eclogites and olivine and enstatite in serpentinites, witnesses the entrapment 
of fluid or melt phases (or supercritical liquids above the second critical end-
point) produced by the dehydration reactions previously described. A P-T com-
pilation of HP and UHP terranes where fluid/melt inclusions have been charac-
terized is displayed in Figure 4. The laser ablation analyses of these inclusions 
allow the determination of their compositions in terms of trace elements. In 
Figure 5, we report natural and experimental trace-element data of aqueous 
fluids, supercritical liquids, and melt inclusions occurring in eclogite-facies 
rocks representing the different input subduction zone components, normal-
ized to the PM values (Fig. 5A: continental crust and/or sediments; Fig. 5B: 
oceanic crust; Fig. 5C: ultramafic rocks).

Multiphase solid inclusions from Dora-Maira whiteschist (Ferrando et al., 
2009) and melt inclusions from gneisses of the Kokchetav massif (Stepanov 
et al., 2016) may be considered as proxies of the compositional evolution re-
corded by fluids in metasediments during their subduction to UHP, with en-
richment in the most incompatible trace elements. The fluid inclusions within 
the garnet in the whiteschist from the Dora-Maira UHP unit are representative 
of the fluid released during the peak condition via the reactions: phlogopite + 
kyanite + talc = garnet + phengite + fluid and kyanite + talc = garnet + coesite + 
fluid (Ferrando et al., 2009). This fluid is strongly enriched in LILE and U, rel-
atively enriched in Ba and Th, and is depleted in HFSE. Inclusions hosted in 
garnet from the Kokchetav UHP gneiss represent the product of partial melt-
ing at 4.5 GPa and ~1000 °C. During this process, LILE, LREE, Th, and U are 
released in the melt phase. As shown in Figure 5A, these different inclusions 
show visible differences in their LILE and LREE concentrations, as well as in 
U and Th. These are related to the presence of stable phengite in the mineral 
assemblage of the Dora-Maira rocks, which partitions most of the LILE. Melt 
inclusions from the Kokchetav rocks derive from the partial melting induced by 
the destabilization of phengite. For comparison, in Figure 5A, we also reported 
the composition of experimental aqueous fluids and hydrous melts (Spandler 
et al., 2007; Hermann and Rubatto, 2009; Zheng and Hermann, 2014). These are 
similar to natural fluid/melt inclusions in terms of element mobility, showing 
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enrichment in LILE, Pb, Th, and U. The main difference is that these elements 
are much more concentrated in the hydrous melt than in the aqueous fluids, in 
agreement with the ability of hydrous melts to mobilize trace elements as dis-
cussed by Hermann et al. (2006). Again, it should be noted that no data about 
Li, Be, and Sb concentrations in fluid/melt inclusions in sediment/continental 
crust occur in the literature as of now.

Concerning the oceanic crust (Fig. 5B), the multiphase solid inclusions 
hosted in garnet of the UHP eclogite from Sulu (China; Gao et al., 2012, 2013) 
show enrichment in Rb, Ba, K, and Sr coupled with variable enrichment in 
Pb, Th, and U, depletion in HFSE and more enrichment in LILE than LREE. 
These inclusions are interpreted to be the product of the dehydration melting 
of eclogite during phengite breakdown. The trace-element signatures of K-free 
MORB-derived supercritical liquids and melts were determined experimentally 
for T ranging between 700 and 1200 °C and P = 4–6 GPa by (Kessel et al., 2005a,  
2005b). Both supercritical liquids (LT) and melts (HT) are enriched in B, Li, 
LILE, and LREE. The supercritical liquids at 6 GPa show a relatively narrow 
range of trace-element concentrations in relation to the temperature variation. 
Conversely, in the supercritical liquids at lower pressure (4 GPa), the trace-
ele ment concentrations are much more temperature dependent, suggesting 
an increase of the fluid/solid partition coefficient with increasing temperature 
for the analyzed elements. Recently, Carter et al. (2015) experimentally docu-
mented the element release by MORB and AOC system (K2O wt% is the main 
difference) at 3 GPa and T ranging from 750 to 1000 °C. Their results show 
several discrepancies compared to previous studies, in particular due to abun-
dant residual epidote storing Th and LREE. The increase of the LILE content 
in the melt with temperature is always related to the partial destabilization of 
phengite. Other experimental studies focused on understanding the mobility 
and fractionation of REE in aqueous fluids during the slab dehydration at 2.6 
GPa and T from 600 to 800 °C, were carried out by Tsay et al. (2014; not shown 
in figure 5B). These authors document the increase in the REE contents of the 
aqueous fluid with the increase of temperature, also promoted by the presence 
of additional ligands such as Cl–, F–, CO3

2– and SO4
2–. A different behavior is 

recorded by HREE and HFSE. Crystallization of garnet and accessory minerals, 
such as zircon and rutile, during the opening of HP veins in eclogites promotes 
the partitioning of HREE and HFSE, respectively. Such a partitioning leads to 
low mobility of these elements in the fluid phase during the dehydration of 
the oceanic crust (Rubatto and Hermann, 2003). To date, no data about fluid 
mobile As and Sb are documented in literature.

Figure 5C shows the composition of multiphase solid and aqueous fluid 
inclusions hosted by olivine and garnet in metaperidotites from Cerro del 
 Almirez (Betic Cordillera) and Cima di Gagnone (CdG, Central Alps) HP and 
UHP ultramafic rocks. They represent the product of partial (Almirez) to com-
plete (CdG) dehydration of serpentinites and serpentinized peridotites (Evans 
and Tromsdorff, 1978; Scambelluri et al., 2014). These data are compared with 
the experimental study performed by Spandler et al. (2014). The fluid inclu-
sions hosted in metamorphic olivine are believed to represent the fluid com-
position produced by the antigorite breakdown, whereas the fluid inclusions 
hosted in garnet represent the remnants of the fluids released after the chlo-
rite-out reaction (see also Fig. 1C; Scambelluri et al., 2015). The full trace-ele-
ment composition of fluid inclusions from Almirez is reported in Peters et al. 
(2017, and references therein) showing enrichment in Li, B, As, Sb, Pb, Th, and 
LILE and LREE are close to 1 × PM. Multiphase solid inclusions hosted in the 
metamorphic olivine of the chlorite harzburgite from CdG show comparable 
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enrichment in B but, overall, a decrease in all other trace elements such as 
LILE down to 1  × PM or even below. On the contrary, the same inclusions 
hosted in olivine form the garnet peridotites display strong enrichments in As, 
Sb, and LILE. The trace-element budget of the fluid produced by the chlorite 
dehydration at higher temperature is represented by the yellow field in Figure 
5C. This fluid is less enriched in incompatible elements with respect to those 
of the olivine inclusions but still preserves B, As, and Sb contents higher than 
those of the PM. It is interesting to note that previous trace-element and iso-
topic studies on these localities provided the evidence that Almirez and Cima 
di Gagnone ultramafic rocks were affected by a different grade of interaction 
with sediment-derived fluids during prograde subduction (Marchesi et  al., 
2013; Harvey et al., 2014; Cannaò et al., 2015). This process may explain the 
enrichment in incompatible and fluid-mobile elements shown by these fluids. 
Here, we want to highlight that, to date, the pure geochemical signatures of 
abyssal serpentinite component transported at depth are still missing due to 
the sponge-like behavior of serpentinized mantle rocks during subduction pro-
cesses (e.g., Deschamps et al., 2011; Cannaò et al., 2016).

From an experimental point of view, Spandler et  al. (2014) showed that 
the trace elements released during UHP serpentinite dehydration at 3.5 GPa 
and 700–800 °C consist of Li, B, LILE, LREE, and U in the fluid phase. Chlorite 
dehydration, at higher P-T conditions (4.0 GPa and 900  °C), produces fluids 
with high LREE and HREE and Ce/Y ratios, due to retention of HREE and Y in 
the newly formed garnet.

REDOX EVOLUTION DURING SUBDUCTION

When we consider geochemical fluxes at subduction zones, we must pay 
attention to elements that are sensitive to the redox conditions of the system 
(e.g., Fe, C, S, Mn, P, and U). These elements occur in different oxidation states 
and in variable concentrations within the slab lithologies and may be released 
after a change in their oxidation state during subduction (Evans, 2012). As an 
example, carbon is transported into subduction zones as an organic compo-
nent (valence 0) in marine sediments or as carbonates (valence 4+) in altered 
oceanic basalts and/or veins in serpentinized mantle. During subduction, dis-
solution of carbonates by fluids produced by dehydration reactions enables 
the transport of carbonate and bicarbonate ions (valence 4+) in fluid inclusions 
trapped by eclogite minerals into depths (Frezzotti et al., 2011). Also the occur-
rence of CH4 (valence 4–) in fluid inclusions preserved in subducted eclogites 
(Fu et al., 2003) further indicates that redox processes define the speciation 
of carbon (in these examples), as well as of other redox-sensitive elements in 
complex systems. The case of carbon speciation in subducted rocks and/or 
fluids is emblematic, since its valence state is likely governed (buffered) by 
the oxidation state of the host system. Subducted oceanic crust (eclogite) and 
serpentinites contain considerable amounts of iron so that the equilibria be-
tween ferric (Fe3+) and ferrous (Fe2+) iron in mineral assemblages are consid-
ered to buffer the oxygen fugacity (f O2) and the valence state of carbon. On 
the other hand, the C species in subduction fluids may control the oxidation 

state of their hosting phase assemblages by redox reactions during degassing, 
dehydration, melting, and fluid/rock interactions. In other words, the dilemma 
of “what controls what” can be overcome only by considering the degree of 
fluid/rock interaction.

The oxidizing or reducing capacity of a rock is determined by the amount 
and by the oxidation state of redox-sensitive elements present (Evans, 2006). 
As a consequence, the f O2, expressed as ΔFMQ (logf O2[sample] – log f O2 [fay-
alite-magnetite-quartz] to compare with different P-T equilibration conditions 
of the mineral assemblages), is likely very inhomogeneous in a subducting 
slab, reflecting the different bulk chemical-mineralogical compositions of the 
slab lithologies (Tumiati et al., 2015). Figure 6 attempts to picture this concept 
summarizing most of the data available in the literature. As we have seen pre-
viously, abyssal serpentinites represent the hydration of oceanic peridotites 
by seafloor hydrothermal and seawater alteration. According to Deschamps 
et al. (2013) and references cited in their work, these rocks record Δf O2 in the 
range between FMQ-2 and FMQ. Subducted serpentinites, originating either 
from abyssal peridotites or from the oceanic-continent transition zone, look 
slightly more reduced, with Δf O2 between FMQ-2 and FMQ-1. Prograde meta-
morphism of subducted serpentinites triggers the antigorite breakdown, with 
consequent H2O release and growth of Fe2+-bearing orthopyroxene, chlorite, 
and olivine. The crystallization of hematite in harzburgites studied by  Debret 
et al. (2015) yields to a f O2 increase in the slab up to ΔFMQ = +4. Finally, the 
antigorite-free subducted lithospheric mantle at depths of 150–350 km is gen-
erally more reduced (FMQ-2 to FMQ-3) even if more oxidized when compared 
with the surrounding mantle (Foley, 2011).

The subducted oceanic crust is depicted in Figure 6 as simplified blueschist 
to eclogite mafic rocks (blending blue and purple). Slab blueschist from South 
Tianshan (Li et al., 2016) and eclogite from North Qilian (Cao et al., 2011) in 
China record values of ΔFMQ from 0 to +4 and from FMQ<0 to FMQ+2.5, 
 respectively.

Many more complications arise when we consider the slab-mantle inter-
face. Mélange complexes are the result of deformation, boudinage, and chemi-
cal re-homogenization among the various lithologies derived from both slab 
and mantle scraps. The fluid-present high strain rates promote rock hybridiza-
tion, which may act as chromatographic filtering, fixing, or releasing elements 
at variable P-T conditions (Schmidt and Poli, 2014). In this frame, slices from 
the slab and from the supra-subduction mantle embedded in this subduction 
mélange appear variously oxidized, likely due to the different fluid/rock ratio 
experienced. The ΔFMQ of blueschists and serpentinites ranges from –1 to +1 
(Deschamps et al., 2013; Li et al., 2016), while hydrated eclogites reach up to 
+4.5 (Mattinson et al., 2004). The highest f O2 variation is recorded by meta-
pelitic rocks because they are characterized by variable bulk compositions. 
Eclogite-facies carbonate and calc-silicate rocks from Lindàs Nappe and Ber-
gen Arcs (Norway) show f O2 from FMQ+2 to FMQ+4 (Donohue and Essene, 
2000; Boundy et al., 2002). Mn-bearing quartzite and metacherts range from 
FMQ+1 (Frezzotti et  al., 2014) to FMQ+12 (Tumiati et  al., 2015). As already 
pointed out by Evans (2012) and demonstrated by Malaspina et  al. (2009b) 
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and Tumiati et al. (2015), the oxidized or reduced nature of a rock, particularly 
in geodynamic environments where different bulk compositions and meta-
somatic chemical variations occur (e.g., subduction mélange), cannot be de-
scribed by the commonly used intensive variables f O2 or μO2. Such variables 
are in fact by definition independent on the relative proportion of the phases in 
a rock (Frost, 1991). The estimate of an oxygen mass balance is therefore man-
datory to evaluate the oxidation state of an equilibrium phase assemblage.

SLAB-TO-MANTLE MASS TRANSFER: 
TRACE ELEMENTS AND REDOX BUDGET

One of the most important pieces of evidence of the deep element recy-
cling at subduction zones is the production of arc lavas relatively enriched in 
water, LILE, and to a lesser extent also in LREE, compared to the oceanic crust 
formed at mid-ocean ridges (Pearce et al., 2005). Such enrichment is called the 
“slab signature” (Tatsumi and Eggins, 1997). Moreover, the H2O content and 
slab- derived fluid mobile elements of lavas and melt inclusions from arc vol-

canoes can be linearly correlated with their Fe3+/ΣFe, indicating that the oxida-
tion state of such magmas is closely related to subduction fluid influx in their 
source (Kelley and Cottrell, 2009). If pure water is not likely an efficient carrier 
of Fe3+ (Schneider and Eggler, 1986), solute-rich slab-derived fluids could be 
potentially able to mobilize Fe3+ (Kelley and Cottrell, 2009) as they do for other 
trivalent fluid-immobile elements such as REE (Kessel et  al., 2005a, 2005b; 
Tsay et al., 2014).

Several models have been proposed to explain how these geochemical sig-
natures may be transferred from the slab to the arc lava sources in the mantle 
wedge (Tatsumi, 1986; Malaspina et al., 2006a, 2006b; Bebout, 2007; Hack and 
Thompson, 2011; Behn et al., 2011; Marschall and Schumacher, 2012; Till et al., 
2012; Tumiati et al., 2013; Cannaò et al., 2015; Pirard and Hermann, 2015; Scam-
belluri et al., 2015). The formation of subduction channels play an important 
role for mass transfer at subduction zones between the subducting slab and 
the overlying mantle by percolation of slab fluids (Cloos, 1982; Bostock et al., 
2002; Gerya et al., 2002). At pressures up to 3 GPa, the slab-mantle interface 
corresponds to a mélange zone (e.g., Bebout, 2007), where high fluid fluxes 
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allow chemical exchange within the mélange materials forming hydrated and 
low-viscosity layers atop the subducting plate, with a hybrid geochemical sig-
nature (Bebout, 2007; Bostock, 2013).

The experimental work of Pirard and Hermann (2015) suggests that, at 
higher pressures, the direct transport of hydrous silicate-rich liquids by  focused 
flow is the fastest and suitable mechanism of mass transfer through the  mantle 
wedge able to supply the required geochemical signatures found in arc lavas 
worldwide. On the contrary, the percolation of supercritical liquids (l.s.) in 
 mantle wedge peridotites by porous flow processes leads to the formation of 
several hydrous phases, such as amphibole and phlogopite (Zanetti et al., 1999; 
Scambelluri et al., 2006), which are able to incorporate significant quantities of 
trace elements, thus modifying the original slab signature (Pirard and Hermann, 
2015). The SiO2-enriched composition of supercritical liquids makes them very 
reactive with the overlying mantle, leading to the possible formation of meta-
somatic orthopyroxenite layers (Malaspina et al., 2006b; Endo et al., 2015).

Alternatively to the conventional model of mass transfer described above, 
Nielsen and Marschall (2017) propose that the slab signature may be trans-
ferred to arc lavas by mixing the solid components along the slab-mantle inter-
face (see also Marschall and Schumacher, 2012; Cruz-Uribe et al., 2018), rising 
in the denser mantle as cold diapirs. Therefore, altered oceanic lithosphere, 
ophicarbonates, hybrid rocks from mélange zones, and hydrated peridotites 
drive the cold plume in the mantle wedge (Tumiati et al., 2013). The interaction 
between melts produced by the uprising cold plume and the mantle wedge 
may provide the fractionated trace-element signatures shown by arc volcanic 
rocks (Marschall and Schumacher, 2012; Spandler and Pirard, 2013; Nielsen 
and Marschall, 2017).

The mechanism of fluid-mediated redox budget transfer from the subduct-
ing plate to the overlying mantle, and then to the source regions of arc lavas 
in the mantle wedge, is still debated and poorly constrained. As discussed 
by Evans (2012), the oxidized forms of iron, sulfur, and carbon are potentially 
the agents able to transfer O2– to the mantle, depending on their solubility in 
slab-derived fluid phases. Sulfur is probably the best carrier of redox bud-
get (up to 1.6 × 1012 mol yr–1 from calculations by Evans, 2012) able to largely 
oxidize the Fe2+ of mantle mineral assemblages. Its transfer from the slab to 
the  mantle is likely fluid mediated, since anyhdrite can be easily solubilized 
in saline fluids (Newton and Manning, 2005). Sulfate minerals are common 
daughter crystals in saline fluid inclusions of eclogite veins and coesite-bear-
ing schists in the Western Alps (Philippot and Selverstone, 1991; Philippot 
et al., 1995), and in multiphase solid inclusions in UHP rocks from different 
terranes (see Table 1 of Frezzotti and Ferrando, 2015). If slab-derived fluids are 
able to transport sulfates in the overlying mantle, their reduction to sulfides 
will oxidize the Fe2+-bearing minerals with a ratio of 1:8, if the oxygen fugac-
ity of the mantle is below the sulfide-sulfur oxide buffer (Kelley and Cottrell, 
2009). Also carbon can be a carrier of redox budget when transferred from the 
subducting plate to the overlying mantle after dissolution of carbonates in sub-
duction  fluids. Natural, theoretical, and experimental works demonstrated that 
both carbonates and CO2 can be solubilized in HP fluids (Newton and Manning, 

2002; Caciagli and Manning, 2003; Dolejš and Manning, 2010; Frezzotti et al., 
2011; Ferrando et al., 2017; Tumiati et al., 2017). The conversion from CO2 to C in 
the mantle gives a potential redox budget flux in the order of 1011 mol year–1, in-
ducing the oxidation of the sub-arc mantle (Evans, 2012). The solubility of Fe3+ 
in subduction zone fluids is not well known, even if the solute content of deep 
slab fluids may contain high Fe3+ concentrations also after the interaction with 
the host mineral during the crystallization of the daughter phases (Campione 
et al., 2017; Malaspina et al., 2017).

In geodynamic settings where a high fluid/rock ratio is expected, such as 
subduction mélanges, oxygen is likely transported along fractures and veins, 
possibly through mechanisms of dissolution-reprecipitation of O-enriched ox-
ides and silicates (Tumiati et al., 2015) or by advective processes (Marschall 
and Schumacher, 2012; Tumiati et al., 2013; Nielsen and Marschall, 2017). On 
the other hand, fluid percolation at low fluid/rock ratios occurs when the meta-
somatic fluid phases produced at UHP (silica-saturated supercritical liquids) 
inter act with peridotitic rocks at the slab-mantle interface (Fig. 6). In such oc-
currences, O2 cannot be considered a perfectly mobile component, as defined 
by Korzhinskii (1959, 1965), because most of the redox reactions take place be-
tween solid oxides and silicates. Based on this principle, the quantity of inert 
components (e.g., FeO then forming Fe2O3 and vice versa) has a fundamental 
role, and the molar quantity of exchanged oxygen (nO2) must be considered as 
an independent state variable. A recent study by Malaspina et al. (2017) reports 
the oxygen mass balance of crust-derived fluids preserved in multiphase solid 
inclusions from hybrid garnet orthopyroxenites of Maowu, a well-known exam-
ple of metasomatic layers at the slab/mantle interface (Malaspina et al., 2006b; 
Chen et al., 2017). Because mass transfer is supported by chemical gradients, 
in this case by gradient in nO2, a metasomatic front may develop from an oxi-
dized slab, contributing to 200 mol m–3 of excess O2 to the overlying mantle (10 
mol m–3 O2), passing through a transitional layer of hybrid rocks (gray field in 
Fig. 6) with the same excess of oxygen. On the contrary, the redox budget of the 
crust-derived fluids (multiphase inclusions) records more oxidized conditions 
than the host rock, reaching up to 400 mol m–3 of nO2 (Malaspina et al., 2017). 
This suggests that even if the solubility of Fe3+ in subduction fluid phases is not 
well known, C-S–free aqueous fluids still remain potential carriers of oxidized 
components when they escape the slab-mantle interface.

METASOMATISM AND IMPLICATIONS FOR THE REDOX 
STATE OF THE SUPRA-SUBDUCTION MANTLE

Information on deep metasomatism of the supra-subduction mantle can be 
gained by the study of UHP terranes that contain felsic rocks associated with 
metasomatized garnet peridotites. Such associations represent an ideal context 
to study the element exchange between crustal and mantle rocks at pressures 
corresponding to sub-arc depths. Even if the origin of many HP-UHP orogenic 
peridotites is still under debate, examples of supra-subduction peridotites 
dragged by the subducting continental crust crop out in the Ulten Zone (Italian 
Central Alps), in the Western Gneiss Region (Norway), in the Massif Central 
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and South Carpathian Variscides, in the Bohemian Massif, and in the Chinese 
Sulu Belt (Bodinier and Godard, 2013, and references therein). Most of these 
garnet peridotites provide evidence of recycling in the mantle of slab-derived 
fluids by the occurrence of primary multiphase solid inclusions, which have 
been attributed to silicate-rich supercritical liquids (van Roermund et al., 2002; 
 Malaspina et al., 2006b; Vrijmoed et al., 2006; Scambelluri et al., 2008;  Malaspina 
et  al., 2010; Malaspina and Tumiati, 2012; Frezzotti and Ferrando, 2015). The 
trace-element pattern of the fluids that potentially leave the slab-mantle inter-
face (the “residual fluid” of Malaspina et al., 2006b) is characterized by an en-
richment of LREE and a selective enrichment in LILE, with spikes of Cs, Ba, and 
Pb relative to Rb and K. The pattern of this “residual fluid,” reported in Figure 7 
(Maowu fluid inclusions), resembles the LILE-enriched trace-element pattern 
of arc lavas, attributed to the addition of a “subduction component” that de-
rives from the subducted sediments. Figure 7 also shows, for comparison, the 
incompatible trace-element pattern of peridotites from the Ulten Zone (Italian 
Alps), a known example of supra-subduction mantle  peridotites metasomatized 
by crust-derived fluid phases at eclogite-facies conditions (Tumiati et al., 2003, 
2007; Scambelluri et  al., 2006). The patterns reported in Figure 7 record the 
transformation of lithospheric spinel lherzolites into garnet + amphibole and 
amphibole peridotites during a continuous P-T history (see also Nimis and 
Morten, 2000; Tumiati et al., 2003). They show a peculiar “W-type” signature 
with strong enrichment in Cs, Ba, Pb, and U with respect to Rb, K, and Th, 
 coupled with moderate enrichment in Li (Fig. 7). The pattern of the “residual 

fluid” is also compared with that of pseudosecondary multiphase inclusions 
found in the garnet peridotites from Sulu, again another famous example of 
metasomatized supra-subduction mantle. Such inclusions were considered to 
represent a fluid phase that infiltrated the mantle after an earlier metasomatism 
by alkaline melt (Malaspina et al., 2009a). These inclusions have trace-element 
compositions surprisingly similar to the ones of Maowu (Fig. 7), pointing to a 
genetic relation with the two fluids. The similarity between the fluids trapped 
in the inclusions of both Maowu and Sulu peridotites and the metasomatic pat-
tern recorded by the Ulten peridotites strongly suggests that these kinds of 
 fluids may be effective metasomatic agents in the lithospheric supra-subduc-
tion mantle, once they escape the slab-mantle interface.

Crust-derived fluid metasomatism is also recorded by ultradeep majorite- 
bearing peridotites and websterites from Fjørtoft Island (Bardane, Western 
Gneiss Region). As demonstrated by Scambelluri et al. (2010), the mineral para-
genesis re-equilibrated during deep Caledonian subduction is enriched in LREE, 
LILE (Pb, U, and Th), and light elements (Li and B). In particular, phlogopite 
and clinopyroxene and also majoritic garnet filling veins formed by percolat-
ing fluids at 6.5–7.0 GPa are the LREE and LILE repositories (Scambelluri et al., 
2008). This indicates a common genesis from incompatible element-enriched 
subduction fluids that flushed the Bardane websterite (Scambelluri et al., 2010).

The Sr isotopic composition of these peridotites helps to further con-
strain the origin of fluids responsible for their metasomatism. The 87Sr/86Sr 
of the Sulu garnet peridotites, the Maowu garnet orthopyroxenite, Ulten zone 
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 peridotites, and some of the peridotites from Norway reported in the literature 
point to a crust-derived metasomatism. As portrayed in Figure 8, they show 
enrichment in the radiogenic component, ranging from 0.7072 to 0.7076 for 
the Maowu orthopyroxenites (Jahn et al., 2003) and from 0.7085 to 0.7095 for 
the Sulu  peridotites (Yang and Jahn, 2000). The peridotites from the Ulten zone 
show radiogenic 87Sr/86Sr signatures ranging from 0.7050 to 0.7074 (Tumiati 
et  al., 2003), as well as some of the garnet peridotites from Norway (up to 
0.7130; Spengler et al., 2009). These ranges provide evidence of the resetting 
of the original mantle isotopic signature (of 0.7025) toward crustal values 
(dashed dark blue field in Fig. 8). Together with Sr isotopes, Nd sys tematic also 
shows evidence of crustal contamination for some terranes, showing nega-
tive εNd ranging from –4.2 to –7.1 for Maowu rocks, from –9.0 to –9.7 for Sulu 
 peridotites, and down to –8.1 for the Ulten peridotites.

The Oxidation State of (Portions of) the 
Metasomatized Supra-Subduction Mantle

The three examples of mantle-derived garnet peridotites and websterites 
from Ulten, Sulu, and Bardane presented in the previous section also experi-
enced metasomatism by ±C-bearing subduction fluid phases, up to 200 km 
depth. Ulten garnet peridotites were metasomatized by slab-derived fluids, 
which enhanced the crystallization of pargasitic amphibole and dolomite 
( Sapienza et al., 2009; Malaspina and Tumiati, 2012). Sulu peridotites record a 
multi stage metasomatism by alkali-rich silicate melt, and a subsequent influx 
of a slab-derived incompatible element and silicate-rich fluid, which crystallized 
phlogopite and magnesite (Malaspina et al., 2009b). Websterites from Bardane 
preserve remnants of crust-derived fluids that precipitated graphite/diamond + 
dolomite/magnesite  + Cr-spinel  + phlogopite/K-amphibole in multiphase in-
clusions hosted by majoritic garnet (van Roermund et al., 2002; Scambelluri 
et al., 2008; Malaspina et al., 2010). As we will see later, an apparent correlation 
between the composition of the metasomatic agent (C- and alkali-bearing) and 
the fluid-induced oxidation of the peridotite mineral assemblage may occur.

The interpretation of the oxygen fugacities retrieved from mantle rocks is 
still a subject of debate. Even though the works by Canil (2002) and Lee et al. 
(2005) emphasize a homogeneity in the redox state of the convective astheno-
sphere, including subduction zone environments, systematic f O2 estimates for 
mantle xenoliths from different geological settings, both in the spinel and gar-
net facies, indicate that the upper mantle is zoned (Daniels and Gurney, 1991; 
Ballhaus and Frost, 1994; Ballhaus, 1995; Woodland and Koch, 2003; Frost and 
McCammon, 2008). In addition, there are a number of studies in the literature 
that reveal lateral f O2 variations related to different tectonic settings. These are 
summarized in Figure 9 (references are reported in the figure caption), where 
the range of oxygen fugacities (ΔFMQ) for spinel and garnet peridotites from 
various tectonic settings (black lines) are plotted as a function of equilibration 
pressure. These studies are in contrast to the “oxidized” nature of the mantle 
wedge, derived from oxygen thermobarometry of arc lavas (yellow lines) or 
from models of IAB sources (blue square).

For HP-UHP peridotite mineral assemblages, f O2 can be evaluated from 
several equilibria involving Fe3+-garnet components, where Fe3+ occurs in octa-
hedral coordination. For the olivine + orthopyroxene + Fe3+-garnet assemblage, 
two of these reactions are represented by:

(1) 2 Ca3Fe3+
2Si3O12 + 2 Mg3Al2Si3O12 + 2 Fe2Si2O6 = 

2 Ca3Al2Si3O12 + 4Fe2SiO4 + 3 Mg2Si2O6 + O2

 and

(2) 2 Fe2+
3Fe3+

2Si3O12 (skiagite) = 4 Fe2SiO4 + Fe2Si2O6 + O2.

Equilibrium (1) by Luth et  al. (1990) has been experimentally tested by 
Stagno et al. (2013) at P > 5 GPa, while equilibrium (2) was calibrated by Gud-
mundsson and Wood (1995) and is valid at pressures below 5 GPa (Stagno et al., 
2013). At high pressures, oxygen fugacity is therefore traditionally determined 
from the Fe3+ contents of garnet in equilibrium with olivine and ortho pyroxene. 
The green (and gray) lines portrayed in Figure 9 are the ΔFMQ ranges cal-
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culated from Fe3+ measurements of garnets from supra-subduction orogenic 
peridotites, in relation to the metasomatic phase assemblages formed: C-free 
(Maowu), C-undersaturated (Ulten and Sulu), alkali-bearing (Sulu), C-S–satu-
rated (Bardane),  slab-derived fluids. Lee et al. (2005) interpreted the high baro-
metric f O2 of arc lavas as resulting from the evolution of magmas during their 
ascent, emplacement, and/or magmatic differentiation. These authors have 
also suggested that the generally higher f O2 of mantle xenoliths from the arc 
lithosphere compared with the convective mantle at similar pressures (Christie 
et al., 1986; Bryndzia and Wood, 1990; Bézos and Humler, 2005) is likely due 
to continuous metasomatic fluid influx in these mantle rocks during their long 
residence time in the sub-arc lithosphere. Even if the dispute about the process 
responsible for the relative oxidation of the mantle at subduction zones and 
the actual oxidizing ability of slab-derived metasomatic fluids is still going on, 
the metasomatized mantle apparently looks more “oxidized.”

Interestingly, the f O2 calculated for the garnet + orthopyroxene ± olivine as-
semblage of the C-free metasomatic orthopyroxenites from Maowu (gray line 
in Fig. 9) shows much lower values with respect to that of supra-subduction 
C-bearing peridotites equilibrated at similar pressures. The data compilation 
reported in Figure 9 therefore suggests that carbon- (and sulfur-; Rielli et al., 
2017) rich fluids may play an important role in the oxidation of iron-bearing 
garnets in mantle peridotites.

Besides the direct involvement of carbon and sulfur in fluid-mediated 
 redox reactions in the mantle, we must consider that the increase of Fe3+ in 
garnet from mantle peridotites is not always correlated with the increase of 
the whole-rock Fe2O3, but could also be the consequence of the partitioning 
of Fe3+ from clinopyroxene into garnet (Canil and O’Neill, 1996; Woodland and 
Peltonen, 1999; Woodland and Koch, 2003; Rohrbach et al., 2007, 2011; Wood-
land, 2009). A recent work by Aulbach et al. (2017) also reports a strong nega-
tive correlation of Fe3+/ΣFe in garnet with the jadeite content in coexisting clino-
pyroxene. This has been again interpreted as partitioning of Fe3+ from garnet 
into jadeite-rich clinopyroxene with consequences in the f O2 calculations from 
garnet-only–bearing assemblages. Moreover, because redox reactions depend 
on the abundance of redox-sensitive elements, and on the moles of oxygen 

exchanged in the redox equilibria, the determination of the oxidation state of 
metasomatized garnet peridotites is a demanding task because clinopyroxene, 
amphibole, and phlogopite, in addition to garnet (and/or spinel), incorporate 
both ferric and ferrous iron (Malaspina et al., 2012, 2017).

Finally, another important underestimated aspect related to the meta-
somatic oxidation of garnet peridotites is the role of alkali elements, partic-
ularly of Na2O. Clinopyroxene in metasomatized garnet peridotites may be 
enriched in Fe3+ as aegirine component (Woodland, 2009; Aulbach et al., 2017) 
and potentially become the major Fe3+ host when the peridotites are metaso-
matized by Fe2O3- and alkali-rich fluid phases, as was exactly what happened 
to Sulu peridotites during the first stage of metasomatism by alkali-rich melts 
(Fig. 9; Malaspina et  al., 2012). This suggests that if net bulk oxidation can 
be demonstrated, carbon-, sulfur-, and also alkali-bearing slab-derived meta-
somatic agents may be potential carriers of S6+/S3–, C4+, and Fe3+ capable of 
oxidizing the overlying mantle.
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CONCLUDING REMARKS

Based on the questions addressed in the beginning of this review, some 
concluding remarks are listed below.

(1) Geophysical imaging of subduction zones (e.g., Bostock et  al., 2002) 
documents an important front of hydration in the supra-subduction 
mantle region, due to the uprise of fluids released from sediments and 
subducted oceanic crust. The hydration mechanism of the supra-sub-
duction mantle produces different plate interface style settings de-
pending on the thermal state of the subduction zone. This also plays 
an important role in the geochemical imprint of the hydrated mantle 
and its possible contribution to arc magmatism (Marschall and Schu-
macher, 2012; Spandler and Pirard, 2013). The released fluids develop-
ing mélange terrains promote the formation of “hybrid” rocks, which 
are able to selectively exchange trace elements with other slab reser-
voirs. The hybridization process may lead to a chemical transformation 
both in terms of major elements (e.g., formation of lawsonites, chlo-
rite schists, and tourmaline-rich blackwalls; see Marschall et al., 2006; 
 Marschall and Schumacher, 2012; Vitale Brovarone et al., 2014) and/or 
of trace elements. In top slab mélange, the prograde fluid-mediated 
chemical exchange between slices of slab and wedge-derived rocks 
and slab fluids can be tracked using fluid-mobile elements (e.g., As and 
Sb) and isotopic tracers (B, Sr, and Pb). This process may yield to oddi-
ties in the geochemical signature of mantle rocks.

(2) The major- and trace-element concentration of slab-derived fluids 
strongly depends on their partitioning with stable phase assemblages, 
which in turn depend on the thermal regime of subduction (Fig. 1). 
Phengite is the most important phase controlling the partitioning of 
LILE and LREE in K-bearing systems and is stable up to 200 km depth 
along cold subduction paths. In addition, accessory minerals such as 
allanite, monazite, zircon, and rutile, which are ubiquitous in different 
slab lithologies, play an important role in the storage of HFSE but also 
LREE and U-Th. The stability of garnet as a product of metamorphic 
reactions controls the partitioning of HREE. The release of incompati-
ble elements, particularly of LILE and LREE, is modulated by the modal 
amount of key phases, such as phengite, in the slab rocks and by their 
stability, which depends on the occurrence of free H2O, which lowers 
their solidus temperature (Fig. 1).

(3) The geochemical modification of the supra-subduction mantle wedge 
strongly depends on the magnitude of trace-element supply by fluids/
melts. At relatively low pressures (up to 3 GPa, i.e., antigorite break-
down), the subducted lithosphere releases large quantities of H2O and 
forms mélange layers characterized by high fluid/rock ratios. In this 
framework, elements are likely transported along fractures and veins 
(Fig. 6), possibly through mechanisms of dissolution-reprecipitation 
or by advective processes. At higher pressures (P > 3 GPa), fluid per-

colation at low fluid/rock ratios (porous or focused flow) is mediated 
by Si-saturated supercritical liquids interacting with peridotitic rocks at 
the slab-mantle interface. In such occurrences, focused flow is the fast-
est and most suitable mechanism of mass transfer through the mantle 
wedge capable of supplying the required geochemical signatures found 
in arc lavas.

(4) The redox state of the subducting lithosphere is intrinsically hetero-
geneous due to the different lithologies bearing different amounts of 
redox-sensitive elements (Fe, Mn, C, and S) and different fluid/rock 
ratios experienced (Fig. 6). The estimate of an oxygen mass balance 
is mandatory to evaluate the oxidation state of the slab equilibrium 
phase assemblages. Nevertheless, one of the most important pieces 
of evidence of the deep redox budget recycling at subduction zones 
is the production of arc lavas with Fe3+/ΣFe linearly correlated with the 
H2O content and slab-derived fluid mobile elements. This evidence in-
dicates that the oxidation state of arc magmas is closely related to the 
transfer of Fe3+, C4+, and/or S6+ in their source by slab-derived metaso-
matic agents.

(5) The redox-state evolution of slab and supra-subduction lithologies may 
influence the speciation of elements in the metasomatic fluids infiltrat-
ing the overlying mantle. The valence state of carbon and sulfur and the 
speciation of their compounds are governed by the rock system, i.e., 
by the equilibria among mineral assemblages containing redox-sensi-
tive major elements (e.g., Fe and Mn). Alternatively, the carbon and/or 
sulfur species in subducted rocks and deep fluids control the oxidation 
state of the host system by redox reactions during fluid/rock interac-
tions (e.g., Fig. 9). Whether the redox state of the system is buffered by 
the rock or by C-S–bearing fluids depends on the fluid/rock ratios. At 
high ratios, such as mélange layers, fluids control the redox state of the 
system, and oxygen can be considered perfectly mobile. At low ratios, 
such as during porous flow of metasomatic agents at UHP, the mantle 
rock controls the speciation of redox-sensitive metasomatic compo-
nents, and oxygen is considered inert. Finally, another important aspect 
related to the metasomatic-related oxidation of the mantle wedge is the 
role of alkali elements, particularly of Na2O, which favors the incorpo-
ration of Fe3+ in peridotite clinopyroxene as aegirine component. This 
suggests that if net bulk oxidation can be demonstrated, C-, S-, and 
even alkali-bearing slab-derived metasomatic agents may oxidize the 
overlying mantle.
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