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a b s t r a c t

The lack of open-source tools for physiological signal processing hinders the development of stan-
dardized pipelines in physiology. Researchers usually must rely on commercial software that, by
implementing black-box algorithms, undermines the control on the analysis and prevents the com-
parison of the results, ultimately affecting the scientific reproducibility. We introduce pyphysio as a
step towards a data science approach oriented to compute physiological indicators, in particular of the
Autonomic Nervous System activity. pyphysio serves as a basis for machine learning modules and
it implements a suite of combinable algorithms for processing of signals from either by wearable or
medical-grade quality devices.

© 2019 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Motivation and significance

Physiological signals are extensively used in medical sciences
for diagnostics and monitoring of a patient’s health status. They
also provide effective insight into the psychophysiological reg-
ulatory mechanisms that enable us to adapt to environmental
changes and react to external stimuli [1,2].

The rise of Wearable Sensor (WS) technologies enabled the
use of physiological signals as a core method in multiple research
fields. The promise of WSs is to enable the acquisition of signals in
the ecological context [3], based on advances in miniaturization,
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accuracy, sampling rates and energy efficiency. Unfortunately,
such technological progress is not matched yet by a wide avail-
ability of scientific computing platforms for physiological data
analysis.

The first hurdle to reproducibility of studies with physiological
signals is the current preference for black-box algorithms, often
centralizing the analysis in a proprietary cloud framework and
preventing the access to raw data in the worst cases. With few
exceptions (e.g. OpenANSLAB [4]), the scope of both commer-
cial and open-source software is often focused on a single type
of signal, such as pyEEG [5] for electroencephalographic (EEG)
signals; pyHRV [6], gHRV [7] and KUBIOS [8] for Heart Rate Vari-
ability (HRV) analysis; Ledalab [9], SCRalyze [10] and cvxEDA [11]

https://doi.org/10.1016/j.softx.2019.100287
2352-7110/© 2019 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.softx.2019.100287
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2019.100287&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://github.com/ElsevierSoftwareX/SOFTX_2019_180
https://github.com/MPBA/pyphysio/tree/master/tutorials
mailto:bizzego@fbk.eu
mailto:andrea.bizzego@unitn.it
https://doi.org/10.1016/j.softx.2019.100287
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 A. Bizzego, A. Battisti, G. Gabrieli et al. / SoftwareX 10 (2019) 100287

Fig. 1. Three steps of physiological signal processing (top) and an example on a Blood Volume Pulse (BVP) signal (bottom).

for Electrodermal Activity (EDA). Lack of transparency and frag-
mentation of solutions in multiple software tools hinders repro-
ducibility within and between studies that the Python library
pyphysio aims to solve.

pyphysio is designed to offer a friendly interface to physi-
ological signal processing. Its primary field of application is the
study of the activity of the ANS activity; however, its use is
not limited to psychophysiology but can be extended to any
research based on physiological signals (e.g. sport and health,
affective computing). pyphysio provides a wide range of choices
and data analysis options, and is tailored to researchers with
limited programming expertise. Although we acknowledge that
each study has specific scientific questions and diverse exper-
imental design, the sequence of data analysis modules should
be fairly easy to concatenate in a standard modality and in a
consistent framework of customized pipelines. The advantage
of adopting a well-structured, yet general, framework is that
state-of-the-art functions can be progressively made available to
psychophysiology specialists who do not usually have the skills to
efficiently code signal processing modules and may end up with
using sub-optimal solutions.

In summary, the adoption of pyphysio is expected to increase
the quality of studies based on the quantification of physio-
logical signals: first, by growing the signal processing compe-
tences of researchers, without the need of having coding and
programming skills; second, by allowing the development of re-
producible pipelines and, third, by facilitating the implementation
and adoption of novel algorithms.

2. Software description

We developed pyphysio using Python, in particular on top
of well-established libraries for scientific computing, in particu-
lar scipy1 and numpy2 to ease the processing of multiple types
of physiological signals. In particular, pyphysio provides algo-
rithms and functions to accomplish a typical psychophysiology
signal processing pipeline, which is composed of the following
steps (see Fig. 1):

1. Filtering and preprocessing: for removing noise and im-
proving the quality of the signal. These algorithms are
generic and can be applied to different types of signals;

2. Information Extraction: steps that aim at extracting key in-
formation from the input signal. The algorithms are mostly
specific to the type of signal (e.g. heart beat detection from
an ECG signal); but they can also be used on multiple signal
types by setting the algorithm’s parameters accordingly;

1 www.scipy.org/.
2 www.numpy.org/.

3. Physiological Indicators: application of mathematical and
statistical functions that compute metrics (i.e. scalar val-
ues) from the input signal (e.g. the energy in a specific
frequency band). pyphysio provide a set of indicators
directly associated with the activity of the Autonomic Ner-
vous System (ANS) to support psychophysiology research.
The main indicators proposed in literature are available in
pyphysio for each type of supported signal, with default
parameters specified (see Table 1).

Expected users: pyphysio is designed for users without ex-
tensive programming skills. Functions are defined at high levels
to enable the complete development of experiments that inves-
tigate the physiological and psychological state of an individual.
Further, the modular structure and the availability of pyphysio
classes and functions enable the implementation of novel ad-hoc
algorithms and of more complex signal processing pipelines.

Basic concepts: pyphysio has been developed for the off-line
analysis of physiological signals, such as ECG, EDA, Respiration,
Electromyography. pyphysio can be used without any restric-
tion on the type of instrumentation used to collect the data.
However, special functions have been provided to allow the re-
searchers to deal with the lower quality of the data from the WSs.
Its main intended use is to compute physiological indicators to
study the activity of the ANS, which is the typical approach of
psychophysiology research.

Main classes and functions: pyphysio introduces the class
Signal (to represent a physiological signal) extending the
numpy.array class of the Numpy package. All methods of
numpy.array can thus be exploited to process an instance of the
class Signal. Signals that are sampled with a fixed sampling fre-
quency are represented with the subclass EvenlySignal, defined
by the starting timestamp and the sampling frequency. Other
types of signals (e.g. event triggers) are naturally associated to
samples not equally spaced over time. The pyphysio subclass
UnevenlySignal is available when the sampling frequency is not
constant and thus the time reference of each sample needs to
be stored. Both classes use default methods to access signal
attributes, such as signal values or timestamps — get_values(),
get_times(), or for fast signal manipulation (e.g. resampling, vi-
sualization or segmentation). The class Algorithm describes a
computational function F with the set of parameters p that
regulate its behavior. A signal processing pipeline is composed
of multiple processing steps, each one modeled as an Algo-
rithm instance. Different types of signal processing algorithms
are implemented, including simple wrappers of existing functions
(e.g. scipy.filter) and more complex procedures (e.g. to estimate
the component of an EDA signal associated with the sympathetic
regulation [9]). The main algorithms implemented in pyphysio
are listed in Table 2.

http://www.scipy.org/
http://www.numpy.org/
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Table 1
Main physiological indicators provided by default in pyphysio.
Signal Indicators

Inter Beat Intervals RRmean, RRSTD, RMSSD, pNN50, pNN25, pNN10, triang, TINN, VLF, LF, HF, SD1, SD2, SD12, Sell, ApEn, SampEn, DFAa1, DFAa2 [12]
Electrodermal Activity Mean, Range, Standard deviation, Mean peaks amplitude, Maximal peak amplitude, Peak slope, Peak duration, Number of peaks,

AUC [13]
Electroencephalogram Energy in: delta, theta, alpha, beta bands [5]
Electromyogram Maximum, Minimum, Mean, Range, Standard deviation, AUC, Energy in 4–40 Hz band [14]
Respiration Energy Low (0–0.25 Hz band), Energy High (0.25–5 Hz band), Energy Ratio, Breath Rate [14]
Activity Maximum, Minimum, Mean, Range, Standard deviation, AUC, Energy in 0–25 Hz bands [15]

Table 2
Selected algorithms implemented in pyphysio.
pyphysio function Description Notes

Filters.Normalize() Rescale the signal according to various methods (e.g.
standardize)

Filters.IIRFilter() Implementation of an Infinite Impulse Response Filter Uses the nominal frequency instead of the
relative frequency

Filters.FIRFilter() Implementation of an Finite Impulse Response Filter Uses the nominal frequency instead of the
relative frequency

Filters.KalmanFilter() Implementation of the Kalman’s algorithm for signal
filtering

Filter’s parameters are inferred from the
statistical properties of the input signal

Filters.ConvolutionalFilter() Convolve a signal with a given Impulse Response
Function

A pre-defined list of Impulse Response Functions
for signal smoothing is provided

Filters.DeConvolutionalFilter() Deconvolve a signal with a given Impulse Response
Function

Filters.ImputeNAN() Impute missing values Missing values are imputed with random values
from the same distribution of the nearest values

Filters.RemoveSpikes() Remove sudden changes in the signal values Detects the spikes by analyzing the signal
derivative

Estimators.BeatFromBP() Detect the beat positions in a cardiac signal that
measures the blood pulses

[16]

Estimators.BeatFromECG() Detect the beat positions in an ECG
Estimators.DriverEstim() Deconvolve an EDA signal with a Bateman’s function

that represent the response of the sweat glands
[9]

Estimators.PhasicEstim() Estimate the Phasic component from a signal of the
sweat glands activity

[9]

Estimators.Energy() Estimate the local energy of the signal Uses a windowing with customizable window
length to allow a localized estimation

SegmentsGenerators.FixedSegments() Extract consecutive portions of signal with fixed length
and overlap

SegmentsGenerators.CustomSegments() Extract consecutive portions of signal with custom start
and stop timestamps

SegmentsGenerators.LabelSegments() Extract consecutive portions of signal from the values of
an additional signal (e.g. stimulus presentation)

Furthermore, pyphysio provides functions to assess signal
quality, the temporal alignment of multiple signals, the extrac-
tion of indicators from sequential segments and the output from
post-processing analysis. In comparison to the scipy package and
other general resources for scientific programming, pyphysio
functions are indeed tailored for signal processing, mainly includ-
ing parameters with a direct physical meaning (e.g. the use of
seconds instead of indices of vectors, or Hertz instead of the rela-
tive frequency). To facilitate the creation of processing pipelines,
the pyphysio Algorithm class is extended by three sub-classes
(Filter, Estimator, and Indicator). Each sub-class is dedicated to a
phase in a typical signal processing pipeline (see Fig. 1).

The class Tool collects additional pyphysio algorithms that
can be used to develop complex processing steps, such as to iden-
tify local maxima/minima, and to estimate the power spectrum
density. The class Segment and its sub-classes are used to gen-
erate segments of a signal (for instance with a shifting window)
and manage the execution of operations on each segment, such as
the computation of physiological indicators. Notably, the methods
in Segment can include the experiment timeline as an additional
signal in order to associate labels to computed indicators (e.g. the
experimental session label to enable a consistent comparison
between different experimental conditions). Additionally, the li-
brary provides diagnostic algorithms, such as validation of the
input data with Signal Quality Indicators for preprocessing or for
unsupervised machine learning.

3. Illustrative examples

With pyphysio, a typical signal processing pipeline to analyze
the autonomic response to stimuli can be set in few lines of code
(see Fig. 2). In this example, we process two signals: the Blood
Volume Pulse (BVP) and the EDA [17], collected during an experi-
ment in which the subject watched two 30-seconds length videos
with different emotional content. Since the peaks in the BVP are
associated to the cardiac activity, this signal is used to extract the
distances between consecutive beats (Inter Beat Intervals, IBI) and
then analyze the HRV, associated to the regulatory activity of the
Autonomic Nervous System (ANS). The EDA signal is also associ-
ated to the ANS: the activity of the Sympathetic Nervous System
(SNS), a branch of the ANS, increases the secretory activity of the
sweat glands, thus causing increases of the electrical conductivity
of the skin. The activity of the SNS, or phasic response, can be
estimated from the EDA by a deconvolution process [13]. The first
video, presented after 30 s of baseline elicited a calming response,
the second elicited an aroused state, presented after 30 s of pause
after the first video. We are interested in studying the different
autonomic responses to the two videos.

The first step in the pipeline is creating the EvenlySignal
instances that store the signal values and their temporal support
(see Fig. 2A): it is sufficient to set the sampling frequency and the
starting time of the acquisition. Note that more complex setups
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Fig. 2. Schematic representation of a typical physiological signal processing pipeline with pyphysio. (A) Definition of the signals with their temporal support; (B)
Extraction of the information of interest from the signals (IBI from the BVP and phasic response from the EDA); (C) Definition of the windowing procedure and of
the list of autonomic indicators; (D) Computation of the autonomic indicators and visualization of the results.

might use different sources of signals, thus allowing to separately
specify the starting time is critical for synchronization of the
different streams.

In the second step, we extract from the signals the information
that is relevant for the autonomic response: the IBI from the
BVP [16], and the phasic response from the EDA, associated with
the SNS activity [9,13] (see Fig. 2B).

Then we define the parameters for the windowing and the
type of autonomic indicators that should be computed on each
signal. The windowing is a procedure in which the autonomic
indicators are computed from portions of the signal and is a com-
mon practice to account for dynamics of the autonomic response,
such as the response to a video stimulus. In this example (see
Fig. 2C), we use partially overlapping (10 s overlap) windows
of length 15 s and three time domain indicators of the HRV,
and three of the peak patterns of the phasic response. Note that
pyphysio includes a list of predefined indicators for each signal
that can be used instead of the manually defined indicators (see
Table 1).

Finally (see Fig. 2D), we use pyphysio to automatically com-
pute the indicators from each segment. In this example, we
observe (Fig. 2D) that during the second video the average length
of the IBI (RRMean) decreases and the mean amplitude of the
peaks (PKSMean) increases, suggesting that the second stimulus
elicits a more aroused state.

A typical physiological signal processing pipeline includes
steps for signal filtering and more complex use of the pyphysio
algorithms, here omitted for the sake of simplicity. All parameters
and their usage are described in the package Documentation.

pyphysio has already been used in research studies, for in-
stance: to investigate the physiological response of adults to
children crying [18,19] and social distress [20–22], to preprocess
actigraphy signals for the automatic detection of stereotypical
motor movements in Autism Spectrum Disorders [23] and to
detect physiological response in dyadic interactions [24–26].

4. Impact and conclusions

The advent of data intensive experimental settings in psy-
chophysiological studies is well supported by the availability of

more compact devices, higher sampling rates, and the possibility
of measuring multiple physiological signals. Big data analytics is
thus now also a key task to consider, which applies to all data,
from those produced from clinical instrument in lab settings to
portable devices for flexible indoor studies up to wearable devices
for in-the-wild applications. It is fair to expect that such scientific
data assets will enable training Artificial Intelligence algorithms,
and clinical applications later. It is thus urgent to fill the existing
gap between better physiological sensing capabilities and the
signal processing and analytics toolsets. As already acknowledged
in bioinformatics, proprietary software is a limiting factor in the
customization of algorithmic pipelines and a hurdle in supporting
reproducibility, especially in a big data framework. On the other
hand, pipelines that require the installation of multiple program-
ming environments languages are hard to develop, maintain and
reproduce.

pyphysio aims at offering one common framework to work
with different types of physiological signals. It requires minimal
knowledge of Python and programming skills, and it is designed
to facilitate scripting signal processing pipelines, where each step
is implemented by an object of the class Algorithm. Further,
pyphysio structure makes faster the integration of new algo-
rithms, and of multiple physiological signals, such as EEG and
functional Near Infrared Spectroscopy (fNIRS). Jupyter notebooks
with additional examples for different signal types are available
in the pyphysio repository.3

Notably, pyphysio is ready to use with the most used Ma-
chine Learning and Deep Learning environments, in particular
with scientific Python libraries, such as scikit-learn, keras, Py-
Torch. Researchers and developers are encouraged to adopt and
contribute to the development of pyphysio, in particular by
adding more algorithms and functions, for instance adding capa-
bilities for real-time processing of streaming data.
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