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Abstract 

The influence of a proper surface preparation is essential for a better adhesion of copper thin films on aluminum substrate. In this 
work, the surface properties of the aluminum substrate have been modified through sandblasting process, in order to influence the 
quality of electroplating. To evaluate the correct adhesion of the thin film to the substrate non-destructive measurements of 
diffusivity by infrared thermography have been made. A combining of a feedforward artificial neural network (FFANN) and an 
external optimized algorithm (EOA) is proposed to optimize the substrate surface preparation process. A FFANN model is 
developed to map the complex non-linear relationship between the surface process conditions of the substrate and the thermal 
diffusivity of the electroplated sample. A good performance of the FFANN model is achieved. An EOA is used for the optimization 
of the sandblasting process conditions, in order to maximize the adhesion of the thin film to the substrate. 
© 2016 The Authors. Published by Elsevier B.V. 
Selection and peer-review under responsibility of the International Scientific Committee of “10th CIRP ICME Conference". 

 Keywords: Artificial neural networks; Process optimization; Thermo-graphic analysis; Electrodeposition. 
 

1. Introduction 

    Artificial Neural Networks (ANNs) are information 
processing systems with their design inspired by the studies of 
the ability of the human brain to learn from observations and to 
generalize by abstraction [1]. They have been widely accepted 
as a technology offering an alternative way to simulate 
complex and ill-defined problems. ANNs have been used in 
many applications, such as: control, robotics, pattern 
recognition, forecasting, power systems, manufacturing, 
optimization, signal processing, etc., and they are particularly 
useful in system modeling [2, 3]. A neural network is a 
computational structure, consisting of a number of highly 
interconnected processing units called neurons. The neurons 
sum weighted inputs applies a linear or nonlinear function to 
determine the output, than this output is passed to the following 
neurons, which are arranged in layers and are combined 
through excessive connectivity. Neural networks are effective 

and efficient alternatives to conventional methods, such as: 
numerical modeling methods [4], which could be highly 
computationally expensive; analytical methods, which could be 
difficult to obtain for newly achieved devices; and empirical 
modeling solutions, due to huge range and limited accuracy [5]. 
In this work, a feedforward neural network has been developed 
to model the sandblasting process of aluminum samples, in 
order to enhance the electrodeposition of copper thin films on 
their surface. Copper is an active metal with low ionization 
energy, hence it does not readily plate onto a passivated 
surface, making direct plating on aluminum-based metals 
difficult. For this reason, aluminum substrate undergoes a 
surface pretreatment, thanks to which the copper can adhere. In 
this context, the level of surface finish required for the process 
of electrodeposition becomes a parameter of crucial interest, 
since the roughness profile, affecting the electrodeposition 
process, turn out to be decisive for the adhesion of the thin film 
to the substrate [6]. Through the use of various grains of sand 
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at high pressure it is possible not only to completely eliminate 
the oxide layer on the surface, but also to change the level of 
surface finish simply varying the dimensions of the sand, the 
pressure and the time of the process [7]. The main goal of the 
work is to achieve a dynamic simulation system through 
ANNs, able to provide autonomously the best-input conditions, 
optimizing the adhesion of copper on the aluminum substrate. 
By combining the ANNs to an EOA is possible making the 
whole process dynamic and independent, able to reach the best 
possible conditions both during its planning phase, and during 
its execution. 

2. Experimental procedure 

    1000-series aluminum was chosen for the samples. All the 
aluminum samples were obtained from the same block and 
manufactured with the same parallelepiped shape (30 × 20 × 5) 
mm. The surface preparation was carried out using a 
sandblasting machine, which exploits tiny corundum spheres, 
at high pressure, on the sample surface. The surface preparation 
has been led varying the particle size of the sand, the pressure 
and the time of execution of the test. In order to optimize this 
process the parameters employed have been, respectively:  
 

 Grain: 46 (355-425 m), 80 (180-212 m), 120 (106-
125 m), 180 (63-90 m);  

 Pressure: 2 bar, 4 bar, 6 bar;  
 Rate of execution: 3 sec, 5 sec, 7 sec.  

This treatment enables to easily remove the oxide layer that is 
formed on the aluminum surface that is the cause of an 
imperfect and irregular coating. Moreover, this method allows 
to achieve the best adhesion of the coating, without the use of 
complex equipment and solutions harmful to the environment. 
After the sandblasting process, for each sample their roughness 
profile has been studied by profilometry [20]. The parameters 
of major interest, related with the consequent electroplating 
process and with the adhesive force of the thin film of copper 
to the substrate, have been: the average roughness (Ra) and the 
average inclination of the roughness peaks (Rdq). Ra allows to 
evaluate how the combined abrasive action of time, sand grain 
size and pressure, changed the general shape of the surface; 
while Rdq helps assess whether the geometrical shape of the 
roughness peaks has some influence on the subsequent 
electroplating process. Since the rate at which the oxide layer 
is regenerated is particularly high, the electrodeposition has 
been led immediately after the sandblasting process. For the 
process of copper plating, one of the most widespread acidic 
solutions was used: a copper sulfate based solution [8]. The 
sacrificial anode used for the process was composed of four 
copper plates connected to each other to form a hollow 
parallelepiped (50 x 30 x 5 mm), without upper and lower 
bases, in order to completely cover the sample, thus allowing 
the best possible results. The bath composition was studied and 
compared with those found in literature and consisted of: 1.25 
M CuSO4, 0.61 M H2SO4 and Cl− 50 ppm. The presence of 
chloride is helpful in the polarization of anode and in the 
modification of the characteristic of the coating, whereas 
CuSO4 and H2SO4 are obviously indispensable for the correct 
development of the process. The bath was kept in agitation with 
a magnetic agitator, located inside the electrolytic cell.  On each 
sample the same amount of copper has been deposited, using 

for each electrodeposition the same electrolytic current (2.5 A) 
and the same time of process (5 minutes). In such a way, we 
could be sure that the thickness of the thin film of copper would 
have been the same for each sample. The evaluation of the 
adhesion of the copper thin film to the substrate has been 
crucial. Due to the thin thickness of the coating (24 0.1 µm) 
was impossible to perform peeling tests on the samples. Even 
scratch test was performed to evaluate the coating behavior at 
the interface, but without giving satisfactory results.  During 
the scratch test, the high deformability of copper and aluminum 
didn't permit to discretize and evaluate the adhesion differences 
between different samples. For this reason, the adhesion at the 
interface has been determined through the indirect measure of 
the thermal diffusivity by flash method [9]. Considering an 
electrical analogy, for what concerns the thermal exchange 
through the electroplated sample, the presence of copper on the 
aluminum surface is a further resistance in series with that of 
aluminum and the contact resistance. From this point of view, 
the thermal conductivity of each electroplated sample results 
always lower than that shown by the bulk sample. Therefore, 
from the evaluation of the diffusivity can be understood which 
sample presents the highest contact resistance and which the 
lowest, and then the best adhesion on the substrate. For the 
modeling of the entire process, a multilayer feedforward neural 
network has been implemented. Thanks to its learning 
capability a well-trained neural network can produce more 
accurate outcomes, replacing empirical modeling solutions 
limited by range and accuracy [21].  

3. Implementation of the Artificial Neural Network 

   The identification of all the main parameters is essential in 
order to determine which are the input neurons of the network, 
such as those of output, and how many networks are necessary 
for the correct modeling of the system [10, 11]. The 
sandblasting process has been modeled through the use of two 
networks, both having as input the parameters of the process 
(grain size of the sand, pressure and process time), and as 
output one of the roughness parameters (Ra or Rdq). Regarding 
the modeling of the flash method only one network was 
realized, having as input the roughness values (Ra and Rdq) 
and as output the diffusivity ( ). In this way, the two networks 
that simulate the sandblasting process (working in parallel) 
were connected in series with the one that simulates the flash 
method. Regarding the two networks which model the 
sandblasting process, for both of them a FFANN with two 
hidden layers has been used: 6 and 5 neurons for the one which 
has as output Ra; 7 and 6 neurons for the one which has as 
output Rdq. The most important step during the development 
of an ANN is the training process, through which the network 
adapts itself to the process that it is modeling [12, 13, 14]. The 
algorithm chosen for their training has been a Resilient 
Backpropagation since it is more stable and accurate for the 
data at our disposal, as well as able to avoid the over-training 
problem and to minimize the error function used (mse, mean 
squared normalized error performance function). To model the 
thermal properties of the electroplated samples has been used a 
FFANN with two hidden layers. Due to the complexity of the 
problem, it has been necessary to use 8 and 7 neurons for the 
first and second layers respectively. The algorithm chosen for 
the training has been a Levenberg-Marquardt, as it was the only 
one, despite the increased computational heaviness, to arrive at 
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extremely reasonable values of minimization of the error 
function. For all the networks created the transfer function used 
between the interlayers has been a hyperbolic tangent function. 
Once the network was built and trained it undergoes a 
validation process, by which the thinking capacity of the 
network is evaluated, providing the input data of which the 
answer is known, without providing the output [15, 16]. During 
this process the network is then evaluated for its ability to 
generalize, by comparing the response provided by the network 
and the real answer known. Generally a 20% of the entire data 
set is used for the validation but, due to the complexity of the 
system to model, it was necessary to use almost all of the data 
at our disposal for training rather than for validation, without 
which the network would not have had the ability to learn 
properly and generalize the problem [17]. The data subdivision 
used for the training and validation of the networks, has been:  

 Training: 88% of the entire dataset; 
 Validation: 12% of the entire dataset 

 

 
Fig 1. Image of the interconnections between the three neural 
networks created 

 
Once the network has been trained and validated it is able to 
generalize the system that is shaping, namely to provide 
consistent answers according to input data which have never 
been provided [18]. In this regard an algorithm was created 
(first indicated by the acronym EOA) able to collect the 
networks created, and determine the conditions of sandblasting 
in order to maximize the thermal diffusivity. The algorithm 
works by analyzing all possible conditions for the sandblasting 
process, both as regards the type of sand, the pressure and the 
working time, needing only intervals in which it must look for 
the optimal solution. By the connection between the networks 
and the EOA we were able to model and optimize the entire 
system making it dynamic, namely able to varying the input 
values always maximizing the diffusivity, even when the 
process is taking place. 

4. Experimental results 

    The roughness analysis has evidenced how the correlation 
between the main parameters of the sandblasting process is not 
linear. As shown in the following figure, we can clearly see 
how changes in the particle size of sand, or pressure, or blasting 
time allow some kind of assessments only for the same grain of 

sand. For example, if we consider the sand with grain 120 we 
can see how the abrasive capacity increase with pressure and 
time, while it is the opposite with grain 180. That because the 
increase of pressure from the nozzle ejector leads to a higher 
speed of the grain of sand, so the kinetic energy discharged on 
the surface ends up causing a higher abrasion. On the other 
hand, if we maintain the same pressure and time, varying the 
particle size, we obtain the opposite effect: less abrasion and 
higher work hardening. 

 
Fig. 2. Average Roughness Profile varying the sandblasting main 
parameters 

 
As regards the measurement of the thermal diffusivity, the flash 
method is the most popular method used. It has the advantage 
of being fast, while providing values with excellent accuracy 
and reproducibility. The diffusivity of the electroplated 
samples has been determined according to Parker’s law: 
                                                            (4.1) 

 
Where L is the thickness of the sample, and t1/2 the time that the 
thermo-gram takes to reach half of the maximum temperature 
increase [9]. All the diffusivities have been compared to the one 
measured for the bulk sample, in such a way we could be sure 
that we were measuring only the variations of contact 
resistance [19]. The thermal flow has been diagrammed for 
each sample, throughout the sample, as function of time (Fig. 
4), by the use of a thermal imaging camera. As shown in the 
figure below we can clearly see how some samples present 
diffusivity values close to the one shown by the not-
electroplated sample (there indicated simply as “Bulk”), while 
others present almost a constant trend. 

 
Fig. 3. Diffusivity values for each electroplated sample 
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As follows, we analyze three different characteristic samples 
by optical microscope. We choose the samples 9, 18 and 36, 
characterized by values of diffusivity respectively of 7.081∙10-
5 m2/s, 5.78∙10-5 m2/s, and 6.09∙10-5 m2/s. In order to 
highlight as much as possible the adhesion at the interface, the 
three samples were first cut, embedded in a thermosetting resin 
and then polished. The processes described have finished to 
alter the size (in terms of thickness) of the electrodeposited 
layer, while allowing analyzing accurately the interface. In the 
following picture (Fig. 4) we can clearly see how the adhesion 
on the 9th sample is the one with fewer imperfections, while in 
the 18th we incur in a partial separation of the thin layer.  This 
ends up having a significant impact on the diffusivity and, 
consequently, on the thermal conductivity. 

 

Fig. 4. Surface picture of the: a) 9th sample; b) 18th sample; c) 36th 
sample 

5. Artificial Neural Network results 

    The training process of the neural network was carried out 
trying to avoid incurring the problem of over-training, while 
seeking to minimize the error function. As shown in the 
following tables and pictures, the performance of the three 
networks, i.e. the maximum deviations between the actual 
values (indicated with the “x” symbol) and the outputs 
generated by the neural network (indicated with the “o” 
symbol) in the learning phase, were all very low. Low values 
of mse-training performance have been reached, as a direct 
consequence of the high number of epochs realized in addition 
to the type of algorithm used. 
 
Table 1. Epochs and Training performances of the three networks 

Input Output Maximum Deviation Epochs 

Sand grain, 
pressure, 

Time 
Ra 0.371% 10000 

Sand grain, 
pressure, 

Time 
Rdq 0.271% 10000 

Ra, Rdq α 2.59% 6000 

 
As regards the validation process of the three networks, the 
deviations between the actual values and the outputs generated 
by the neural network were all superior to the ones shown 
during the training process. It demonstrates how the 
generalization ability of the network is mainly dependent on 
the complexity of the problem and on the amount of data 
provided during the training phase.  
 

 
Fig. 5. Validation Process of the Network having as output the 
diffusivity 
 
Table 2. Validation Performances of the three networks 

Input Output Maximum Deviation 

Sand grain, 
pressure, Time 

Ra 10.3% 

Sand grain, 
pressure, Time 

Rdq 5.72% 

Ra, Rdq α 1.65% 

 
As regards the EOA, the intervals where the algorithm had to 
look for the optimum sandblasting input values, were: 
 
Table 3. Operative Intervals of the EOA 

Sand  Pressure Time 

From grain 46 to 180 From 0 bar to 8 bar From 0 sec to 20 sec 

 
The optimization process has therefore led to the following 
results (all of them with the same value of α): 
 
Table 4. Results of the Optimization Process 

Sand Pressure Time 

Grain 46 4 bar 5 sec 

Grain 82 6 bar 8 sec 

Grain 123 8.1 bar 2.1 sec 

  
The results obtained represent the input parameters that permit 
to maximize the adhesion of the copper thin film to the 
substrate. The possibility of having different optimum 
conditions enables a dynamic control of the process conditions 
when it takes place, since it allows adapting the process 

a)�

b)�

c)�
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parameters on-site, even when an unexpected occurs. This 
leaves the network to adapt autonomously its input parameters 
to changes, always minimizing the contact resistance. 
Obviously, optimization is very similar to reality if the training 
process of the neural network has been good, since it enables 
the network to properly simulate the entire process. 

6. Conclusion 

    The use of the diffusivity as a tool for a non-destructively 
evaluation of the adhesion of the thin layer to the substrate was 
a successful choice, as demonstrated by the images obtained by 
the optical microscope. The use of a lower number of neuron 
on more hidden layers has allowed the network to generalize in 
a better way the problem proposed. A valid response to the 
validation phase, without incurring the problem of over-
training, has been reached. The optimization carried out 
subsequently allowed the theoretical optimum conditions to be 
determined. The optimization has been based on actual data and 
on more distinct processes characterized by the absence of 
intrinsic correlations and then by non-linear behavior. The 
EOA realized allowed to evaluate every possible case, in times 
consistent with the computing power of the computer, allowing 
the realization of a dynamic process able to evaluate 
autonomously the input best conditions. The possibility to have 
a dynamic system, with respect to different operating situation, 
not only improves the stability of the process itself but also 
allows achieving considerable savings in terms of time, money 
and materials. Although there are never any guarantees of 
absolute accuracy when approximating unknown functions the 
ANNs can provide data and values consistent with the 
problems examined, in a reasonable time, with very high 
accuracies, which may represent a viable alternative to the 
current methods of simulation.  
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