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Abstract 

During their operation, modern aircraft engine components are subjected to increasingly demanding operating conditions, 
especially the high pressure turbine (HPT) blades. Such conditions cause these parts to undergo different types of time-dependent 
degradation, one of which is creep. A model using the finite element method (FEM) was developed, in order to be able to predict 
the creep behaviour of HPT blades. Flight data records (FDR) for a specific aircraft, provided by a commercial aviation 
company, were used to obtain thermal and mechanical data for three different flight cycles. In order to create the 3D model 
needed for the FEM analysis, a HPT blade scrap was scanned, and its chemical composition and material properties were 
obtained. The data that was gathered was fed into the FEM model and different simulations were run, first with a simplified 3D 
rectangular block shape, in order to better establish the model, and then with the real 3D mesh obtained from the blade scrap. The 
overall expected behaviour in terms of displacement was observed, in particular at the trailing edge of the blade. Therefore such a 
model can be useful in the goal of predicting turbine blade life, given a set of FDR data. 
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Abstract 

In this study, a self-supporting structure, namely an exoskeleton, is considered as set outside a main structure and suitably connected 
to it. From the structural point of view, the exoskeleton is conceived as a “sacrificial” appendage, called to absorb seismic loads in 
order to increase the performance of the main structure. From the architectural and technological point of view, additional functions 
may be associated through an integrated design approach, combining seismic with urban and energy retrofitting. Particular and 
attractive applications can therefore be envisaged for existing buildings.  
A reduced-order dynamic model is introduced, in which two coupled linear viscoelastic oscillators represent the main structure and 
the exoskeleton structure, respectively, while either a rigid link or a dissipative viscoelastic connection is considered for the 
coupling. The equations of motion are set in non-dimensional form and a parametric study is carried out in the frequency domain 
to confirm that exoskeleton structures can be feasible and effective in reducing earthquake-induced dynamic responses. 
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1. Introduction 

The concept of seismic resilience (Bruneau et al. 2003) has been recently responsible for a paradigm shift in seismic 
design and risk management: other objectives beyond life and collapse safety, such as operational continuity (Parise 
et al. 2013, Parise et al. 2014), damage control and loss reduction, are considered as crucial to substantially enhance 
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the resilience of the built environment. To this aim, structural control methods and systems (Housner et al. 1997, 
Spencer et al. 2003, Saaed et al. 2015) are a viable and effective means for reducing earthquake-induced vibrations 
and limiting structural as well as nonstructural damage on civil engineering structures. For existing structures, in 
particular, novel technologies for seismic retrofitting are strongly needed, to face performance requirements that are 
more stringent than in the past and continuously increasing (Nakashima et al. 2014). A promising approach to the 
seismic retrofitting of frame structures consists in employing external structural control systems, like reinforced 
concrete cores and walls (Trombetti and Silvestri 2007, Lavan and Abecassis 2015) and reaction towers (Impollonia 
and Palmeri, 2017). In this context, the present study explores the feasibility and effectiveness of exoskeleton structures 
for seismic protection: the exoskeleton structure is defined as a self-supporting structure, set outside and suitably 
connected to a main structure; it is conceived as a “sacrificial” appendage, called to absorb seismic loads in order to 
increase the performance of the main structure (Reggio et al. 2017). External seismic retrofitting via exoskeleton 
structures appears to be an advantageous strategy for a few reasons, among which: the possible strengthening of 
existing structural members is limited to those members locally interested by the connections to the exoskeleton; any 
service or business interruption during the retrofitting operations is kept to a minimum; additional architectural 
functions may be associated through an integrated design approach, combining seismic with urban and energy 
retrofitting. 

2. Governing equations 

2.1. Equations of motion 

The dynamic behaviour of the coupled system composed of a main structure connected to an exoskeleton structure 
depends on the dynamic properties of each subsystem as well as on the mechanical features of the coupling device 
(Luco and De Barros 1998, Gattulli et al. 2013, Tubaldi 2015). A two-degree-of-freedom (2-dof) model, composed 
of two coupled linear viscoelastic oscillators as shown in Figure 1(a), is introduced here: the primary oscillator, with 
M1, K1 and C1 as mass, stiffness and damping coefficients, represents the main structure; the secondary oscillator, with 
M2, K2 and C2 as mass, stiffness and damping coefficients, represents the exoskeleton structure; 1( )U t  and 2 ( )U t  are 
the displacements relative to ground; ( )F t  is the force exerted across the coupling device. The equations of motion 
of the system subjected to base acceleration ( )gU t  are written as: 

1 1 1 1 1 1 1

2 2 2 2 2 2 2

g

g
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with the symbol ( )  denoting differentiation with respect to dimensional time t. 
 

 
Fig. 1. (a) Structural model of the coupled system; (b) rigid connection; (c) viscoelastic connection (Kelvin-Voigt rheological model). 
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For a more general description of the problem, Equations (1) are set in non-dimensional form by introducing the 
following characteristic values of frequency, displacement and force: 
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in which 1  is the uncoupled natural frequency of the primary oscillator and g is the acceleration due to gravity. The 
following non-dimensional variables: 
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are defined, being 2 2 2K M   the uncoupled natural frequency of the secondary oscillator, while base  
acceleration becomes: 
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the over-dot indicating differentiation with respect to non-dimensional time . Equations (1) are therefore rewritten in 
non-dimensional form as: 
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2.2. Constitutive model of the coupling device 

The definition of force   F (t)  in Equations (1), and hence of non-dimensional force f ( ) in Equations (6), depends 
on the constitutive model adopted to describe the mechanical behaviour of the coupling device between the main 
structure and the exoskeleton structure. Both a non-dissipative and a dissipative behaviour are investigated in this 
work. In the former case, a rigid connection (Figure 1(b)) is considered between the primary and the secondary 
oscillator; in the latter case, a viscoelastic connection is considered and modelled according to the Kelvin-Voigt 
rheological model (Figure 1(c)). 

 
Rigid connection. A rigid connection can be viewed as the limit case of a linear purely elastic connection, i.e. a 

Hooke spring, when its stiffness coefficient K tends to infinity. The constitutive law of the Hooke model is given for
( )F t  as: 

2 1( )F K U U                   (7) 

which becomes in non-dimensional terms:  

2 1( )Kf u u 
                 (8) 
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with 1K K K  . As the spring stiffness tends to infinity, or ,K   it follows 2 1u u  and Equations (6) are to 
be replaced by the equation of motion of a 1-dof system: 

2
1 1 2 1 1(1 ) (2 2 ) (1 ) (1 ) gu u u u                               (9) 

Viscoelastic connection. The Kelvin-Voigt rheological model is made of a linear spring, of stiffness K, and a linear 
dashpot, of viscous constant C, placed in parallel. The corresponding constitutive law is given for ( )F t  as: 

2 1 2 1( ) ( )F K U U C U U                  (10) 

It is expressed in non-dimensional terms as: 

2 1 2 1( ) ( )K Cf u u u u                   (11) 

where 1K K K   and 1 12C C C  are the non-dimensional parameters that describe the mechanical properties 
of the viscoelastic connection.  

3. Response in frequency domain 

The dynamic response of the coupled system in frequency domain is considered and analysed with the aim of 
assessing the feasibility and the effectiveness of exoskeleton structures as a means for structural vibration control 
under dynamic loading. 

Non-dimensional base acceleration (5) is assumed to be harmonic 
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with 1/     being its non-dimensional circular frequency. The dynamic response of the coupled system is 
characterised by means of complex Frequency Response Functions (FRFs), which express the ratio between the 
amplitude of steady-state responses and the amplitude of the excitation (Genta 2009). The responses of interest for the 
primary oscillator are, in particular, its displacement 1( )u   relative to ground and its absolute acceleration  

1( )au   . From the viewpoint of seismic protection, they represent the engineering demand parameters to which 
structural damage (deformation-sensitive) and non-structural damage (deformation- and acceleration-sensitive) are 
correlated. The corresponding FRFs are determined in three different system configurations as described below. 

 
No control (NC). The exoskeleton structure is absent and the dynamic response of the main structure is not 

controlled. FRFs of relative displacement and absolute acceleration of the primary oscillator are given by: 
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respectively. 
 
Coupling via rigid connection (RC). The exoskeleton structure is coupled to the main structure via a rigid 

connection. FRFs of relative displacement and absolute acceleration of the primary oscillator are given by:  
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respectively. The independent parameters that govern the dynamic behaviour of the coupled system in RC 
configuration are four: mass ratio  , frequency ratio  , damping ratios 1  and 2 . 
 

Coupling via viscoelastic connection (VC). The exoskeleton structure is coupled to the main structure via a linear 
viscoelastic connection. The equations of motion (6) of the 2-dof coupled system can be rewritten in matrix form as: 
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1
2

2

121 0
, ,

20
K KC C

C C K K

   
       

     
               

M C K                (18) 

are the system mass, damping and stiffness matrices, respectively. In this case, FRFs of both the primary and the 
secondary oscillator are listed in the following matrices:  
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for the absolute accelerations. The independent parameters that govern the dynamic behaviour of the coupled system 
in VC configuration are six: in addition to the four parameters  ,  , 1 , 2  previously defined, two further 
parameters K  and C   are characteristic of the viscoelastic connection. 

4. Parametric analyses and discussion 

The effectiveness of exoskeleton structures in reducing the dynamic response of the main structure is assessed by 
drawing a comparison between each control configuration (RC and VC) and the uncontrolled configuration (NC). 
Comparisons are made in terms of FRFs of the primary oscillator and with varying the independent parameters that 
govern the dynamic behaviour of the coupled system. 

In Figure 2, the amplitude of the FRFs for both the relative displacement 1u  and the absolute acceleration 1au  of 
the primary oscillator are shown in NC and RC configurations. Within the set of four parameters characterising the 
RC configuration, 0.05  , 1 0.05   and 2 0.02   are assumed as constant, while frequency ratio   is varied in 
the range [0.1, 10]. Increments of frequency ratio  , for a constant mass ratio  , are due to the stiffening of the 
secondary oscillator with respect to the primary oscillator. The resulting effect is a shift of the FRFs peak, 
corresponding to the natural frequency of the coupled system, towards higher values. Meanwhile, the FRF peak 
amplitude is reduced in the RC configuration as compared to the NC configuration, in terms of both relative 
displacement and absolute acceleration. 
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primary oscillator are, in particular, its displacement 1( )u   relative to ground and its absolute acceleration  

1( )au   . From the viewpoint of seismic protection, they represent the engineering demand parameters to which 
structural damage (deformation-sensitive) and non-structural damage (deformation- and acceleration-sensitive) are 
correlated. The corresponding FRFs are determined in three different system configurations as described below. 

 
No control (NC). The exoskeleton structure is absent and the dynamic response of the main structure is not 

controlled. FRFs of relative displacement and absolute acceleration of the primary oscillator are given by: 
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respectively. 
 
Coupling via rigid connection (RC). The exoskeleton structure is coupled to the main structure via a rigid 

connection. FRFs of relative displacement and absolute acceleration of the primary oscillator are given by:  
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respectively. The independent parameters that govern the dynamic behaviour of the coupled system in RC 
configuration are four: mass ratio  , frequency ratio  , damping ratios 1  and 2 . 
 

Coupling via viscoelastic connection (VC). The exoskeleton structure is coupled to the main structure via a linear 
viscoelastic connection. The equations of motion (6) of the 2-dof coupled system can be rewritten in matrix form as: 
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are the system mass, damping and stiffness matrices, respectively. In this case, FRFs of both the primary and the 
secondary oscillator are listed in the following matrices:  
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for the displacements relative to ground and 
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for the absolute accelerations. The independent parameters that govern the dynamic behaviour of the coupled system 
in VC configuration are six: in addition to the four parameters  ,  , 1 , 2  previously defined, two further 
parameters K  and C   are characteristic of the viscoelastic connection. 

4. Parametric analyses and discussion 

The effectiveness of exoskeleton structures in reducing the dynamic response of the main structure is assessed by 
drawing a comparison between each control configuration (RC and VC) and the uncontrolled configuration (NC). 
Comparisons are made in terms of FRFs of the primary oscillator and with varying the independent parameters that 
govern the dynamic behaviour of the coupled system. 

In Figure 2, the amplitude of the FRFs for both the relative displacement 1u  and the absolute acceleration 1au  of 
the primary oscillator are shown in NC and RC configurations. Within the set of four parameters characterising the 
RC configuration, 0.05  , 1 0.05   and 2 0.02   are assumed as constant, while frequency ratio   is varied in 
the range [0.1, 10]. Increments of frequency ratio  , for a constant mass ratio  , are due to the stiffening of the 
secondary oscillator with respect to the primary oscillator. The resulting effect is a shift of the FRFs peak, 
corresponding to the natural frequency of the coupled system, towards higher values. Meanwhile, the FRF peak 
amplitude is reduced in the RC configuration as compared to the NC configuration, in terms of both relative 
displacement and absolute acceleration. 
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Fig. 2. Amplitude of FRFs to harmonic base acceleration for the primary oscillator, comparisons between NC configuration and RC 
configurations with varying frequency ratio : (a) displacement u1 relative to ground; (b) absolute acceleration . It is assumed:   0.05 , 

1  0.05  and  2  0.02 . 

In consideration of these results, the effectiveness of the vibration control is explored by way of two performance 
indices, defined in terms of FRFs peak amplitude ratio between RC and NC configurations: 
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Based on definitions (21), values of ID or IAA smaller than one indicate a reduction of the resonance response of the 
primary oscillator, in terms of relative displacement or absolute acceleration, respectively, by virtue of the rigid 
coupling to the secondary oscillator. Contour plots in Figure 3 show performance indices ID and IAA versus mass ratio 
  and frequency ratio   parameters, the former varying in the range [0, 0.2] the latter in the range 
 [0.1, 10]. Damping ratios are assumed as 1 0.05   and 2 0.02  . It is apparent that, although minima are not found, 
both ID and IAA  assume values lower than one in a large part the spanned parameters space, confirming that a significant 
vibration control can be achieved by way of the rigid coupling. It is also worth noting that both performance indices 
ID and IAA are much more sensitive to variations in frequency ratio   than in mass ratio  , meaning that a significant 
control performance can be obtained even with small mass ratios. 

In VC configuration, parametric analyses have been carried out to highlight the influence of the mechanical 
properties, stiffness and damping, of the viscoelastic connection on the effectiveness of vibration control. Similarly to 
(21), two performance indices are defined in terms of FRFs peak amplitude ratio between VC and NC configurations: 
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Again, based on definitions (22), values of JD or JAA smaller than one indicate a reduction of the resonance response 
of the primary oscillator, in terms of relative displacement or absolute acceleration, respectively, by virtue of the  
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Fig. 3. Performance indices for the primary oscillator in RC configurations with varying frequency ratio  and mass ratio  : (a) ID for the 
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Fig. 4. Performance indices for the primary oscillator in VC configurations with varying parameters of the viscoelastic connection, the 
stiffness parameter K  and the damping parameter C : (a) JD for the displacement u1relative to ground; (b) JAA for the absolute acceleration 

. It is assumed: 1  0.05  and  2  0.02 . 

visco-elastic coupling to the secondary oscillator. Contour plots in Figure 4 show performance indices JD and JAA 
versus the parameters of the viscoelastic connection, the stiffness parameter K , varying in the range [0.001, 0.1], and 
the damping parameter C , varying in the range [0.01, 1.0]. Mass ratio and frequency ratio are set as   0.05 and 
  2.0 , respectively, while damping ratios are assumed as 1  0.05  and  2  0.02. In this case, local minima for 
JD and JAA can be found in the spanned parameters range, corresponding to the maximum achievable reductions of the 
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primary oscillator response, allowing for an optimisation of the viscoelastic connection in terms of control 
performance. 

5. Conclusions 

A preliminary research work on the dynamic modelling and the performance assessment of exoskeleton structures 
for seismic protection has been presented. A reduced-order 2-dof model has been introduced to represent the dynamic 
behaviour of the coupled system and either a rigid connection or a dissipative viscoelastic connection has been 
considered for the coupling. The equations of motion have been set in non-dimensional form, in order to identify the 
governing independent parameters, and a parametric study has been carried out with a twofold focus: 1) to highlight 
the influence of the characteristic parameters on the dynamic properties of the coupled system; 2) to assess the 
effectiveness of the exoskeleton structure in reducing the earthquake-induced dynamic response. Parametric analyses 
conducted in the frequency domain have confirmed that exoskeleton structures can be a feasible and effective means 
for structural vibration control under seismic loading. 

Future research will deal with the optimal integrated design of the exoskeleton structures and their connection to 
the main structure according to a multi-objective optimisation approach, taking into consideration both the control 
performance and the cost of the retrofitting strategy. 
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