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Abstract

The addition of timing speci�cation in Petri Nets (PN) has followed two main

lines: intervals for functional analysis or stochastic durations for performance and

dependability analysis. The present paper proposes a novel technique to analyze

time or stochastic PN models based on discretization. This technique can be seen

as a bridge between the world of functional analysis and the world of stochastic

analysis. The proposed discretization technique is based on the de�nition of a new

construct called Discrete Phase Type Timing - DPT that can represent a discrete

cumulative density function (cdf) over a �nite support (or a deterministic cdf)

as well as an interval with non-deterministic choice (or a deterministic duration).

In both views, a preemption policy can be assigned and a strong (the transition

must �re when the interval expires) or a weak (the transition can �re when the

interval expires) �ring semantics. The paper introduces the DPT construct and

shows how the expanded state space can be built up resorting to a compositional

approach based on Kronecker algebra. With this technique a functional model

can be quanti�ed by adding probability measures over the �ring intervals without

modifying the (compositional) structure of the PN model.

1 Introduction

The inclusion of timing speci�cation in Petri net models has followed two main

streams of research. In the �rst one time is assigned as a deterministic value

(constant or interval) while in the second stream, the activities are assumed

to have a random duration. We will refer to the �rst class of models as Time

Petri Nets (TPN) and to the second class as Stochastic Petri Nets (SPN).
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TPN are devoted to specify and verify properties of systems where timing is

a critical parameter that may a�ect the behavior of the system. In this line

of research [18], time is assigned as a constant value or as an interval de�ned

by a min (earliest �ring time - EFT) and a max (latest �ring time - LFT)

value. The �ring semantics is interleaving and with non-determinism (no

weight is assigned to the action of atomic �ring inside the allowed interval or

for resolving conicts). Further developments along this line are documented

in [4,9]. In [15] a modi�ed �ring semantics is introduced: time is assigned as

intervals, and �ring may be forced when the maximum time expires (strong

�ring semantics) or �ring may be not mandatory when the maximum time

expires (weak �ring semantics). Analysis of TPN models involves the search

for reachable conditions through the exploration of �ring zones [4,22].

Since the initial work in [20,19], SPN have found a sound theoretical base

and consolidated applications when the �ring time assigned to timed transi-

tions is an exponentially distributed random variable, so that the evolution

of the system throughout its reachability graph is mapped into a continuous

time Markov chain (CTMC). A number of tools exploit this paradigm and the

most extensive applications are in the area of performance and dependability

modeling and analysis [2]. However, reality is not always exponential and

attempts have been made to include in SPN generally distributed transitions

[1,7]. Particular emphasis has been devoted to models in which determinis-

tic times [3,17] are combined with exponential random variables. In order to

completely specify the non-Markovian stochastic process underlying the be-

havior of a SPN with generally distributed transition times, each transition

is assigned an age variable. The way in which the age variable accounts for

the time in which the transition has been enabled is governed by three mem-

ory policies [7]. In the preemptive repeat di�erent (prd) policy (also called

enabling memory) the age variable is reset each time the transition is disabled

or �res; in the preemptive repeat identical (pri) policy [6], when the transition

is disabled its age variable is reset, but when the transition is enabled again

an identical �ring time must be completed. Finally, in the preemptive resume

(prs) policy the age variable maintains its value when the transition is disabled

and then re-enabled, and is reset only when the transition �res.

Under the restriction that the marking process arising from these SPN is

a Markov regenerative process [11,7], an analytical solution can be envisaged.

Otherwise, an approximate solution can be obtained through a \Markovian-

ization", by assigning to each transition a continuous Phase type distributions

[8].

More recently, a new class of SPN has been explored, namely the one

obtained by assigning to each timed transition a Discrete phase type (DPH)

distribution [12,23,21,16]. DPH distributions are distributions arising from the

time to absorption in discrete-time Markov chains with absorbing states and

have been extensively explored in [5], where a �tting algorithm has been also

provided. The peculiarity of the class of DPH distributions, is that it contains
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cdf with �nite support like the deterministic or the (discrete) uniform. The

use of DPH in Petri net models, allows to include cdf with �nite support

and any mixture of preemption policies. Moreover the transition matrix over

the expanded state space may be expressed in a compositional way by means

of Kronecker algebra [21], without the need of generating and storing the

complete matrix. Hence, the cost of storing the model is of the same order as

the cost of storing the reachability graph of the untimed PN and the solution

may exploit eÆcient algorithms [10] for block matrices in Kronecker form.

This paper shows that the discretization technique, up to now adopted in

SPN, can be seen as a bridge between the world of the functional analysis

and the world of the stochastic analysis. To this end, we de�ne an extended

construct, called Discrete Phase Type Timing (DPT), that encompasses the

features of the DPH distributions and of the intervals (or constants) with non-

determinism. By assigning to each timed transition of a PN a DPT we can

build up both a functional model, in the line of those discussed in [18,4,15]

and a stochastic model in the line of those discussed in [21,16]. One goal of

this paper is to show that a functional model can be quanti�ed by adding

probability measures over the �ring intervals without modifying the structure

of the underlying PN model. Since the DPT class inherits the properties of

DPH random variables and non-deterministic intervals, the DPT-PN model

shares the same characteristics examined in [21,16] for DPH stochastic PN. In

particular, the compositional structure of the expanded state space [21] can

be exploited also for the functional model. Moreover, we can associate to any

DPT a preemption policy, so that functional analysis can be carried out taking

into account interruption and restart mechanisms that were not covered by

previous models, and, furthermore, we can accommodate in the model both

weak and strong �ring semantics as de�ned in [15].

Discretization implies a state expansion and incurs in the state space ex-

plosion problems. The compositional approach via Kronecker algebra may

alleviate this problem, and we can bene�t from eÆcient storage techniques as

those presented in [13]. Moreover, where DPT are used for functional analysis,

the PN model may be interfaced with eÆcient discrete model-checking tools

[14].

The paper is organized as follows. Section 2 introduces the Discrete Phase

Type Timing structures that will be used to describe the local evolution of the

transitions of the model. Section 3 describes the global evolution of the process

and discusses the complexity and validity issues of the proposed technique. In

Section 4 two demonstrative examples are given. Conclusions are drawn in

Section 5.
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Fig. 1. A: Local evolution of a transition with interval �ring [a; b] in case of strong

time semantics and prd or prs policy. B: Local evolution of a transition with interval

�ring [a;1] in case of either weak or strong time semantics and prd or prs policy

2 Structures and matrices to describe local evolution

of transitions

This section is organized as follows. Section 2.1 and Section 2.2 introduces

the DPT structures and corresponding matrices for functional and stochastic

analysis, respectively. These structures describe how the local descriptor of a

transition evolves in a step if the transition is enabled. The applied structures

depend on the adopted memory policy as well.

Throughout the paper we assume that minimal and maximal �ring times

are integer values and the minimal �ring time is strictly positive. Note that a

model in which all minimal and maximal �ring times are integer multiples of

a common time unit can be handled the same way. Zero minimal �ring time

can be handled as well by properly supplementing the model by immediate

transitions.

2.1 Functional analysis

Transitions with prd or prs preemption policy

The structure used to represent the local evolution of an enabled transition

with strong time semantics and �ring interval [a; b] is depicted in Figure 1A.

When the initial phase of the structure is chosen the process may enter any

of the phases signed with 1. The arrows represent the possible state-jumps;

having more than one outgoing arc from a phase indicates a non-deterministic

choice. The transition �res if a state-jump to the �lled state occurs. In every

step, if the transition is enabled, the process steps to the next phase. This

structure ensures that the �ring time of the transition will be in the interval

[a; b] and the transition �res for certain when it reaches the upper limit of

its �ring interval. The structure is represented by the row vector t0 that

describes the possible initial phases, the square matrix T that describes the

possible state-jumps and the column vector tf that gives the phases of which

�ring may happen. These vectors and matrices, which will describe the local
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evolution of an enabled transition, are

t0 = [1; : : : ; 1| {z }
b�a+1

; 0; : : : ; 0| {z }
a�1

]; T =

2
6666666664

0 1 0 : : :

0 0 1 0 : : :

. . .

0 : : : 0 1

0 : : : 0

3
7777777775
; tf =

2
6666664

0
...

0

1

3
7777775
:

In case of �ring interval [a;1] (still with strong time semantics) the struc-

ture depicted in Figure 1B is applied. Having been enabled for a time units the

transition may either �re or remain in the last phase. Observing the structure

one can easily write its descriptors t0;T and tf .

Assuming weak time semantics, the local evolution of an enabled transition

with �ring interval [a; b] is followed using the structure shown in Figure 2A.

When the transition is enabled for b time units it either �res or the process

steps to the phase signed by the circle with thicker line from which there is

no outgoing arc. This structure guarantees that the �ring time will be in the

interval [a; b] and makes it possible that the transition does not �re in the

interval. If the �ring interval is [a;1], there is no di�erence between strong

and weak time semantics. Hence the structure depicted in Figure 1B is used.

b

0

1

0

0

a

1

0

0

0

1

0

0

0

0

1

0

0

0

0
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A B

Fig. 2. A: Local evolution of a transition with interval �ring [a; b] in case of weak

time semantics and prd or prs policy. B: Local evolution of a transition with interval

�ring [a; b] in case of pri policy.

The above described structures are used in a di�erent manner in case of

prd than in case of prs transitions. When a prs transition is preempted the

phase in which it was preempted is recorded; in case of re-enabling the process

enters this state. Instead, when a prd transition is re-enabled, the initial state

is chosen according to t0.

5



Bobbio, Horvath

Transitions with pri policy

In case of pri transitions, the amount of time for which the transition was

enabled is lost and we have to ensure that the �ring time of the transition is

the same after it is re-enabled. This requirement can not be ful�lled with the

structures presented above. Instead, the structure of Figure 2B is used. When

the transition gets preempted the column in which the process was when the

preemption happened is recorded; in case of re-enabling the process enters the

�rst phase of this column. The realization of a transition with �ring interval

[a;1] would require an in�nite state structure, and hence it is not considered.

When we adopt weak time semantics the gray phase drawn with thicker

line is present as well. So that, it is possible that the transition does not �re in

the interval [a; b]. When the process is in this phase when getting preempted,

it returns to this phase in case of re-enabling.

2.2 Stochastic analysis

Transitions with prd or prs preemption policy

A discrete Phase type (DPH) distribution is the distribution of the time to

absorption in a discrete-time Markov chain. As a counterpart of the weak

time semantics in stochastic analysis, we introduce and make use of possibly

defective discrete Phase type (PDDPH) distributions (see Appendix A for the

de�nition of PDDPH distributions). A PDDPH distribution is associated to

every timed transition of the Petri net. A Markov chain describing a PDDPH

distribution may have two absorbing states. A jump to the absorbing phase

referred to as �ring absorbing phase (drawn with a �lled circle) causes the

transition to �re. A jump to the other absorbing phase, referred to as local

absorbing phase and drawn with a thicker line, means that the transition

can not �re anymore in its current sampling period (i.e. it can �re in the

future only if it gets disabled and then it is re-sampled again). Without

loss of generality we may assume that there are no other absorbing states or

absorbing group of states in the chain.

A simple example for PDDPH distribution is depicted in Figure 3A. When

the �ring time of a transition is sampled the process enters one of the phases

according to the initial probabilities; initial probabilities are written next to

the phases. In Section 2.1 several outgoing arcs of a place represented a non-

probabilistic choice. Instead, during stochastic analysis, outgoing arcs of a

given phase represent a probabilistic choice among the arcs, i.e. a real value

from the interval [0; 1] is associated to each arc (these values are not depicted

in Figure 3A) which gives the probability that a given arc will be chosen

in the next step (the sum of the values associated to the outgoing arcs of a

given place is 1). While in functional analysis weak time semantics implies a

non-deterministic choice on whether the transition �res or not, using PDDPH

distributions leads to a probabilistic choice. By computing the steady state

probability of the two absorbing states one can determine how \defective" the
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transition is.

p1

p2

p3

pn

pdef

1

A

b� a+ 1

b

p1 p2 pb�a+1

pdef

0 0

1 1 1 1 1

B

Fig. 3. A: Possibly defective DPH distribution. B: Possibly defective DPH distri-

bution with �nite support [a; b] for prd or prs transitions.

A PDDPH distribution is described by its initial probability vector

t0 = [p1; p2; : : : ; pn; pdef];

its transition matrix T which governs the phase-jumps, and a column vector

tf which contains the probabilities of jumping to the �ring absorbing state.

We make two comments at this point. First, it is not necessary to have local

absorbing state. Second, the row of T that corresponds to the local absorbing

state contains a single non-zero value which is a 1 in the diagonal.

With PDDPH distributions one can realize a �nite support distribution as

shown in Figure 3B, it can be either defective or not, depending on the actual

value of pdef. When not defective this structure is the stochastic counterpart

of the structure shown in Figure 1A, when defective it is the stochastic coun-

terpart of the structure shown in Figure 2A. In functional analysis, the only

knowledge we have is that the transition �res in the interval [a; b] in a non-

deterministic manner. Instead, in stochastic analysis, it is possible to de�ne

the probability that the transition �res at a given time instant in the interval

[a; b].

Figure 4A depicts the possibility of having defective or non-defective DPH

distributions with support [a;1]. The process enters either the local absorbing

state or the state on the left side of the �gure after which it has to take at

least a steps before absorption.

The di�erence between handling prs and prd transitions in case of preemp-

tion is the same as when performing functional analysis.

Transitions with pri preemption policy

As for functional analysis a di�erent structure is applied for transitions with pri

policy. This structure, which is the probabilistic counterpart of the structure

shown in Figure 2B, is depicted in Figure 4B.

3 Global process

For describing the global evolution of the process the method presented in [21]

is followed with two important di�erences. First, we handle prs transitions

in a manner that corresponds exactly to the de�nition of the prs preemption
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0

0
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1� pdef
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Fig. 4. A: Possibly defective DPH distribution with support [a;1] for prd or prs

transitions. B: Possibly defective DPH distribution with �nite support [a; b] for pri

transitions.

policy 3 . Second, we extend [21] with the possibility of having transitions with

pri preemption policy in the model.

In order to describe the global evolution of the process we need extended

knowledge on the reachable markings of the net. We call the graph we use

extended reachability graph (erg). A node of the erg carries the following

information:
� the number of tokens in the places of the net,
� the set of preempted transitions with memory (the phase in which these

transitions were preempted has to be recorded),
� the set of prs transitions that were candidates for �ring but did not �re; these

transitions, because of the de�nition of prs memory policy, are candidates

for �ring immediately when they get enabled.

The last entry of the above list requires some further explanation. In the

considered model (either functional or stochastic) it can happen that two or

more enabled transitions have the same �ring time instant. These transitions

are called candidates for �ring. Having a set of candidates the resulting mark-

ing depends on the order of �rings and it can happen that a transition �ring

prevents another candidate from �ring. The set of possible orders (in case of

functional analysis) or the probability of a given order (in case of probabilis-

tic analysis) can be determined based on priority considerations; this issue

is not in the scope of this paper. Not having additional priority information

on the transitions, one can assume that all orders of the candidates are pos-

sible (functional analysis) or all orders have equal probability (probabilistic

analysis) [21].

A simplest example of erg is shown in Figure 5. Even if the net has

two reachable markings, still the erg has four nodes. In marking P3 three

3 A prs transition that was candidate for �ring but did not �re has to be candidate for

�ring immediately when it gets enabled again. This fact was not considered in [21].
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situations have to be distinguished: the marking was reached by the �ring of

T1, the marking was reached by the �ring of T2 and T1 was not candidate for

�ring, the marking was reached by the �ring of T2 and T1 was candidate for

�ring.

prs prd prd

P1
P2

P3

T1 T2 T3 with memory

P1 P2

P3 T1
,

T3

T2

P3

T1

T3

immediate candidateP3 T1
,

T2
, was candidate for firingT1

T3

Fig. 5. In marking P3 transition T1 may either have or not have memory

The following notations are used to describe the procedure. We assume

that the number of nodes in the erg is �nite and denoted by N . The ith

node of the erg will be denoted by mi. The set of prs and pri transitions are

denoted by S and I, respectively. The �ring interval of a pri transition Ti is

denoted by [a(i); b(i)]. The set of transitions that are enabled inmi is denoted

by Ai. The set of transitions that are disabled but have memory in mi is

denoted by Bi. The set of transitions that were candidates but did not �re

when the process entered extended markingmi is denoted by Ci. The number

of transitions in the net is M . The transitions are ordered and the ith one is

denoted by Ti.

The local evolution of a transition is described by the vectors and matrix

introduced in Section 2.1 for functional and in Section 2.2 for stochastic anal-

ysis. The descriptors of transition Ti; 1 � i � M are denoted by t0
(i), T (i)

and tf
(i).

3.1 Global descriptor

During the analysis, the transient descriptors of the system are stored in the

vectors pi; 1 � i � N . In a vector pi every position corresponds to a combi-

nation of local descriptors of the transitions that are enabled or are disabled

but have memory in the extended marking mi. In case of functional analysis

the vector pi contains 0s and 1s. An entry 1 in pi means that it is possible

that the process is in mi with descriptors corresponding to the position of

the entry. Instead, when performing stochastic analysis, pi may contain any

real value in [0; 1]. In this case, an entry of pi gives the probability that the

process is in mi with descriptors corresponding to the position of the entry.

Let us denote the number of phases of the structure representing transi-

tion Ti by ni and the local descriptor of Ti by li. The vector [l1; l2; : : : ; lM ],

which contains the descriptors of all the transitions, together with the index of

extended marking de�nes a state of the process. If a transition T1 is disabled
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and does not have memory its descriptor equals 1. When Ti is enabled in an

extended marking we have 1 � li � ni. The phase in which a prs transition

gets disabled has to be recorded; for a prs transition Ti that is disabled but has

memory in mj 1 � li � ni. In case of a pri transition Ti with �ring interval

[a(i); b(i)] that is disabled but has memory in mj only the column in which it

got disabled is recorded (Figure 2B and 4B), hence 1 � li � b
(i)
� a

(i) + 1.

In the following, we describe how to �nd a given combination of the local

descriptors in the vector pi. We use a so-called mixed-based numbering scheme

which is closely related to the Kronecker product operator. Let us use the

notation

n
(k)

i =

MY
j=k

s
(j)

i ; where s
(j)

i =

8>>>>>><
>>>>>>:

1 if Tj =2 Ai [ Bi

nj if Tj 2 Ai;

nj if Tj 2 Bi \ S;

b
(j)
� a

(j) + 1 if Tj 2 Bi \ I;

i.e. s
(j)

i is the number of di�erent values the descriptor lj may have in extended

marking mi. Then, in the state space spanned by the local descriptors, the

possibility or the probability that the process is in discrete marking mi and

the local descriptors are [l1; l2; : : : ; lM ] is given by the mth entry of pi with

m = (: : : ((l1 � 1)s
(2)

i + (l2 � 1))s
(3)

i : : :)s
(M)

i + lM � 1 =

MX
k=1

(lk � 1)n
(k+1)

i ;

where n
(M+1)

i = 1.

Let us assume that the initial extended marking is mi. Then, initially

pi =
O

k;Tk2Ai

t0
(k)
;

where 
 denotes the Kronecker-product operator (see Appendix B for the

de�nition of the operator).

Note that none of the disabled transitions can have memory in the initial

marking. All entries of all the other transient vectors are set to 0 at the

beginning of the analysis.

3.2 Global evolution

In the following we show how to build the matrix P that describes the global

evolution of the process.

For functional analysis the resulting matrix is the incidence matrix of

the model, i.e. the value 1 (0) in position (i; j) means that macrostate j

is reachable (not reachable) in one step from macrostate i. The evolution

of the process is followed by successive multiplication of the transient vector

[p1;p2; :::;pN ] by P . This way we are given the set of possible macrostates at

time 1+; 2+; 3+; ::: , i.e. right after integer multiples of the chosen time unit.
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In case of stochastic analysis a probabilistic choice is de�ned in the intervals

assigned to the transitions with a given common step-size Æ. The matrix P

is the transition matrix of the underlying discrete-time Markov chain, i.e.

the value in position (i; j) gives the one step probability from macrostate i to

macrostate j. Once again, the evolution of the process is followed by successive

multiplication of the transient vector [p1;p2; :::;pN ] by P . This way we are

given the probability of macrostates at time Æ; 2Æ; 3Æ; ::: .

The matrix P is built as an N � N block-matrix in which each block is

expressed as the sum of Kronecker-products of suitable matrices. The diagonal

blocks P ii; 1 � i � N are square matrices describing the evolution of the

process inside the macrostate corresponding to mi. The o�-diagonal blocks

P ij; 1 � i; j � N describe the jumps from any state of macrostate mi to

any state of macrostate mj. First we consider the case when none of the

transitions �res.

Evolution when no �ring happens

When none of the transitions �res in a step the process remains in the same

macrostate. Hence, this case contributes to the diagonal entries P ii; 1 � i �

N of P . A diagonal block is expressed by the following Kronecker-product

P ii =

MO
j=1

Qj(1)

where
� Qj = T

(j) if Tj 2 Ai, i.e. Tj is enabled inmi and its evolution is described

by T (j);
� Qj is an identity matrix, its size is nj � nj if Tj 2 Bi \ S and (b(j) � a

(j) +

1)� (b(j)�a
(j)+1) if Tj 2 Bi\I, i.e. the descriptor of a disabled transition

having memory is kept;
� Qj = 1 if Tj =2 Ai [ Bi, i.e. the transition does not contribute to the

evolution of the macrostate and has no inuence on the Kronecker-product.

Evolution in case of �rings

Firing of a set of transitions is considered by the expression

P ij+ =
X

L2S(Ai)

Wij(L)

MO
k=1

Qk(L)(2)

where the function S(�) gives the set of non-empty subsets of its argument,

and Wij(L) has the following meaning:
� In case of functional analysis its value is 1 if from extended marking mi

having the transitions in L as candidates the next extended marking can be

mj; it is 0 otherwise. Wij(L) can be determined by considering all possible

orders of L.
� In case of stochastic analysis the value of Wij(L) is the probability that
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being in mi, having the transitions in L as candidates the next extended

marking is mj. The value of Wij(L) may be determined by assigning a

probability to all possible orders of L. The choice when all ordering has the

same probability is discussed in [21].

During the calculation of Wij(L) the set Ci has to be considered as well.

In (2), we use + = instead of = because if a sequence of �rings leads back to

the same extended marking (it can easily happen in the presence of immediate

transitions) the quantity of the right hand side is added to the quantity given

in (1). The term Qk(L) is determined according to the following situations:
� If Tk 2 L, i.e. if Tk is one of the candidates the following cases have to

distinguished:

� if Tk is neither enabled nor it has memory inmj (i.e. Tk =2 Aj [Bj), then

Qk = tf
(k),

� if Tk is re-enabled in mj (i.e. Tk 2 Aj), then Qk = tf
(k)t0

(k),

� if Tj is not enabled but has memory in mj (i.e. Tk 2 Bj) which can

happen as a result of a sequence of �ring, then Qk = tf
(k)t0

(k).
� If Tk 2 (Ai=L) \ (Aj [ Bj), i.e Tk is enabled in mi, it does not �re and is

enabled or has memory in mj, then Qk = T
(k).

� If Tk 2 (Ai=L) and Tk =2 Aj [ Bj, i.e. Tk gets disabled and does not have

memory inmj, then Qk = e
(k)
� tf

(k) (where e(k) is a vector of size nk with

all entries equal to one).
� If Tk 2 (Bi \ Bj) , i.e. it is not enabled but has memory in both mi and

mj, then Qk is the identity matrix of proper size (its size is nk � nk if Tk
is of prs size, while its size is b(k) � a

(k) + 1 � b
(k)
� a

(k) + 1 if Tk is of pri

type).
� If Tk is of prs type and Tk 2 (Bi\Aj) , i.e. it is not enabled but has memory

inmi and gets enabled inmj, thenQk is the identity matrix of size nk�nk.

� If Tk is of pri type and Tk 2 (Bi\Aj) , i.e. it is not enabled but has memory

in mi and gets enabled in mj, then Qk is of size b(k) � a
(k) + 1 � nk and

de�ned as

[Qk]ij =

8<
:
1; if j = (i� 1)a(k) + i;

0; otherwise.

This matrix insures that being re-enabled the local descriptor of the pri

transition corresponds to the �rst phase of the proper column.
� If Tk =2 (Ai \ Bi) and Tk 2 (Aj \ Bj), i.e. it is neither enabled nor has

memory in mi and either enabled or has memory in mj, then Qk = t0
(k).

� If Tk is neither enabled nor has memory in both inmi andmj, thenQk = 1,

and hence does not have any inuence on the Kronecker-product.

3.3 Complexity

The complexity of the proposed procedure is di�erent for functional than for

stochastic analysis for two reasons.

12
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� The amuont of memory needed to store the structure that describes the

local evolution of the process is usually larger in case of stochastic analysis.

In case of functional analysis, a transition with �ring interval [1 : 2] is

represented by a two phase structure. In case of probabilistic analysis a

discrete probability mass function is placed in the interval. If it is done

with step-size 0.2 (which means that the �ring time may be 1,1.2,1.4,...,2.0)

10 phases are needed.
� In case of functional analysis, a state described by a global descriptor is

possible or not in a given time instant. So that the transient vectors contain

0s and 1s which can be stored eÆciently using binary decision diagrams. In

case of probabilistic analysis the transient vectors contain real values whose

storage requires more memory.

The length of the transient vector describing an extended marking is the

product of the number of di�erent values that the local descriptors may have in

that marking. This product can be very large if many transitions are enabled

or have memory in an extended marking.

The matrix describing the global evolution of the process is stored in a

memory-eÆcient manner by using Kronecker-expressions. Di�erent algorithms

can be implemented to perform Kronecker-products, a comparison of the com-

plexity of these algorithm is found in [10].

3.4 Validity of the proposed approach

In case of stochastic analysis, the proposed technique describes correctly the

evolution of the model. In case of functional analysis, two cases have to

distinguished:

� If the time of the model is discrete, i.e. duration of actions may be only

integer multiples of the time unit, the approach results in correct tracking

of the behavior of the model.

� Instead, if we assume dense time, i.e. durations may take any real value

from the �ring intervals of the transitions, considering only integer multiples

of the time unit (as we do in the proposed approach) possible execution

sequences might be excluded. In fact, on the one hand, it is possible to

prove that the technique is correct if the model contains only prd transitions.

On the other hand, if prs or pri transitions are present, some execution

sequences can be missed out, and, as a consequence, the presented technique

results only in an approximation of the behavior of the model.

4 Examples

Two examples are given in this section. The �rst, simple one is presented to

show that a net may have di�erent functional behaviors for di�erent preemp-

tion policies. On the second example both functional and stochastic analysis

are performed.
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Fig. 6. A: Di�erent reachable markings in case of adopting di�erent preemption

policies for T1. B: Producer-consumer model.

The time Petri net depicted in Figure 6A has di�erent reachable markings

when adopting di�erent preemption policies for transition T1. We assume

strong time semantics. Whichever policy is chosen, it is possible that T1 �res

before T2 (if the �ring time of T1 is chosen lower than 15); in this case the net

ends up in marking (P3; P8). If T2 �res before T1 the behavior depends on the

memory policy of T1:
� prd policy: T1 either �res or does not �re in marking (P1; P7) (it �res if its

resampled �ring time is less than 12),
� prs policy: T1 �res in marking (P1; P7) since its \clock" starts from 15

entering this marking and its maximal �ring time is 20,
� pri policy: T1 does not �re in marking (P1; P7) since its �ring time is not

resampled and it is greater than 15.

The second example, which is a simple producer-consumer model, is de-

picted in Figure 6B. Production, represented by deterministic transition T2,

may get preempted. The preemption is modeled by transitions T3 and T4, and

places P4 and P5. Transition T2 is of prs type, i.e. the work done is not lost

in case of preemption. Production restarts after a time units (represented by

transition T1). Consumption consists of two steps represented by transitions

T5 and T8. The �rst phase of consumption may get preempted which feature

is modeled by the subnet P9, P10, T6 and T7. For transition T5 prd or prs

memory policy is considered. The aim of the analysis is to determine if the

consumer �nishes its two-phase job before the arrival of the next one. A token

in place P12 indicates an error (i.e. another job arrived before the consumer

�nished the previous one), while a token in place P13 indicates that one cy-

cle of production-consumption was successful. The model is evaluated with

strong time semantics.

From the functional point of view possible questions are: \Is it possi-
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Analysis prd, a = 8 prd, a = 20 prs, a = 8 prs, a = 20

Functional 2133 3645 3249 5625

Stochastic 14696100 24236100 16964100 46052100

Table 1

Size of the discretized state space

ble that a token appears in place P12?" or \What is the shortest/longest

cycle-time?". From the stochastic point of view one could ask: \What is the

probability that a token appears in place P12?" or \What is the probability of

successfully �nishing a cycle before time t?". In case of performing stochastic

analysis a discrete probability distribution is de�ned on the interval. For all

non-deterministic transitions we assumed to have discrete uniform distribu-

tion with step-size 0.1 (for example the �ring time of transition T3 may be

2.0,2.1,2.2,...,2.9 or 3.0 with equal probability of 1/11).
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prd,a=20, failure
prd,a=20, success

prd,a=8, failure
prd,a=8, success

prs, success

Fig. 7. Probability of failure or correctly �nished cycle as a function of time

The example was evaluated, using a preliminary implementation of the

presented Kronecker-based description, with a = 8, a = 20 and with either prd

or prs memory policy for transition T5. From the point of view of functional

analysis the results are the following. For both values of a: if the adopted

memory policy is prd consumption may either terminate in time or may not,

while for prs policy it terminates always before the next production. The

earliest possible time to �nish correctly the production and consumption is

9 time units for all the cases. As a probabilistic result, Figure 7 depicts the

probability of having a correct or erroneous outcome as a function of time (in

case of prs policy for transition T5, erroneous outcome is not possible and for

both values of a we have the same curve).

The size of the discretized state space for the di�erent cases is given in

Table 1. As one could observe functional analysis requires much smaller state

space.
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5 Conclusion

The paper has introduced a new construct called Discrete Phase Type Timing

- DPT that can represent probabilistic or non-deterministic choice over an

interval. For both cases it gives the possibility of assigning preemption policy

to the transitions of the system. Both weak and strong time semantics can be

handled (or even mixed in the same model).

A compositional approach, based on Kronecker algebra, was given to build

the matrix that describes the evolution of the expanded state space. This

description is similar to the one given in [21] with the di�erences that it

follows the behavior of a prs transition in an exact manner and provides the

possibility of having pri transitions in the model. It was shown as well that the

same compositional description can be utilized for functional and for stochastic

analysis.

Through a simple example the possibility of performing both functional

and probabilistic analysis of the same model has been demonstrated.
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Appendix A: Discrete phase type distributions

Possibly defective discrete phase type (PDDPH) distributions are de�ned in

terms of discrete-time Markov chains (DTMC) with absorbing states. A dis-

crete random variable X is PDDPH distributed if and only if there exists a

DTMC fZi; i � 0g with n+1 states of which the (n+1)th is absorbing (there

can be other absorbing states as well) and PrfX � ig = PrfZi = n+ 1g, i.e.

X is the time to reach state n + 1. If state n + 1 is not the only absorbing

state the distribution can be defective. A PDDPH distribution is given by the

initial probability vector of its DTMC (t0) and the one-step transition matrix

(T ) that governs the evolution among the states excluding state n+ 1. Then

the distribution of X is given by PrfX � ig = 1� t0T
i
e, where e is a vector

with all entries equal to 1.

Appendix B: Kronecker-product operator

The Kronecker-product C = A
B of matrix A of size (ar � ac) and matrix

B of size (br � bc) is of size (arbr � acbc) and is de�ned by

C i;j = Ai2;j2Bi1;j1; where i = i2ar + i1; j = j2ac + j1:
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