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In this work we address the question of existence of fermion bound-states and zero modes in the
background of kinks of models presenting a structure with a false and a true vacuum. These models are
important for the description of cosmological and condensed-matter systems. The spectrum of fermion
bound-states on the background of kinks of a class of asymmetrical scalar field potentials is analytically
obtained and the general validity of the result is argued.
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1. Introduction

The study of zero modes in topological structures appeared first in a work by Caroli, Gennes and Matricon [1] and, later in a work by
Jackiw and Rossi [2]. After those seminal works, a large amount of works relating zero modes and topological structures have appeared
in the literature. In fact, the presence of zero modes in such structures have important impact over the study of fractional quantum
numbers [3], and in cosmic strings [4]. Very recently, Chu and Vachaspati [5] addressed the problem of fermion zero modes in kink–
antikink structures. They have shown that there are bound states on kink–antikink pairs whose energy vanishes exponentially fast with
separation of the kink and antikink, in contrast with it was obtained in [6]. This was done by studying the analytical solutions for the
solitons of the λφ4 model [7,8]. After that, Brihaye and Delsate [9] considered the case of fermion modes in the background of lump-like
structures. Usually, lump-like structures are unstable [9,10]. Notwithstanding, even non-stable structures can be physically relevant as in
the case of the so-called spharelons appearing in the electroweak model [11], which can be important to explain the baryon asymmetry
of the Universe [12]. Another interesting question is that of the confining of fermions in the brane world scenarios [13,14].

On the other hand, as observed by Coleman and Callan [19,20], asymmetrical potentials can be important to describe nucleation
processes on statistical physics, crystallization of a supersaturated solution, the boiling of a superheated fluid and even in the case of the
evolution of cosmological models. In this last application, one can suppose that when the Universe have been created it was far from any
vacuum state. As it has expanded and cooled down it evolved first to a false vacuum instead of the true one. Thus, in such a scenario,
when the time goes by, the Universe should finally be settled in the true vacuum state. Furthermore, those classes of models present
some fluctuating solutions as recently observed [15–18], which can be responsible for a retarded decaying process when compared with
the non-fluctuating configurations [18]. Considering the possibility that our Universe could present such a kind of underlying structure, it
is important to study the possible existence of fermion bound-states and zero modes in the background of kinks of asymmetrical scalar
field potentials. Here we will show through analytical calculations, that those kind of potentials can support fermion bound-states in the
background of kink-like structures. However, it is not a simple task to get even the kinks for this type of asymmetrical field potential and,
certainly even more difficult to verify the possible existence of fermion bound-states. Thus, in order to circumvent this problem, we will
treat with some piecewise potentials which present a discontinuity in its derivative. Despite of this, their solutions present a continuous
energy density. The advantage is that, in each region the model is exactly solvable. As far as we know, it was in [21] that a model
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Fig. 1. Piecewise potentials and their respective kinks: The dashed line corresponds to the DQ model, the thin continuous line to the ADQ model for ε = 0.3, and the thick
line to the GADQ model with V 1 = −1, V 2 = −8, φ1 = 2, φ2 = 3 and λ = 0.5.

with those features was proposed for the first time. After that, the so-called Doubly Quadratic (DQ) model was introduced [22–25]. It is
represented by the potential

V (φDQ ) = 1

2
φ2

DQ − |φDQ | + 1

2
. (1)

More recently an asymmetrical version of this, the Asymmetrical Doubly Quadratic (ADQ) model represented by

V (φADQ ) = 1

2
φ2

ADQ − |φADQ | − εφADQ + 1

2
(ε − 1)2, (2)

where 0 < ε < 1, was studied [24,18]. In this work, we will introduce a generalized version of the ADQ model, what we will call GADQ
model. It has the advantage that, having the previous mentioned potentials as their limits, it can be used to study systems in which the
curvature of the potential is different in each side of the discontinuity point. Moreover, the vacua of the model can be chosen to represent
a kind of slow-roll potential, giving rise to inflaton fields which are important in cosmological inflationary scenarios. In fact, a similar
model was used to study wet surfactant mixtures of oil and water [28]. The model is such that

V (φGADQ ) =
⎧⎨
⎩

λ[(φGADQ − φ2)
2 + V 2], φ � 0,

λ
(φ2

2+V 2

φ2
1+V 1

)[(φGADQ + φ1)
2 + V 1], φ � 0,

(3)

where λ, φ1, φ2, V 1 and V 2 are constant parameters which obey the following restrictions

φ2 > 0, φ1 > 0, V 2 > −φ2
2 and V 1 > −φ2

1 . (4)

All the three potentials and their corresponding kinks are plotted in Fig. 1.
This work is organized as follows: In the next section we compute with some detail the zero mode and other bound states for the

fermion in the presence of the kink of the DQ model. The next two sections are devoted to those solutions respectively in the cases of
the ADQ and GADQ models. Finally, in the Conclusions section we trace some comments about the consequences of the existence of those
fermion bound-states.

2. Fermion bound states in the presence of DQ model kink

The Lagrangian density in 1 + 1 dimensions for a fermion field coupled with a scalar field which is going to be used in the work given
in [5],

L = 1

2
(∂μφ)2 − V (φ) + iψ̄γ μ∂μψ − gφψ̄ψ, (5)

where μ = 0,3, V (φ) is the potential, given in terms of a real scalar field, defining the bosonic sector of the specific model under analysis,
ψ is the two component spinor, g is the corresponding Yukawa coupling constant and γ are the Dirac matrices which in this work will
be written as

γ t = σ 3 =
[

1 0
0 −1

]
, γ z = iσ 1 = i

[
0 1
1 0

]
. (6)

In the particular case of the DQ model, the equations of motion from which the kinks come from, and the fermion modes in its fixed
scalar field background should obey, are respectively written as

∂μ∂μφDQ + φDQ − φDQ

|φDQ | = 0, (7)

(
iγ μ∂μ − gφDQ

)
ψ = 0. (8)

Note that, in the above equations we are assuming that the backreaction due to the Yukawa coupling between the Dirac field and the
scalar one can be neglected [2,5], in other words, the scalar field behaves like a classical background field [26]. In this situation, it is not
difficult to obtain the static configuration of the φDQ , which is given by

φDQ (z) = sign(z − z0)
(
1 − e−|z−z0|), (9)

where we have chosen an arbitrary point z0 such that, at its left φDQ (z) < 0 and at the right φDQ (z) > 0. Thus, when z → ±∞ one gets
φDQ (z) → ±1. Moreover, it was granted that the field and its derivative are continuous at the transition point.
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Fig. 2. Effective potentials of the DQ model with g = 1.

Now, in order to solve the Dirac equation (8), it is convenient to choose [5] that

ψ = e−iEt

√
2

[
(χ+ − χ−)

(χ+ + χ−)

]
, (10)

and the corresponding normalization constant is

∞∫
−∞

dz |ψ |2 =
∞∫

−∞
dz

(|χ+|2 + |χ − |2) = 1. (11)

In terms of the fields χ± , the coupled equations for the components are

(∂z + gφDQ )χ+ = −Eχ−, (12)

(∂z − gφDQ )χ− = +Eχ+. (13)

They can be decoupled by, for instance, isolating the function χ− in (12) and substituting it in (13), and vice-versa. After that procedure,
one recovers a one-dimensional Schrödinger like equation. Those mentioned manipulations lead us to

−∂2
z χ± + g

(
gφ2

DQ ∓ ∂zφDQ
)
χ± = E2χ±, (14)

where the effective potential V±(φDQ ) ≡ g(gφ2
DQ ∓ ∂zφDQ ) can ultimately be cast in the form

V±(z) = g
[

g
(
e−2|z| − 2e−|z| + 1

) ∓ e−|z|], (15)

in the present case. For the sake of simplicity, we adopt z0 = 0, which means simply that the center of the kink is at the origin of the
coordinate system. It is important to remark that, in the interval 0 < g � 1/2, the potential presents a barrier shape and, as a consequence,
there is no room for the presence of bound states. Furthermore, in order to grant the existence of at least one bound state, one can apply
a theorem introduced by Simon [27], where one subtracts g2 from V±(z) and integrates over the entire real z-axis. The result of that
integration shall be smaller than or equal to zero. In the case of DQ model, this establishes that for g � 2/3 the bound states are granted.
The typical profile of the effective potential is represented in Fig. 2. In fact, it presents a double-well form when one deals with small
coupling constants and it evolves for a simple well when g becomes large enough.

From the above analysis, one can see that in the range 0 < g < 2/3, there are only zero mode states where χ−(z) = 0 and E = 0. In
fact, as one can verify from its expression presented below, the only restriction over the value of the coupling constant is that g > 0, in
order to grant the normalizability of the zero mode sate. Thus, Eq. (12) becomes

∂zχ+ + gφχ+ = 0, (16)

and the normalized solutions with z0 = 0, are given by

χ
(0)
+ (z) = c exp

[−g
(|z| + e−|z|)], (17)

with c ≡ (2g)g√
2[
(2g)−
(2g,2g)] . Here, 
(z) stands for the gamma function and 
(a, z) is the incomplete gamma function. This lead us to the

following spinor of the zero mode state,

ψ(0)(z, t) = 1√
2

(
χ

(0)
+ (z)

χ
(0)
+ (z)

)
. (18)

Now, in order to get more bound states, one should work with g � 2/3. In this case, the effective differential equation appears like
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−∂2
z χ± + V±χ± = E2χ±, (19)

and it was used that

χ∓ = ∓ 1

E

[
dχ±
dz

± gφχ±
]
, (20)

in order to decouple the pair of first-order differential equations. Here, it is interesting to note that the potential V±(z) takes on a different
functional form on either side of z = 0. Thus, we can write the pair of Eqs. (19) as

−χ ′′
<(z) + V<(z)χ<(z) = E2χ<(z), z < 0, (21)

−χ ′′
>(z) + V>(z)χ>(z) = E2χ>(z), z > 0, (22)

where the prime means derivative with respect to z, and χ(z) = χ+(z) or χ−(z), V (z) = V+(z) or V−(z). At this point one can choose,
without loss of completeness of solutions, one of the functions χ± in order to generate the complete set of eigenstates. By choosing χ+
one can construct the spinor

ψ(z, t) = e−iEt

√
2

[
χ+(z) + χ−(z)

χ+(z) − χ−(z)

]
. (23)

The effective potential in both sides of the above differential equations can be written as

V<(z) = Ae2z + Bez + A, z � 0, (24)

V>(z) = Ae−2z + Be−z + A, z � 0 (25)

with A ≡ g2, B ≡ −2g2 − g . Then, we can rewrite Eqs. (21) and (22) as

χ ′′
<(z) − (

Ae2z + Bez + ω2)χ<(z) = 0, z < 0, (26)

χ ′′
>(z) − (

Ae−2z + Be−z + ω2)χ>(z) = 0, z > 0 (27)

with ω2 ≡ A − E2.
Now, let us begin our search for a solution in the region where z < 0. It is interesting to note that this expression resembles the one

of the Morse potential [30]. In order to get rid of the exponential terms in (26), it is usual to perform the transformation

y = Bez. (28)

Then, we get

y2 d2χ<(y)

dy2
+ y

dχ<(y)

dy
−

(
A

B2
y2 + y + ω2

)
χ<(y) = 0. (29)

At this point we perform a function redefinition

χ<(y) = yωeαy f<(y) (30)

where α is a positive definite constant. In this case, imposing that α ≡ −√
A/B , and recalling that B ≡ −2g2 − g and g � 2/3, we arrive

at the differential equation

y
d2 f<(y)

dy2
+ [

(2ω + 1) − 2
√

A y/B
]df<(y)

dy
− [

(2ω + 1)
√

A/B + 1
]

f<(y) = 0. (31)

Finally, by doing the variable scaling y = B ỹ/(2
√

A ), we get

ỹ
d2 f<( ỹ)

dỹ2
+ (b − ỹ)

df<( ỹ)

dỹ
− af<( ỹ) = 0, (32)

where we defined

b ≡ 2ω + 1, a ≡ ω + 1

2
+ B

2
√

A
. (33)

Eq. (32) can be recognized as a confluent hypergeometric equation [29], also known as the Kummer equation [31], whose complete
solution can be written in the form

f<( ỹ) = C̃ (1)M(a,b; ỹ) + C̃ (2)( ỹ)1−b± M(1 + a − b,2 − b; ỹ), (34)

with the definitions

C̃ (1) ≡ C (1) + C (2)π

sin(πb)

1


(1 + a − b)
(b)
, C̃ (2) ≡ − C (2)π

sin(πb)

1


(a)
(2 − b)
. (35)

Then, coming back to the original variables, one can write
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χ<(z)DQ = N1 exp
[
ωz − gez]M

(
a,b;2gez) + W1 exp

(−ωz − gez)M
(
1 + a − b,2 − b;2gez), (36)

where

N1 ≡ C̃ (1)(B)ω, W1 ≡ C̃ (2)(B)ω(2g)1−b. (37)

At this point we note that due to the asymptotic behavior of the Kummer function M(α,β;2gez) = 1 when z → −∞, and the presence
of exp(−ωz) in the second term of the above expression, we conclude that, in order to grant a normalized solution, we shall choose
W1 = 0.

This leads us finally to the following set of solutions:

χ<(z)DQ = N1 exp
(
ωz − gez)M

(
a,b;2gez). (38)

The solution in the region where z > 0 can be obtained through a quite analogous procedure and its normalizable solution is written
as

χ>(z)DQ = N2 exp
[−ωz − ge−z]M

(
a,b;2ge−z). (39)

Note that it is still necessary to impose the continuity of the function and its first derivative at the origin. At this point it is important
to remark that the original physical spinor ψ only needs to be continuous, its derivative is not required to be continuous due to the
fact that the probability current density does not depend on its derivative (in contrast with what happens in the non-relativistic case).
However, since that spinor must be continuous and one of the χ(z) spinor components depends both on the χ±(z) (see Eq. (23)) and the
corresponding derivative, both the χ(z) component and its derivative must be continuous simultaneously. As a consequence, one must
impose the continuity of the function and its derivative at the origin

χ<(0)DQ = χ>(0)DQ , χ ′
<(0)DQ = χ ′

>(0)DQ . (40)

This leads us to

χ<(z)DQ = N1 exp
(
ωz − gez)M

(
a,b;2gez), z � 0, (41)

χ>(z)DQ = ±N1 exp
[−ωz − ge−z]M

(
a,b;2ge−z), z � 0. (42)

Therefore, it can be seen that the eigenvalues are respectively determined by

χ ′
<(0)DQ = χ ′

>(0)DQ = 0 or χ<(0)DQ = χ>(0)DQ = 0, (43)

that is, we obtain the even parity (N1 = N2) energy eigenvalues by requiring the vanishing of the first derivative of the solution at z = 0,
and the odd parity (N1 = −N2) ones by requiring the vanishing of the solution at z = 0. Thus, we have

M(a + 1,b;2g) = 0, for N1 = N2,

M(a,b;2g) = 0, for N1 = −N2, (44)

and this allows us to numerically obtain the energy levels of the DQ model. At this point it is necessary to remark that, since the
effective Schrödinger-like equation is invariant under the transformation z → −z, the corresponding solutions will present definite parity.
The energy eigenvalues of the system come from the above conditions, which are done by finding the zeroes of the Kummer functions.
In fact, one should still remember that, since the energy values for the both components of the fermion states must be the same, one
must to use a = ω − g and b = 2ω + 1. Finally, since the acceptable values for the bound-state energies cannot be below the minimum
of the effective potential and also not above of their asymptotic values, one must restrict the search for eigenvalues to the interval where
g − 1

4 � E2 � g2. In Fig. 3, we present a comparison of the exact values of the fermion bound-state energies of the DQ and λφ4 models,
and in Fig. 4 it can be seen the plot of the functions χ± of the first two levels in the case where g = 2.

In Fig. 3, one can observe that the number of allowed fermionic bound states of the DQ model is bigger than the one of the λφ4

case. In part this can be explained because the two models have the same top value for the potential energy (g2), but the bottom of
DQ (g − 1/4) potential is lower than the one for the λφ4 model (g). For instance, in the case where g = 1, beyond the zero-mode, the
DQ model allows two bound states, respectively with energies E1 = 0.952837 and E2 = 0.984584, while the λφ4 model permits only the
existence of the zero-mode. As it should be expected from an inspection of the shape of the effective potentials, the higher exited states
of the fermions become more and more close to each other, as a consequence of the fact that those energies are far from the bottom of
the effective potential, where the difference of these models is much more evident. It is precisely this property that lead us to believe
that one can deal with exact models like the DQ, in order to study expected features of smooth non-exactly solvable models.

3. The case of the ADQ model

Considering the potential defined in Eq. (2), the kink connecting the vacuum at φADQ = −1 + ε with the one at φADQ = 1 + ε (see
Fig. 1), of the ADQ model [24,18], can be expressed as

φADQ (z) =
{

ez − (1 − ε), z � 0,

(1 + ε) − e−z, z � 0.
(45)

In this model the corresponding zero mode is written as
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Fig. 3. Numerically calculated fermion bound-state energies of the DQ (dots) and λφ4 (dashed lines) models. The valid energy values are the ones located between the two
external solid lines.

Fig. 4. χ functions of the first two eigenenergies of the DQ model with g = 2. χ+ is represented by the solid lines, and χ− appears in the dashed ones.

χ
(0)
+ (z) = c0 exp

{−g
[
ez − (1 − ε)z

]}
, z � 0,

χ
(0)
+ (z) = c0 exp

{−g
[
e−z + (1 + ε)z

]}
, z � 0, (46)

where

c0 = (2g)g√
(2g)−2gε
[2g(1 + ε),0,2g] − (2g)2gε
[−2g(ε − 1),2g,0] , (47)

with 
(a, z0, z1) being the generalized incomplete gamma function. Note that, as in the case of the DQ model, the only restriction over
the coupling constant is that it must be positive definite.

Once more we use the representation where the spinor is given by (10). Thus, after similar calculations to that performed in the case
of the DQ model, we get the following effective differential equations for the case of the ADQ model,

χ ′′
<(z) − {

g2e2z + [−2(1 − ε)g2 ∓ g
]
ez + g2(1 − ε)2 − E2}χ<(z) = 0, z < 0, (48)

χ ′′
>(z) − {

g2e−2z + [−2(1 + ε)g2 ∓ g
]
e−z + g2(1 + ε)2 − E2}χ>(z) = 0, z > 0. (49)

Once more, we choose χ+(z) in order to generate the complete set of solutions.
Now applying again the Simon theorem, one can verify that the bound states are granted once more if g � 2/3. In this case one can

arrive at the following normalizable solutions

χ<(z)ADQ = N1 exp
[

z
√

g2(1 − ε)2 − E2 − gez
]

M
(
a<,b<;2gez), z < 0,

χ>(z)ADQ = N2 exp
{
−

[
z
√

g2(1 + ε)2 − E2 + ge−z
]}

M
(
a>,b>;2ge−z), z > 0, (50)

where

a< = ω< − (1 − ε)g, b< = 2ω< + 1, ω< =
√

g2(1 − ε)2 − E2,

a> = ω> − (1 + ε)g, b> = 2ω> + 1, ω> =
√

g2(1 + ε)2 − E2.

From the continuity of the function at the origin (χ<(0)ADQ = χ<(0)ADQ ) we get

N1 = M(a>,b>;2g)

M(a<,b<;2g)
N2. (51)

Furthermore, the continuity of the first derivative at z = 0 (χ ′
<(0)ADQ = χ ′

<(0)ADQ ) implies that

N1 = −
[

εgM(a>,b>;2g) + a>M(a> + 1,b>;2g)
]

N2. (52)
−εgM(a<,b<;2g) + a<M(a< + 1,b<;2g)



194 A. de Souza Dutra, R.A.C. Correa / Physics Letters B 693 (2010) 188–197
Thus, one can arrive at the condition which determines the allowed energies. In this case it is obtained by substituting the relation (51)
in (52), which lead us to

a<M(a< + 1,b<;2g)M(a>,b>;2g) + a>M(a> + 1,b>;2g)M(a<,b<;2g) = 0. (53)

Observing the effective potential, one can conclude that the energies of the fermion bound-states shall be looked for in the interval
g(1 − ε) − 1/4 � E2 � g2(1 − ε)2. As it should be, the results of the DQ model are recovered by taking ε = 0.

It is interesting to note that (53) in the limit where ε = 0, is written as

M(a,b;2g)M(a + 1,b;2g) = 0, (54)

from which (44) is recovered. Moreover, in that limit, Eqs. (51) and (52) become respectively: N1 = N2 and N1 = −N2.
The corresponding spinor ψ for the ADQ model can be straightforwardly obtained. Here we will not present those spinors explicitly

for the sake of economy of space.

4. Fermion bounded by the GADQ kinks

As mentioned in the Introduction section, the GADQ model (Eq. (3)) compared with the previous two models presents, despite the fact
that those models are limiting cases of it, the advantage of allowing to study systems in which the curvature of the potential is different
in each side of the discontinuity point, as well as the possibility of regulating the distance of each minimum of the potential in relation
to the point of discontinuity.

It is not difficult to show that the kink like solution (see Fig. 1), connecting the two vacua of the model, is given by

φGADQ = −φ1 + δeaz, z � 0, (55)

φGADQ = φ2 − �e−bz, z � 0, (56)

where we defined

δ ≡
[ (φ2 + φ1)

√
φ2

1 + V 1√
(φ2

1 + V 1) +
√

(φ2
2 + V 2)

]
, � ≡

[ (φ2 + φ1)

√
(φ2

2 + V 2)√
(φ2

1 + V 1) +
√

(φ2
2 + V 2)

]
,

a ≡
√

2λ
(
φ2

2 + V 2
)
/
(
φ2

1 + V 1
)

and b ≡ √
2λ.

Usually, the kink like solutions are stable, at least when they are related to a topological charge as happens with the solutions coming
from the first-order differential equations in the BPS [32] approach. In this regard, it is important to remark that in this work, and also
in the cases considered in [18] and [24], we will in general be working with non-topological configurations, where the solutions come
directly from the second-order differential equations, so that the stability is not granted from topological charges. Thus, the verification of
the stability through a direct calculation becomes mandatory. The linear stability is checked by performing a small perturbation around
the static exact configuration. So, we consider that

φ(z, t) = φclass(z) + η(z, t). (57)

Now, performing a Taylor expansion for V (φ) around the classical static solution φclass(z), and keeping terms up to the second order
in the perturbation η(z, t) in the Lagrangian density, one gets after straightforward calculations that

−d2n(z)

dz2
+ V st(z)n(z) = Estn(z),

d2T (t)

dt2
+ Est T (t) = 0, (58)

where we made the usual separation of variables where η(z, t) = n(z) T (t), and V st = d2 V (φ)/dφ2|φ=φclass . For the time-dependent equa-
tion (58) one obtains the solution

T (t) = cet
√−E + de−t

√−E , (59)

with c and d being arbitrary integration constants. It is simple to conclude that, in order to keep the solution finite and non-vanishing
forever, one must to impose that E � 0, so keeping the kink stable. Otherwise the perturbation will destroy it when the time goes by.

For the GADQ model, we can write the potential as

V (φ) = λ

{[
(φ − φ2)

2 + V 2
]

S(φ) +
(

φ2
2 + V 2

φ2
1 + V 1

)[
(φ + φ1)

2 + V 1
]

S(−φ)

}
, (60)

where S(φ) is the Heaviside function. Thus, the stability potential is given by

V st = λ

{
2S

[
φ(z)

] + 2

(
φ2

2 + V 2

φ2
1 + V 1

)
S
[−φ(z)

] +
[
−2φ2 − 4φ1

(
φ2

2 + V 2

φ2
1 + V 1

)
+ 2φ2

2φ1

φ2
1 + V 1

+ 2V 2φ1

φ2
1 + V 1

]
δ
[
φ(z)

]}
, (61)

and the corresponding stability equation is written as
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−d2n(z)

dz2
+ λ

{
2S

[
φ(z)

] + 2

(
φ2

2 + V 2

φ2
1 + V 1

)
S
[−φ(z)

]

+
[
−2φ2 − 4φ1

(
φ2

2 + V 2

φ2
1 + V 1

)
+ 2φ2

2φ1

φ2
1 + V 1

+ 2V 2φ1

φ2
1 + V 1

]
δ
[
φ(z)

]}
n(z) = Estn(z). (62)

Solving the above equation, we obtain

Est = 2λ{4c0 − [1 + c0 + (φ2 V 1 + φ1 V 2)
2/φ2

2 ]2}
4[2 + 2c0 + (φ2 V 1 + φ1 V 2)2/φ2

2 ] , (63)

with c0 = 2λ(φ2
2 + V 2)/(φ

2
1 + V 1). By using this result we obtain Est = −10.0304 to λ = 1/2, φ2 = 3, φ1 = 2, V 2 = −8 and V 1 = −1, so

indicating that this is an unstable solution. On the other hand, for the case that λ = 1/2, φ2 = 1, φ1 = 1, V 2 = 0 and V 1 = 0, we concluded
that the ground-state solution of the stability equation have Est = 0, so indicating that this is a stable configuration.

The zero mode solution for the GADQ is straightforwardly obtained as

χ
(0)
+ (z) = c0 exp

(
gφ1z − gδ

a
eaz

)
, z � 0,

χ
(0)
+ (z) = c0 exp

[
g

(
�

b
− δ

a

)]
exp

(
−gφ2z − g�

b
e−bz

)
, z � 0, (64)

with c0 = 1√
I1+I2 exp[g( �

b − δ
a )]

, and

I1 = 1

a
(4)−gφ1/a

(
gδ

a

)−2gφ1/a[

(2gφ1/a) − 
(2gφ1/a,2gδ/a)

]
,

I2 = 1

b
(4)−gφ2/b

(
g�

b

)−2gφ2/b[

(2gφ2/b) − 
(2gφ2/b,2g�/b)

]
, (65)

which is also normalizable if g > 0 since, by construction a and b and, according to (4), φ1 and φ2 are all positive definite constants.
Now, the use of the Simon theorem lead us to following the restriction over the parameters which is necessary in order to grant the

existence of at least one bound state. In this case one shall have

g � 4abγ

b[4γ 2 − (φ1 − 2γ )2] + a[4 γ 2 − (φ2 − 2γ )2] , (66)

with γ ≡ (φ2 +φ1)

√
φ2

1 + V 1/[
√

(φ2
1 + V 1)+

√
φ2

2 + V 2]. It is compatible with the corresponding restriction of the DQ and ADQ models in

their respective limits.
In this case, after straightforward calculations, one can arrive at the following effective differential equations for the fermion bounded

in this kink like configuration,

−∂2
z χ± + (

μ<e2az + ξ<± eaz + ν<
)
χ± = E2χ±, z < 0, (67)

−∂2
z χ± + (

μ>e−2bz + ξ>± e−bz + ν>
)
χ± = E2χ±, z > 0. (68)

Again, we can simplify the problem by solving only Eqs. (21) and (22), where we defined

V<(z) ≡ (
μ<e2az + ξ<eaz + ν<

)
, V>(z) ≡ μ>e−2bz + ξ>e−bz + ν>,

ξ< ≡ −gδ(2gφ1 + a), ξ> ≡ −g�(2gφ2 + b), ν< ≡ φ2
1 g2, ν> ≡ φ2

2 g2,

μ< ≡ g2δ2, μ> ≡ g2�2.

Repeating the same procedure used in the DQ and ADQ cases, one can arrive after a lengthy but straightforward computation at the
normalizable solution

χ<(z)GADQ = N1 exp
(
k<az − geaz/a

)
M

(
Λ<±,2ω< + 1;2geaz/a

)
, z < 0,

χ>(z)GADQ = N2 exp
(−k>bz − ge−bz/b

)
M

(
Λ>±,2ω> + 1;2ge−bz/b

)
, z > 0, (69)

where it was defined that (k<)2 ≡ (ω</a)2, (k>)2 ≡ (ω>/b)2, Λ< ≡ k< + 1/2 + ξ</(2gφ1a) and Λ> ≡ k> + 1/2 + ξ>/(2gφ2b). The
continuity condition of the solution at the origin is such that one must to impose that

N1 = e−g/b M(Λ>,2ω> + 1;2g/b)

e−g/a M(Λ<,2ω< + 1;2g/a)
N2. (70)

Again we must impose the condition that χ ′
<(0)GADQ = χ ′

<(0)GADQ , thus we find

N1 = −e−g/b[(k>b − g − bΛ>)M(Λ>,2ω> + 1;2g/b) + bΛ>M(Λ> + 1,2ω> + 1;2g/b)]
−g/a < < < < < < <

N2. (71)

e [(k a − g − aΛ )M(Λ ,2ω + 1;2g/a) + aΛ M(Λ + 1,2ω + 1;2g/a)]
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Once more we will not present the explicit expression of ψ which can be straightforwardly obtained. Finally using the relation (70) in
(71) or vice-versa, one can verify that the following condition which must be respected by the self-energies of the GADQ fermionic bound
states,

M
(
Λ<,2ω< + 1;2g/a

)[(−k>b − g − Λ>b
)
M

(
Λ>,2ω> + 1;2g/b

) + Λ>bM
(
Λ> + 1,2ω> + 1;2g/b

)]
+ M

(
Λ>,2ω> + 1;2g/b

)[(−k<a − g − Λ<a
)
M

(
Λ<,2ω< + 1;2g/a

)
+ Λ<aM

(
Λ< + 1,2ω< + 1;2g/a

)] = 0. (72)

Note that ω< and ω> are defined as ω< ≡ √
(gφ1)2 − E2 and ω> ≡ √

(gφ2)2 − E2, where the energy must be the same for the two
components of the spinor. Analyzing the numerically obtained energy levels of the GADQ for a fixed value of the coupling constant and
a range of the asymmetry parameter φ2, it can be seen that the number of energy levels diminishes when the field vacua becomes far
from each other.

Since the GADQ model allows the controlling of the points where the vacua are, the effective potential is correspondingly affected. So,
the global minimum of the effective potential can be at right or at left of the discontinuity in the derivative. Considering the case where
V <

eff− � V >
eff− , the energy eigenvalues will be in the interval

ν< − ξ<−
(

1 + ξ<−
2ν<

)
� E2 � ν<, (73)

where ξ<− ≡ −gδ(2gφ1 − a). As in the previous example, the fermion configurations of the GADQ model can recover those of the ADQ and
DQ, simply by adjusting conveniently the set of parameters which define the potential profile. Thus, we have shown that a model with
a vacuum structure which presents a true and a false vacuum can support fermion zero modes and bound states and that the case of
a usual symmetric and degenerate potential is a particular case of this more general one.

5. Conclusions

In this work we have shown that models with a false vacuum, which are important in a number of physically important situations,
can support not only fermion zero modes but also higher excited fermion bound-states. This has been done through a direct and exact
construction of the fermion configurations in the presence of kink like bosonic configurations backgrounds. From inspection of the results
coming from the DQ model in comparison with the λφ4 one, one can be convinced that under certain conditions those models presenting
derivative discontinuities may represent approximate solutions for more soft potentials. This is important because, as far as we know, there
are no exact solutions for an asymmetric version of the λφ4 model, but we can construct exact solutions in the case of the GADQ model.
The existence of fermion bound-states in the background of asymmetric kinks can have important consequences for cosmological and
condensed matter systems, specially in the case of models where the Universe presents a non-trivial evolutionary behavior. In particular,
considering the temporal evolution of the kink configuration, one could expect the appearance of unbounded chiral fermions, coming from
the bounded ones.
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