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Abstract. Ions can be effectively accelerated during the interaction of an ultra-
intense ultra-short laser pulse irradiating a thin solid target via the so-called target
normal sheath acceleration (TNSA) mechanism. One of the pivotal questions at
this stage of the research is how to predict the properties of the accelerated ions,
both from a fundamental point of view and in the light of foreseen applications.
In this context, it is desirable to have a simple but reliable description to be used
to extrapolate current results to future regimes, which will be made available in
the near future, thanks to developments in laser technology. In this paper, the
possible approaches for an analytical description of TNSA are discussed, and
a theoretical TNSA model is developed. This model is then used to investigate
the maximum ion energy as a function of laser parameters. Detailed comparisons
with available experimental data and scaling laws are presented. In particular, the
relative role played by both the laser pulse energy and irradiance in determining
the ion features is investigated.
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1. Introduction

The first 10 years of research in the field of ultra-intense laser-induced ion acceleration, started
with the pioneering results reported by the Vulcan group [1] and the Nova group [2], transformed
this topic into one of the most exciting and active areas of theoretical and experimental
physics. The increased capabilities in controlling the various experimental parameters in the
complex system formed by the laser pulse and the solid target have led to the achievement of
amazing results. In particular, the most recent experiments are performed using laser pulses
with improved control of the laser pre-pulse features as well as the temporal and spatial
profile, and increasing attention is devoted to detailed control and tailoring of both target
properties and interaction conditions. An important consequence is also that, by collecting the
experimental results obtained in the various laboratories all over the world, a significant amount
of data is now available and potentially useful for a systematic investigation, in the attempt
to achieve a satisfactory understanding of the nontrivial underlying physics. Several processes
can be responsible for laser ion acceleration, depending on the laser properties and interaction
conditions [3, 4]. Most of the present experiments rely on the so-called target normal sheath
acceleration (TNSA) mechanism [5]. TNSA allowed the production of very energetic (multi-
tens MeV) ion populations. Recently, several other schemes, which should be achieved with
proper choices of the laser and/or target properties, have been proposed in order to overcome
several drawbacks which actually characterize TNSA, like the low conversion efficiency and
the difficulties in producing beams with monochromatic spectrum. Among others, it is worth
mentioning the so-called radiation pressure acceleration (RPA) [6]–[8]. Nevertheless, in the
next few years TNSA will certainly continue to play a fundamental role, especially because a
new generation of laser facilities is becoming available. This will open the way to explore the
TNSA regime with a new set of laser parameters so far not possible. All these facts demand a
deeper theoretical understanding of TNSA. In particular, an extensive parametric investigation
based on a satisfactory theory is definitely required, together with detailed comparisons with the
experimental evidence. Besides fundamental interest, these issues are particularly significant
also in the light of the envisioned possible applications, for example in the field of inertial
fusion via proton-driven fast ignition and in medical applications (production of radioisotopes
and hadrontherapy).

The present paper is devoted to this subject and it is aimed at providing advances in these
directions. The main focus will be on one of the most important features of the accelerated
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ions, namely the maximum ion energy. In section 2, we start discussing the possible approaches
aimed at a theoretical description of TNSA and developing the analytical TNSA theory which
will be used in this work. In section 3, the fundamental issue of the dependence of the maximum
ion energy on laser parameters, with particular attention to the effective dependence on laser
intensity, is addressed, both from a theoretical point of view and through a comparison of the
theoretical predictions with available experimental data. Then, a look at the maximum TNSA
ion energy corresponding to laser parameters which will be available in the near future follows.
Concluding remarks are given in section 4.

2. Theoretical description of the TNSA: a relativistic quasi-static approach

Ions can be accelerated as a consequence of different physical processes, taking place in
different regions of the target. A common feature of these mechanisms is that ions are
accelerated by intense electric fields, which develop as a consequence of strong charge
separations directly or indirectly induced by the laser–matter interaction. At least two
qualitatively distinct main sources of charge displacements, possibly acting simultaneously,
can be identified. The first is due to the direct action of the laser ponderomotive force on
the electrons at the front surface and is the basis of the RPA process [6]–[8]. The second is
due to the fact that part of the laser radiation is usually efficiently converted, through various
mechanisms, into kinetic energy of a relativistically hot (Th ≈ few MeV) collisionless electron
population. These electrons move and recirculate through the solid target, appearing at the
surfaces where a cloud of relativistic electrons is formed, extending in vacuum for several Debye
lengths, and giving rise to an extremely intense longitudinal electric field, which is responsible
for the efficient ion acceleration [1, 2], leading to the TNSA process [5]. In most common
conditions, the most effective acceleration mechanism takes place at the rear side of the target,
leading to ion acceleration at energies much higher than the laser ponderomotive energy 8pm

(for IL = 1020 W cm−2, 8pm = 6 MeV). Recently, the possibility of achieving TNSA also at the
front surface has been experimentally demonstrated [9], taking advantage of the use of laser
pulses with ultrahigh contrast (UHC), which do not appreciably perturb the surface.

In the following, an analytical description of the TNSA mechanism is developed, and
subsequently used to investigate critical issues of this acceleration process.

2.1. Theoretical framework and basic assumptions

By looking in more detail at the physical phenomena which lead to the final ion acceleration in
TNSA, we can identify the existence of at least two qualitatively different electron populations
in the system. The first is the hot electron component, directly created by the laser pulse in
the plasma plume at the front surface of the target. These electrons form a beam propagating
normally to the target surface, with typical divergence between 5◦ and 15◦. The density of this
electron population is of the order of the critical density (1020–1021 cm−3) and its temperature
is of the order of the laser ponderomotive potential. The free motion of this hot electron beam
through the target requires the presence of a return current that locally compensates the flow
of the hot (and fast) electron component [10]. The return current in metallic targets is provided
by a second electron species, the conduction electrons, which are put in motion by the electric
field generated by the fast electrons. In insulators, the background free electron population is
created by field and thermal ionization. Since the density of the background electron population
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in both cases is of the order of the solid density, that is, much bigger than the fast electron
density, the required velocity for current neutralization is small and their temperature is much
lower than that of the hot electrons. However, this cold and dense electron population can be
ohmically heated [10]. To conclude, the electric field generated in TNSA at the vacuum–solid
interfaces depends on both the physical parameters of these two electron populations, which
are related to the laser–solid interaction on the front surface, and on the transport of the hot
component through the target and the heating of the background electrons. The acceleration
is most effective on light ions (and specifically protons), which are usually present on target
surfaces in the form of contaminants like hydrocarbons and water, or can be present among
the constituents of the solid target (e.g. as in plastic targets). The heaviest ion population of
the target (possibly constituted of several ion species) provides a positive charge, which offers
much more inertia and makes the charge separation responsible for the huge accelerating field.
Part of this heavy population can also be effectively accelerated, on a longer time scale, if the
protons are not enough to acquire most of the energy contained in the electric field, or if protons
are removed before the arrival of the laser pulse, for example, heating the target and/or using
other cleaning techniques.

Based on the above discussion, the physics of the TNSA can be theoretically modeled
under the following assumptions (which will be further discussed in section 2.3), leading to the
formulation of a relatively simple system of equations, which can be investigated analytically
and/or numerically. Firstly, let us restrict our analysis to a one-dimensional (1D) geometry. The
electron population can be described as a two-temperature distribution, ne = nh + nc, where the
subscripts ‘c’ and ‘h’ refer to the cold and hot electron components, respectively. In addition,
we consider the existence of two different ion species, a light (L) and a heavy (H) population: in
this way, it is possible to model the most frequent situation in TNSA, namely, the acceleration
of light species present on the surfaces of a solid target made of heavy ions. Equations defining
the 1D model for the ion acceleration process following from the above assumptions are then
the Poisson equation for the self-consistent electrostatic potential φ(x, t) that takes the form

∂2φ

∂x2
= 4πe(ne − ZLnL − ZHnH), (1)

and the equations governing the electron and ion dynamics. Generally speaking, they can be
described either kinetically (1D Vlasov equation) or with a fluid description, and the resulting
system of equations can be investigated numerically (see for example [11]–[16]). Alternatively,
the equations can be treated analytically introducing different approximations; their limits of
applicability establish the physical regimes where the corresponding solutions hold.

In the sub-picosecond regime, in order to give a suitable description of the process,
the inertia of ions is important and the assumption of quasi-neutrality cannot be invoked.
A completely different set of approximations can be used in order to analytically investigate
the effect of the strong charge separation which can develop, thus describing a physical regime
closer to what should produce the most energetic ions. The heavy ions are assumed immobile
on the time scale of interest, while the light ions are considered sufficiently few to neglect their
effect on the evolution of the electrostatic potential, which in this limit is given by

∂2φ

∂x2
= 4πe[ne − ZHn0H H(−x)], (2)

where H is the Heaviside function. In order to close the system, the electron density must be
properly related to the self-consistent potential φ. The effects of the cold electron population
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with a finite thermal energy have been investigated in several publications. For the sake
of simplicity, in the following, we will consider nc = n0c = constant. As far as the high-
energy part of the accelerated ion spectrum is concerned, this is a reasonable approximation.
Hot electrons are commonly described as having thermal equilibrium in the self-consistent
potential, via the Boltzmann relation, ne(x) = ne0 exp (eφ/T ) [10, 11, 17, 18]. Actually,
this apparently reasonable choice poses several difficulties to the analysis, because the self-
consistent electrostatic potential diverges at large distance from the target (mathematically,
φ → −∞ as x → +∞), which introduces the need for defining artificially a finite acceleration
time and/or limited region over which the acceleration is effective in order to avoid divergent
maximum ion energy [19]. As a consequence, the fitted acceleration times, often assumed equal
or directly related to the laser pulse duration τL, usually do not correspond to the physical
times over which ion acceleration takes place when τL < 100 fs, which has become a quite
usual condition in many experimental facilities. It is worth noting that this has nothing to do
with the dimensionality of the problem and it is not a pathological consequence of the 1D
approximation. On the contrary, it is related to the fact that in a single-charged population in a
semi-infinite space, the Boltzmann relation implies particles with infinite kinetic energy, which
is not physically meaningful, both because the laser–solid interaction produces electrons with
a maximum kinetic energy and/or also because the most energetic electrons overcome the self-
consistent potential barrier and are lost by the system [20, 21], as also recently experimentally
established [22, 23]. We then describe the hot electrons kinetically, assuming that they follow
a 1D, single temperature Maxwell–Jüttner relativistic electron distribution function (edf) in the
self-consistent electrostatic potential φ(x) [24],

fe(x, p) =
ñ

2mcK1(ζ )
exp

(
−

W + mc2

T

)
, (3)

where W = mc2(γ − 1) − eφ, T is the hot electron temperature, K1(ζ ) the MacDonald function
of first order and argument ζ = mc2/T , where m is the rest electron mass, e the modulus of the
electron charge, c the speed of light, γ = (1 + p2/m2c2)1/2, and the edf has been normalized to
the density ñ by integrating over −∞ < p < +∞. The negatively charged source in the Poisson
equation is now given by the bound electron charge density

nb(x) =

∫
W<0

fe(x, p)dp, (4)

where the integration extends over the negative energies only. Let us introduce the
following dimensionless variables: ξ = x/λD, ϕ = eφ/T , where λ2

D = mc2K1/(4π ñe2). Using
equations (2), (3) and (4), the resulting equation for the self-consistent potential is

d2ϕ

dξ 2
= eϕ

∫ β(ϕ)

0
e−

√
p2+ζ 2

dp −
(ZHn0H − n0c)

ñ
ζ K1(ζ )H(−ξ), (5)

where β(ϕ) =
√

(ϕ + ζ )2 − ζ 2.
Approximated versions of this equation have been considered in the literature, in the

non-relativistic [20] and ultra-relativistic [21] limits, respectively. We will now investigate
analytically the exact problem formulated by equation (5).
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2.2. Analytical developments

Let us first consider the solution outside the target, namely in the region ξ > 0. The Poisson
equation can be integrated once and we obtain ϕ′

≡ dϕ/dξ ,
dϕ

dξ
= −

√
2

[
eϕ I (ϕ) − e−ζβ

]1/2
, (6)

where I (ϕ) =
∫ β(ϕ)

0 e−

√
ζ 2+p2

dp and the constant has been determined by imposing that a ξ̃

exists where ϕ(ξ̃ ) = ϕ′(ξ̃ ) = ϕ′′(ξ̃ ) = 0.
From this equation an implicit exact solution for the electrostatic potential in vacuum

follows: ∫ ϕ(ξ)

ϕ0

dϕ′(
eϕ′ I (ϕ′) − e−ζβ

)1/2 = −
√

2ξ, (7)

where ϕ0 = ϕ(0). This solution can be used in order to determine approximate expressions
for ϕ, in the limits of small and large amplitudes, respectively. It is not difficult to show that

ϕ(ξ) =

[
ϕ

1/4
0 −

√
2 4
√

2ζ

4
e−ζ/2ξ

]4

, for |ϕ(ξ)| � 1,

(8)

ϕ(ξ) = ϕ0 − 2 ln

[
1 +

√
Cξ

√
2

exp
(ϕ0

2

)]
, for |ϕ(ξ)| � 1,

where C =
∫ +∞

0 e−

√
ζ 2+p2

dp. In the limit ζ � 1, equation (8) reduces to the non-relativistic
expression [20].

The implicit solution of equation (7) depends on ϕ0, which can, in principle, be determined
by solving the Poisson equation in the target, for ξ < 0,

d2ϕ

dξ 2
= eϕ I (ϕ) − B, (9)

where B = [(ZHn0H − n0c)/ñ]ζ K1(ζ ), and imposing the continuity of ϕ and of ϕ′ at ξ = 0. We
assume that, far from ξ = 0 inside the target, the plasma becomes locally quasi-neutral, so that

B = eϕ∗

I (ϕ∗),

where ϕ∗
= ϕ(ξ = −ξd ≡ −d/λD), d being of the same order as the target thickness. By

integrating once equation (9), we obtain

dϕ

dξ
= −

√
2

[
eϕ I (ϕ) − e−ζβ − Bϕ − eϕ∗

I (ϕ∗) − e−ζβ∗
− Bϕ∗

]1/2
, (10)

where β∗
= β(ϕ∗) and ϕ′

= 0 at ξ = −ξd . By imposing the continuity of the electric field at
ξ = 0, we can obtain a relation between ϕ0 and ϕ∗:

ϕ0 =
eϕ∗

I (ϕ∗)(ϕ∗
− 1) + e−ζβ∗

eϕ∗ I (ϕ∗)
. (11)
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We observe that if T → ∞, ζ → 0; it follows that β∗
→ ϕ∗, I (ϕ∗) → 1 − e−ϕ∗

and
consequently equation (11) reduces to

ϕ0 =
eϕ∗

(ϕ∗
− 1) + 1

eϕ∗

− 1
, (12)

which is equal to equation (8) of [21].
The electrostatic potential is fully determined from equations (7) and (11) once ϕ∗ is

given. The quantity ϕ∗ represents the normalized maximum kinetic electron energy of the
laser produced trapped electrons εe,max = Ke,max/T . It depends on the physics of the laser–solid
coupling. It can be related to experimental data, or taken from suitable numerical simulations,
or determined on physical grounds. Here, we will present results in which use is made of the
scaling law ϕ∗

≈ 4.8 + 0.8 ln[EL(J )] proposed in [21] and suitable to investigate TNSA in most
common experimental conditions, in particular, those in which targets with thickness in the
multi-µm range are used. We will also show that when the hot electron properties are available
from computer simulations, even in regimes of interaction that are significantly different (like
for example those resulting from the use of targets with sub-µm thickness and pulses with
UHC [9]), the present model succeeds in providing correct predictions of fast ion properties.

If a test ion of charge Z is placed at rest at ξ = 0, it is accelerated up to a maximum
kinetic energy εi,max = Zϕ0(ϕ

∗)T . If we consider a distribution of light ions, forming a thin
layer placed in 06 ξ 6 δξ , with δξ � ξd with a given volume density nξ (ξ), the resulting final
energy spectrum can be easily calculated imposing the conservation of the particle number
in phase space. In order to evaluate the maximum ion energy and the energy spectrum, the
hot electron temperature must be known. Here, we assume this quantity to be given by the
ponderomotive scaling [25]

T = mc2
(√

1 + (ILλ2[W cm−2 µm2]/1.38 × 1018) − 1
)
, (13)

which satisfactorily describes the dependence of T on the laser irradiance ILλ
2 in the relativistic

regime (ILλ
2 > 1018 W cm−2 µm2), where one of the most significative absorption mechanisms

is the relativistic J × B heating (see [26] for more details). To summarize, with the aid of
equations (11) (or (12) when appropriate) and (13), together with a suitable estimate of ϕ∗ the
problem of determining the maximum ion energy obtained in a given experimental condition
via TNSA is reduced to the use of a few, relatively simple, relations mainly involving the
laser parameters. In the general case, the integrals contained in equations (7) and (11) can be
very easily performed either with any quadrature method or with the direct use of standard
mathematical software. Besides the maximum ion energy, other interesting quantities, like
the high-energy part of the ion energy spectrum and the extension of the hot electron cloud
(or, equivalently, the extension of the accelerating field) can be obtained for comparison with
experimental data. In this context, we note that the target properties, which can influence
and modify the features of the laser–solid interaction [9], are here indirectly contained in the
estimate of ϕ∗.

In section 3, this theory will be exploited in order to (i) investigate the parametric
dependence of the maximum ion energy on the laser parameters, (ii) compare the results of
this model with existing experimental data and (iii) provide predictions on TNSA for laser
parameters which are likely to become available in the near future.
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2.3. Limits of applicability of the theory

The model described above is definitely stationary. In other words, the electron cloud is assumed
neither to be affected by the ions flowing through it nor to evolve during the acceleration
process. The first condition requires that the number of the ions which are accelerated be
much smaller than that of the hot electrons, Ni � Ne, and that the characteristic time scale
of the heavy ion expansion is longer than the light ion acceleration time. As far as the electron
dynamics is concerned, it is assumed that both spatial distribution and temperature do not evolve
during the ion acceleration process, although it could be expected that the energy of the hot
electrons will decay in time due to their expansion, and to collisional and radiative losses.
These issues do not seem to represent a major problem in the determination of the maximum
ion energy since the acceleration of those ions, which will be the most energetic, takes place
on a time over which the temperature and the entire distribution do not vary appreciably [13].
Nevertheless, a better characterization of the ion acceleration process would incorporate the
effects coming from a multi-temperature electron distribution [19], and the temporal evolution
of the electron temperature, which could compete with the effect of a finite acceleration length
in the determination of the maximum energy gain. Electron cooling has been considered in a
few recent papers [13, 14].

In order to consider the ion motion during the acceleration process as 1D, the electron
cloud should be spatially uniform in the plane normal to the ion motion. Furthermore, the ion
acceleration is expected to be planar if the transverse extension of the ion-enriched layer (the
portion of the surface where light ions to be accelerated are concentrated) is smaller than that of
the electron cloud.

Finally, the resulting ion energy spectrum will inevitably be affected by several spurious
mechanisms, which are expected to broaden the ion energy spectra.

3. Discussion

We start our discussion checking the capabilities of the theory described in section 2 in
predicting the maximum ion energy in a TNSA experiment. In order to ascertain this important
point, we consider a large number of experimental maximum proton energies that have been
reported in the literature in the last 10 years [1, 2, 9, 18], [27]–[38]. In figure 1, the theoretical
curves at constant maximum proton energy, εi,max, in the plane (ILλ

2
; EL) are shown from

1 MeV up to 50 MeV. Ranges of pulse energy (10−2 < EL < 103 J) and irradiance (1018 <

ILλ
2 < 1021 W cm−2 µm2) most relevant to present experimental conditions are considered.

Experimental maximum proton energies are superimposed (red dots); it is interesting to
observe that we are here investigating corresponding experimental laser parameters which
can differ by orders of magnitudes (0.1 < EL < 500 J, 40 < τL < 1000 fs and 1018 < ILλ

2 <

3 × 1020 W cm−2 µm2). The agreement with the theoretical predictions is satisfactory in all these
cases (the relative error is maintained within 10–20%). This fact strongly supports the general
theoretical framework which is the basis of the present analytical approach.

The effective dependence of the maximum ion energy on the laser irradiance in TNSA
experiments represents one of the most interesting and challenging issues. The present feeling
on this problem in the community is well represented by the discussions which can be found in
recent papers, like for example those by Borghesi et al [39, 40]. There, based on a collection
of a large number of experimental data, it is reported that different, non-obvious scalings of the
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Figure 1. The curves at constant εi,max (in MeV) are plotted in the (ILλ
2
; EL)

plane, in units (W cm−2 µm2; J). Ranges relevant for present facilities
are considered. A collection of experimental maximum proton energies is
superimposed (red dots). Details about the experimental conditions are contained
in the corresponding references.

maximum proton energy with the laser irradiance seem to emerge. In particular, an effective
almost linear relation is evidenced as characterizing a significant number of results, achieved
in various laser facilities. A further, very interesting point is that it has been clearly shown
that different maximum ion energies have been produced so far using pulses with the same
laser irradiance but with different pulse energy. At present, no satisfactory explanations for
these facts have been provided and the underlying physics does not clearly emerge. We used
our TNSA theory to investigate this intriguing issue. In figure 2, the maximum proton energy
from laser-irradiated targets, for a number of experiments performed on different laser systems,
is shown as a function of the pulse irradiance. The experimental values are indicated with
blue squares. Also, the fitted effective dependence of the experimental proton energies on
the irradiance is plotted (dashed green curve). Actually, the scaling is almost quasi-linear for
these data, which refer to pulses with quite different properties: in particular, pulse durations
and energies ranging from 40 fs to 1 ps and from 0.1 to 50 J are present, respectively. The
corresponding theoretical expectations are indicated with red circles. It can be seen that the
observed dependence can be nicely reproduced. We can then interpret the physical situation as
the result of the combined, convoluted dependence of the maximum proton energy on the pulse
intensity and pulse energy. The point labeled by Ceccotti et al [9] deserves a further comment.
It does not belong to the described experimental fitting law (actually, it has not been considered
in determining it). In that experiment, ultrathin targets in the sub-µm range combined with
moderate irradiance, UHC pulses are used. In such systems, a significant enhancement in the
maximum ion energy is observed, compared to what can be obtained with the same pulses
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Figure 2. Maximum proton energy from laser-irradiated targets for experiments
on different laser systems as a function of the laser pulse irradiance.
Experimental values are shown by blue squares, the corresponding theoretical
expectations by red circles. Also, the fitted effective dependence of the
experimental proton energies on the irradiance is plotted (dashed green curve).

without UHC. Numerical simulations show an increase of the maximum and mean hot electron
energy produced in conditions of UHC pulses impinging on ultrathin targets. To estimate the
maximum proton energy in this case, we used these numerical results directly to describe the
electron properties in equations (11) and (13), and a satisfactory agreement with particle-in-cell
(PIC) and experimental values emerges (see also [21] for further details).

In order to draw clear conclusions about both the different possible scaling laws in
TNSA and the corresponding underlying mechanisms, dedicated experimental parametric
investigations using exactly the same controlled conditions would be greatly valuable. In this
connection, it has to be realized that, when results coming from different experiments and
performed on different laser facilities are compared, the main quantities that characterize the
laser pulse, namely its maximum energy EL, minimum duration τL, focal spot fL, irradiance
ILλ

2 and contrast can be very different from each other and, moreover, are not independent
parameters. In a given experimental parametric investigation, usually only up to two of
these quantities can remain fixed, the others changing simultaneously and accordingly. As a
consequence, it is usually quite difficult to extract from a set of experimental data the parametric
dependence of the maximum ion energy on a particular laser quantity. On the theoretical side, we
can easily simulate such conditions. For the sake of simplicity, we assume that EL is uniformly
contained in the spot fL, in a temporally rectangular-shaped pulse, so that IL = 4EL/(τLπ f 2

L ).
As an example, in figure 3, the maximum proton energy εi,max is evaluated as a function of
the irradiance ILλ

2. Two possible configurations are considered. In the first case (blue, solid
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Figure 3. Maximum proton energy εi,max as a function of the pulse irradiance
ILλ

2, in the interval 1018 6 ILλ
2 6 1020 (W cm−2 µm2). The laser parameters

considered are as follows: blue solid curve: τL = 25 fs, fL = 20 µm, λ = 0.8 µm
and the corresponding pulse energy interval is 0.16 EL 6 12 J; red dashed
curve: EL = 0.1 J, λ = 0.8 µm. The effective power-law fitting is indicated for
each irradiance decade.

curve), both the pulse duration and the focal spot are kept fixed, τL = 25 fs and fL = 20 µm,
respectively; in these conditions, the variation in irradiance is due to a corresponding change
in the pulse energy EL. As a consequence, each simulated pulse corresponds to a specific
and different combination of pulse energy EL and intensity IL. In the second case, the pulse
energy is kept fixed, EL = 0.1 J, the variation in irradiance here being due to a corresponding
change in the pulse duration and/or focal spot. This analysis reveals that, if the change in laser
intensity is obtained with a corresponding variation in laser energy, the maximum ion energy
is characterized by a power-law scaling with IL which changes with increasing IL. The power-
law is almost quasi-linear in the range 1018 6 ILλ

2 6 1020 (W cm−2 µm2), in agreement with
experimental observations [41]. On the other hand, the dependence becomes almost a square-
root law when the change in laser intensity is obtained with a corresponding variation in duration
and/or focal spot. Detailed and more extensive theoretical parametric investigations are reported
elsewhere [42, 43].

We conclude our discussion extrapolating the predictions of the maximum proton energy
in TNSA to future laser parameters, with special focus on ranges which are relevant for most of
the latest laboratory facilities. In particular, we consider pulse irradiance ILλ

2 and pulse energy
in the ranges 1020 6 ILλ

2 6 1022 W cm−2 µm2 and 16 EL 6 100 J, respectively. In figure 4, the
curves at constant εi,max (in MeV) are plotted in the (ILλ

2
; EL) plane, in units (W cm−2 µm2; J).

From these scalings we can predict, as an example, that 100 MeV protons should be obtained
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Figure 4. The curves at constant εi,max (in MeV) are plotted in the (ILλ
2
; EL)

plane, in units (W cm−2 µm2; J). Ranges relevant for future laser facilities are
considered.

with TNSA using laser pulses with EL ≈ 5.5 J and ILλ
2
≈ 2 × 1021 (W cm−2 µm2). It is worth

noting that at these intensity values the relative importance and the role played by other possibly
competitive acceleration mechanisms, such as RPA [44], must be properly taken into account in
order to gain a full understanding of the underlying physics.

4. Conclusions

Ion acceleration from solid targets irradiated by high-intensity pulses is an extraordinarily
active area of research, currently attracting a surprising amount of experimental and theoretical
attention worldwide. Besides fundamental interest, laser-driven ion beams have the potential to
be employed in a number of innovative applications in various scientific and technological fields.
Simple theoretical modeling of the underlying physics, potentially useful to provide reliable
scaling laws and predict the features of the ion beams, which may be produced in the near future
with forthcoming laser facilities, represents a major challenge, due to the high complexity of the
system. In this work, an analytical description of the TNSA mechanism is developed and used
to investigate the properties of accelerated ions as a function of laser and parameters, with the
aim to obtain reliable scaling laws. A validation of this model, attained through an extensive
comparison with available experimental data, is presented. The resulting scaling laws are also
used to predict the maximum energy of the ion beams, which may be produced via TNSA at the
extremely high laser intensities which will be made available thanks to the development in laser
technology in the next decade.
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