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A B S T R A C T

Machine Learning (ML) is considered as one of the contemporary approaches in predicting, identifying, and
making decisions without having human involvement. ML is quickly evolving in the medical industry ranging
from diagnosis to visualization of diseases and the study of disease transmission. These algorithms were de-
veloped to identify the problems in medical image processing. Numerous studies previously attempted to apply
these algorithms on MRI (Magnetic Resonance Image) data to predict AD (Alzheimer's disease) in advance. The
present study aims to explore the usage of support vector machine (SVM) in the prediction of dementia and
validate its performance through statistical analysis. Data is obtained from the Open Access Series of Imaging
Studies (OASIS-2) longitudinal collection of 150 subjects of 373 MRI data. Results provide evidence that better
performance values for dementia prediction are achieved by low gamma (1.0E-4) and high regularized
(C= 100) values. The proposed approach is shown to achieve accuracy and precision of 68.75% and 64.18%.

1. Introduction

Machine learning (ML) was considered as an integral part of
Artificial Intelligence (AI), also a data analysis technique that compu-
terizes the explanatory model structure. In most scenarios, based on the
learning method, two types of ML algorithms (supervised & un-
supervised) were used [1]. At present, these algorithms are engaging in
all the major industries like healthcare, banking, transport, social
media, etc. [1,2]. Above all, the medical industry is advancing quickly
with high volumes of information and increasing difficulties in in-
ventory and patient outcomes. Economically developed nations such as
USA, Japan, European countries are even facing the problems with the
enormous collection of medical data [3]. However, by using conven-
tional techniques, it is not possible to analyze this significant volume of
information because of time consumption and efforts. Therefore, ML
techniques are coming up with various algorithms and programs to
avoid these issues. Besides that, the selection of proper algorithm is not
an easy task since it depends on multiple factors such as data volume,
information type, and outcomes related to industry requirements [1].

Nowadays, ML algorithms are progressively utilized in neuroima-
ging studies like a prediction of Alzheimer's disease (AD) from auxiliary
MRI. Also, many studies attempted different ML strategies in predicting

AD and their causes [3,4]. In the study of AD prediction and retrieval, a
multistage classifier utilizing ML, including Naive Bayes classifier,
support vector machine (SVM), and K-nearest neighbor (KNN) was used
to group Alzheimer's illness in the more acceptable and effective way
[5]. Similarly, a study from Ref. [6], concluding that the utilization of
locally linear embedding (LLE) kind of unsupervised learning was uti-
lized to categorize AD based on fundamental MRI data. Besides, some
preliminary studies with ML techniques concluded that these methods
are valid and accomplish with high precision (up to 98%) in diagnosing
clinical events with analysis of patient medical records [7].

Despite of it, AD is one of common type in dementia and associated
mostly with older people [8]. In this paper, we explain how to predict
dementia and calculate performance by using support vectors. Typi-
cally, SVM's are considered as supervised machine learning, which
solves the data issues related to classification and regression analysis
[9]. An SVMs give a compelling and adaptable structure for MRI, and
that the proposed classifier perception technique has potential as a
system for the assessment of characterization solutions [9,10]. This is
also used to categorize dementia subjects and is similar to the research
that use a uniform algorithm to differentiate 3 Primary progressive
aphasia (PPA) subtypes in predicting PPA [11]. Distinguishing early
morphological changes in the mind and making initial finding is
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significant for dementia. High-resolution MRI data can be utilized to
support finding and forecast of the disease [11]. To do this, we propose
to find an optimal solution by experimenting with radial basis function
(RBF) kernel in the SVM. The proposed method of calculation is in-
spired by a new approach of using an ensemble SVM for dementia
classification [12], using MRI data and mini-mental state examination
parameters (MMSE).

In contrast, we consider the attributes like MR delay; CDR, ASF,
AGE, and GENDER included with MMSE that corresponds to subject ID.
We strongly believe that it is the novel way of examining the im-
portance of each parameter while forecasting dementia in older pa-
tients. Despite it, our work aims to predict dementia in elder individuals
by SVM algorithms to accomplish promising outcomes. This paper is
organized as follows; section 2 describes the SVM background with its
key parameters; Section 3 will explain the data collection and metho-
dology; section 4 will provide experimental results; Section 5 on pro-
posed discussion and little conclusion in section 6.

2. Support vector machines (SVM)

2.1. Background

Support Vector Machines are a well-known ML technique for clas-
sification and other learning activities. SVM is a discriminative classi-
fier and formally characterized by an optimal hyperplane. It produces
an outcome of the optimal hyperplane, which classifies new examples
and datasets that support hyperplane are called support vectors [13]. In
two-dimensional (2D) region, this hyperplane is a line isolating into two
segments wherein each segment lay in either side. For instance, mul-
tiple line data classification had done with two distinct datasets (i.e.,
squares and dots) and ready to propose an affirmative interpretation
(Fig. 1). However, the selection of optimal hyperplane is not an easy job
as it should not be noise sensitive, and generalization of data sets should
be accurate [14]. Pertinently, SVM trying to find out optimized hy-
perplane that provides considerable minimum distance to the trained
data set [13,14].

In mathematical notation, for 2D space, a line can distinguish the
linearly separable data. The equation of the line is y = ax + b. By
rename x with x1 and y with x2, the equation will change to
ax1−x2+b = 0. If we specify X = (x1, x2) and w = (a, −1), we get w⋅
x + b = 0, which is called the equation of the hyperplane.

2.1.1. Derivation of SVM optimization problem
To estimate w & b of the optimal hyperplane, it is mandatory to

address a performance issue with the need of the geometric edge for
every pattern must be more prominent to M [16].

Max w, b M; Subject to γi≥M, i= 1 … m (1)

If M= ∥ ∥
F
w the above equation can be rewritten as:

Max w, b M; Subject to fi≥ F, i= 1 … m (2)

The case that rescales w and b are yet boosting M, and the en-
hancement result will not change. Let us rescale w & b and make F=1;
the above equation shift to

∥ ∥
≥ =Max subject1

w
; to fi 1 , i 1...mw b,

(3)

This maximization issue is proportionate to the accompanying
minimization issue written as

Min w, b||w||; subject to fi≥ 1, i= 1 … m (4)

This minimization issue is proportionate to the accompanying
minimization issue written as

+ − ≥ =w wx bmin 1
2

‖ ‖ ; subject to y ( ) 1 0, i 1...mw b,
2

1 (5)

The above statement refers to the SVM optimization problem.

2.1.2. SVM classifier
When we have the hyperplane, eventually we would be able to

utilize the hyperplane to make predictions. The hypothesis function of
H is

= ⎧
⎨⎩

+ ≥
− <

if w x
if w x

H(x )
1 . 0
1 . 0i

2.2. Tuning parameters

To comprehend the SVM working, it is critical to understand about
some prerequisites like kernel, regularization, and gamma.

2.2.1. Kernel
In machine learning, the kernel is a technique that is used to solve

the non-linear problem with the use of linear classifier and involved in
exchanging linearly non-separable data into linearly separable data
[17]. The idea behind this concept is linearly non-separated data in N-
dimensional space might be linearly separate in high M-dimensional
space. Mathematically, kernel indicated as K (a, b) =<F (a), F (b)> ,
Where K: kernel function and a, b are n-dimensional inputs. ‘F’ is
mapping from N-dimensional to M-dimensional space (i.e., M > N).
The mapping in the kernel is defined as K (a, b)=Ø (a). Ø (b).

Kernel Functions: There are several kernels functions some of them
listed below here [18].

❖ Polynomial Type: is well known for nonlinear modeling and is re-
presented as

K (a, b) = (a, b) d (6)

❖ Gaussian Radial Basis Type: Radial basis functions mostly with
Gaussian form and represented by

= − −k(a,b) exp( ‖a b‖
2σ

)
2

2 (7)

❖ Exponential Radial basis: function produces a bitwise linear solution
that will be useful when discontinuities are satisfactory

= − −k(a, b) exp( ‖a b‖
2σ

)2 (8)

In addition to them, there are many more functions such as multi-
layer perceptron, Fourier, additive, and tensor products type [18].

2.2.2. Regularization
The regularization parameter (C) explains the SVM optimization

Fig. 1. Data classification using multiple lines [On left ] and data classification:
optimal hyperplane [On Right] [15].
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and percentage of escaping the misclassified trained data [19]. For high
C values, training data will categorize accurately by hyperplane; simi-
larly, for low C, optimizer looks for higher margin separating hyper-
plane while it will misclassify the more data points.

2.2.3. Gamma
It describes the impact of specific training data [13,17,19]. The high

gamma values (Fig. 2 left) results in consideration of datasets that are
near to separation line. Similarly, for low gamma values (Fig. 2.Right)
datasets that are away from the separation line, will also be taken into
consideration while in the calculation of separation line (Chapter 2:
SVM (Support Vector Machine) — Theory – Machine Learning 101 –
Medium).

3. Data collection and methodology

3.1. Dataset

We consider a longitudinal collection of OASIS - MRI data set [21],
comprising of demented and non-demented subjects with right-hand
(R) type aging from 60 to 96. A sample size of 150 subjects, including
men and woman, have attended scanning sessions more than two visits;
sessions were separated by at least one year with 373MR Sessions. The
sample training data (Table 1) included with demographic values of
Subject ID, MRI ID, Group, Visit, MR delay, Sex, Age, Social Economic
Status (SES), Education level (EDUC), MMSE [22], Clinical Dementia
Ratio (CDR) [23], estimated Total Intracranial Volume (e-TIV), nor-
malized Whole Brain Volume (n-WBV) and Atlas Scaling Factor (ASF).
Also, Fig. 3. Explaining the present MRI sessions categorization based
on the current CDR (0–2) score and total sessions of non-demented
(190), demented (146) and converted (37) were evaluated. In

particular, some subjects treated as demented at initial visit later
transformed into the non-demented managed by converted type. If CDR
value is equal to zero, the subjects were considered as mostly non-de-
mented, simultaneously if CDR≥1 the subjects will face the tendency to
have dementia.

3.2. Methodology

The methodology layout that used and analyzed in the current study
in explaining in Fig. 4.

❖ Data collection

The trained data set was collected from the Open Access Series of
Imaging Studies (OASIS) included with longitudinal MRI data of 150
subjects.

❖ Data Preprocessing

Real world data is available more likely incomplete with missing
entries. Therefore, data preprocessing is one of the data mining tech-
niques to address this issue. Missing entries were filled-up by averaging
of particular attribute values.

❖ Attribute Selection

Select a specific characteristics to predict the outcome to do map-
ping with input correspondence values. We choose the group column as
output variable that corresponds to the dementia status based on other
input variables.

❖ Input variable matching

Performance of any ML model largely depends on the number of
input attributes taken into consideration. To maintain better perfor-
mance, selection of the corresponding attributes, instead of selecting
multiple ones is very important. Attributes like Subject ID, CDR, MMSE,
Age, MR Delay, and n WBV chosen as input to SVM that were directly
targeted to the dementia group attribute.

❖ Classifier

We consider three groups of dementia as demented, non-demented,
and converted.

Fig. 2. High Gamma Close points (left) and Low Gamma Far away points found
(Right) [20].

Table 1
Example of actual portion dataset of Longitudinal OASIS-2 MRI data.

SUBJECT ID MRI ID GROUP VISIT MR Delay M/F Hand Age EDUC SES MMSE CDR E TIV n-WBV ASF

OAS2_0100 OAS2_0100_MR1 Non
Demented

1 0 F R 77 11 4 29 0 1583 0.777 1.108

OAS2_0100 OAS2_0100_MR2 Non
Demented

2 1218 F R 80 11 4 30 0 1586 0.757 1.107

OAS2_0100 OAS2_0100_MR3 Non
Demented

3 1752 F R 82 11 4 30 0 1590 0.760 1.104

OAS2_0101 OAS2_0101_MR1 Non
Demented

1 0 F R 71 18 2 30 0 1371 0.769 1.280

OAS2_0101 OAS2_0101_MR2 Non
Demented

2 952 F R 74 18 2 30 0 1400 0.752 1.254

OAS2_0101 OAS2_0101_MR3 Non
Demented

3 1631 F R 76 18 2 30 0 1379 0.757 1.273

OAS2_0102 OAS2_0102_MR1 Demented 1 0 M R 82 15 3 29 0.5 1499 0.689 1.171
OAS2_0102 OAS2_0102_MR2 Demented 2 610 M R 84 15 3 29 0.5 1497 0.686 1.172
OAS2_0102 OAS2_0102_MR3 Demented 3 1387 M R 86 15 3 30 0.5 1498 0.681 1.171
OAS2_0103 OAS2_0103_MR1 Converted 1 0 F R 69 16 1 30 0 1404 0.750 1.250
OAS2_0103 OAS2_0103_MR2 Converted 2 1554 F R 74 16 1 30 0.5 1423 0.722 1.233
OAS2_0103 OAS2_0103_MR3 Converted 3 2002 F R 75 16 1 30 0.5 1419 0.731 1.236
OAS2_0104 OAS2_0104_MR1 Demented 1 0 M R 70 16 1 25 0.5 1568 0.696 1.119
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❖ Results

Finally, the classification performance has achieved and analyzed.
Performance value calculated as the percentage of correctly predicted
outcomes divided by the total number of samples

= ×i e peformance. ,
True predicted an outcomes

Total number of samples
100

4. Results

Once the mapping has done by input attributes with targeted output
group column, the machine will run the SVM algorithm automatically.

4.1. Kernel

The Kernel outcome model with 150 support vectors (Table 2) has
generated, and three different categories of training data set are ob-
served. As mentioned, kernel mapping with three input values for-
mulated, as K (ND, D, C)= ø(79).ø(50).ø(21), where K is kernel func-
tion with three input class vectors such as non-demented (ND),
Demented (D) and converted (C) and corresponding mapping values of
79, 50 and 21. Besides, bias value is equal to −0.3 (offset defines
compensate the feature vectors that are not centered around the zero).

4.2. Gamma VS. C

As discussed, Gamma and C values are obligatory to confirm op-
timal hyperplane. In further, Radial Basis Function (RBF) kernel is one
of the novel kernel approaches that related to gamma. Hence, SVM
anticipated with following performance conditions

⎧

⎨
⎩

= − = =
= − = =
= − = =

if
RBF E C p
RBF E C p
RBF E C p

1.0 4 ; 100 69.2%;
1.0 3 ; 100 69.2%
1.0 1 ; 10 57.1%

Here, two conditions were supporting identical performance gain.
However, as per condition of SVM it prefers to choose optimal hyper-
plane region with low RBF (1.0E-4), and High C (100) which re-
presented by Yellow colored circle explained in Fig. 5.

4.3. Performance, precision, and recall

❖ Assessment of performance done by the percentage of true predicted
subjects from the total subjects. From Table 3, sum of true predicted
subjects were 105, therefore performance was calculated as 70%
(105

150
*100). This value is matching with the optimal system perfor-

mance 69.2% by utilization of RBF and C values that proves the SVM
hypothesis.

❖ Precision is define as percentage of positive predictive values for
each subject category. For demented subjects precision validates as
of 64.18% ( + + *10043

43 14 10 ) and for demented 75%. On the counter
note, no valid predicted values for converted category subjects. SVM
algorithm predicted two subjects as a converted category, but in a
real scenario, it belongs to non-demented ones.

❖ In the context of ML, recall is referred as sensitivity or true positive
rate. Thus, recall for non-demented subjects validated with 81.13%
( + + *10043

43 8 2 ), and demented 65.85%.

Fig. 3. Categorization of dementia sessions based clinical dementia ratio (CDR).

Fig. 4. Methodology layout.

Table 2
Kernel outcome statistic values.

Total number of Support Vectors: 150

Bias (offset): 0.3 and Number of classes: three
Number of support vectors for class Non-demented - 79
Number of support vectors for class Demented- 50
Number of support vectors for class Converted - 21
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5. Discussion

In present study, we considered longitudinal MRI subjects from
OASIS datasets, and input information to machine chose as key attri-
butes like MMSE, CDR, MR delay and n WBV. The forecasting of de-
mentia depends on the scores of mentioned attributes. As best of our
insight, this is the essential investigation for foreseeing dementia de-
pendent on these scores by utilizing SVM calculations. Additionally, we
locate an ideal hyperplane by using RBF and C esteems that is also used
in the study of weather forecast datasets [24]. It helped us to make a
correlation between hyperplane parameters to investigate better sup-
port vectors. We classified MRI sessions into three groups based on the
CDR scale (0–2). Additionally, we conduct statistical analysis by bar
charts to differentiate subject category. In next sections, we are going to
introduce the outcomes of these group-level comparisons, after that, we
discuss in more detail about how SVM produces optimized performance
values to forecast dementia using kernel functions and study limitations
when compared to other methods.

5.1. Dementia prediction by a selection of key attributes

As discussed, current MRI sessions division was done based on the
current CDR value. Beyond that, our subject group classifications are in
line with the study designed for investigating diagnostic agreements
[25]. However, it is not feasible to predict dementia disease with single
attribute or parameter. Thus, we examine with other key parameters
such as MMSE, AGE, n WBV and MR delay that matched with targeted
group column. At the same time we tried to exclude other demographic
values like Gender, SES, EDU, and ASF since these parameters not good
enough in dementia prediction, also by considering many attributes
performance may get low [26]. In addition, outcomes mentioned that
100 subjects (Fig. 6) are predicted non-demented (actually these dis-
tributed as 63ND, 24D and 13C types), and 47 subjects predicted as

demented (but these distributed as 11ND, 34D and 2C types). Finally, 3
non-demented subjects forecasted as converted type.

The prediction was validated and done on the confidence values of
the actual category of each subject (refer appendix). For example, in
real time scenario Subject, ID-04 was non-demented based current CDR
score (=0) but predicted as demented. This might be caused by the
high age [27] or more significant delay in the MR value [28]. Therefore,
this will change from subject to subject depending on the present re-
ports.

5.2. Selection of optimal hyperplane

The performance for the given dataset by SVM algorithm producing
about 70% and recall or sensitivity providing in the range of 65–82%
that depended on the subject category. Until now, only single research
tried to develop a new method for an ensemble of SVM for classification
of dementia using systematic MRI and MMSE values [12]. The re-
searchers performed ensemble SVM using RBF kernel or linear to
achieve distinct class accuracies. In their results, accuracy was

Fig. 5. Spatial distribution of Gamma (RBF) Vs. C values.

Table 3
Confusion Matrix of given subjects TND*: True Non-Demented; TD*: True
Demented; TC*: True Converted; PND*: Predict Non-Demented; PD*: Predict
Demented, and PC*: Predict Converted.

TND TD TC precision

PND 43 14 10 64.18%
PD 8 27 1 75.00%
PC 2 0 0 0.00%
Recall 81.13% 65.85% 0.00% 0.00%

Fig. 6. Subject Classification between Predictions subject groups Vs Actual
Subject Groups.
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increased from 55% to 59.1%. Our SVM approach by considering total
brain value with MMSE and CDR, producing the accuracy nearly 70%.
Additionally, we compared the statistical calculation of performance
outcomes with optimal hyperplane coordinates to verify whether ma-
chine-generated results were performing similar SVM optimal perfor-
mance (Fig. 5). In the end, outcomes generated by the ML system and
Hyperplane are matched to prove the theory of support vector algo-
rithms.

5.3. Limitations

The relatively lowest number of subjects may hamper the specula-
tion of outcomes to the overall population of dementia patients. Despite
that, our study closely related to Ref. [12], but we achieve better per-
formance values by introducing an optimal hyperplane study. Classifi-
cation and normalization of subject groups are not accurate in most
cases, and it might tend to underestimation of dementia in older pa-
tients that result in getting low accuracies through SVM categorization.
Nevertheless, approaching optimal hyperplanes, we tried to increase
the performance by a selection of low RBF and high C values. Even-
tually, the order between sets of different subjects was an optimal hy-
perplane, which does not reflect the issue regarding accurate differ-
ential determination between a few neurological diseases. This issue
should be addressed in future researches validating the use of SVM
approaches consistently in real life.

6. Conclusion

Dementia is one of the significant health issues that has challenged
health experts worldwide. In addition, it mostly happened in older
people (age > 60). Unfortunately, there are no proper medicines for
completely cure this disease, and sometimes it will directly affect
person memory skills and reduce the human ability to perform daily
activities. Many healthcare professionals and computer scientists were

performing research activities on this problem from last two decades.
Still, there is an extreme need for identification of relevant character-
istics that can forecast the detection of dementia. We approached
support vectors for classification and prediction purposes of dementia
and achieved optimized results with efficient performance values.
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Appendix. Dementia predicted outcome dataset after SVM implementation

N Age CDR MMSE MR Delay N WBV Group Conf (ND) Conf (D) Conf (Con) Prediction

1 87 0.0 27 0 0.7 Nondemented 1 0 0 Nondemented
2 80 0.5 22 1895 0.7 Demented 1 0 0 Nondemented
3 88 0.0 28 0 0.7 Nondemented 1 0 0 Nondemented
4 90 0.0 27 538 0.7 Nondemented 0 1 0 Demented
5 85 0.0 30 1603 0.7 Nondemented 0 0 1 Converted
6 71 0.5 28 0 0.7 Demented 1 0 0 Nondemented
7 75 1.0 27 1281 0.7 Demented 1 0 0 Nondemented
8 68 0.5 27 0 0.8 Demented 0 1 0 Demented
9 66 0.5 30 0 0.8 Demented 1 0 0 Nondemented
10 68 0.5 29 854 0.8 Demented 1 0 0 Nondemented
11 78 0.0 29 0 0.7 Nondemented 1 0 0 Nondemented
12 80 0.0 29 730 0.7 Nondemented 1 0 0 Nondemented
13 85 0.0 29 1456 0.7 Nondemented 1 0 0 Nondemented
14 81 0.5 27 617 0.8 Nondemented 0 1 0 Demented
15 86 0.0 27 2400 0.8 Nondemented 1 0 0 Nondemented
16 87 0.0 30 0 0.7 Converted 1 0 0 Nondemented
17 88 0.0 29 489 0.7 Converted 1 0 0 Nondemented
18 92 0.5 27 1933 0.7 Converted 1 0 0 Nondemented
19 64 0.0 29 828 0.8 Nondemented 1 0 0 Nondemented
20 82 0.5 27 0 0.7 Demented 0 1 0 Demented
21 71 0.0 30 609 0.8 Nondemented 0 1 0 Demented
22 73 0.0 30 1234 0.8 Nondemented 1 0 0 Nondemented
23 77 0.0 29 0 0.7 Nondemented 1 0 0 Nondemented
24 60 0.0 30 0 0.8 Nondemented 1 0 0 Nondemented
25 86 0.0 30 0 0.7 Converted 1 0 0 Nondemented
26 90 0.5 21 0 0.7 Demented 0 1 0 Demented
27 88 0.0 30 0 0.7 Nondemented 1 0 0 Nondemented
28 89 0.0 27 405 0.7 Nondemented 1 0 0 Nondemented
29 75 0.0 29 2369 0.8 Nondemented 1 0 0 Nondemented
30 85 0.5 29 1123 0.7 Demented 1 0 0 Nondemented
31 89 0.5 26 2508 0.7 Demented 1 0 0 Nondemented
32 83 0.5 25 486 0.7 Demented 1 0 0 Nondemented
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33 86 0.5 27 567 0.7 Demented 0 1 0 Demented
34 73 0.0 28 756 0.8 Converted 1 0 0 Nondemented
35 75 0.0 30 0 0.7 Nondemented 1 0 0 Nondemented
36 66 1.0 21 248 0.7 Demented 0 1 0 Demented
37 68 1.0 19 647 0.7 Demented 0 1 0 Demented
38 69 1.0 4 1233 0.7 Demented 0 1 0 Demented
39 78 0.0 30 1510 0.7 Nondemented 1 0 0 Nondemented
40 84 0.0 28 842 0.7 Nondemented 0 1 0 Demented
41 85 0.0 29 0 0.7 Converted 1 0 0 Nondemented
42 87 0.5 24 846 0.7 Converted 0 1 0 Demented
43 67 0.0 27 726 0.8 Nondemented 1 0 0 Nondemented
44 71 0.0 28 0 0.8 Nondemented 1 0 0 Nondemented
45 85 0.0 30 1340 0.7 Nondemented 1 0 0 Nondemented
46 79 0.5 26 212 0.7 Demented 0 1 0 Demented
47 70 0.0 30 873 0.7 Nondemented 1 0 0 Nondemented
48 72 0.0 30 1651 0.7 Nondemented 1 0 0 Nondemented
49 79 0.0 29 0 0.7 Nondemented 1 0 0 Nondemented
50 83 0.0 29 1351 0.7 Nondemented 1 0 0 Nondemented
51 81 0.5 27 490 0.7 Demented 1 0 0 Nondemented
52 81 0.5 26 830 0.7 Demented 0 1 0 Demented
53 82 0.5 18 1282 0.7 Demented 0 1 0 Demented
54 62 0.5 30 497 0.7 Demented 0 1 0 Demented
55 68 0.0 29 451 0.7 Nondemented 1 0 0 Nondemented
56 71 0.0 29 1438 0.7 Nondemented 0 1 0 Demented
57 73 0.0 28 2163 0.7 Nondemented 1 0 0 Nondemented
58 90 0.0 29 743 0.7 Nondemented 1 0 0 Nondemented
59 82 0.0 30 432 0.7 Nondemented 1 0 0 Nondemented
60 82 0.0 29 672 0.7 Nondemented 1 0 0 Nondemented
61 84 0.0 29 1415 0.7 Nondemented 1 0 0 Nondemented
62 86 0.0 30 2386 0.7 Nondemented 1 0 0 Nondemented
63 84 1.0 28 365 0.7 Demented 1 0 0 Nondemented
64 70 0.0 29 0 0.8 Nondemented 1 0 0 Nondemented
65 72 0.0 28 580 0.8 Nondemented 0 1 0 Demented
66 75 0.5 22 567 0.7 Demented 0 1 0 Demented
67 66 0.0 30 0 0.7 Nondemented 1 0 0 Nondemented
68 73 0.0 29 1393 0.7 Nondemented 1 0 0 Nondemented
69 89 0.0 28 0 0.7 Nondemented 1 0 0 Nondemented
70 71 1.0 16 584 0.7 Demented 0 1 0 Demented
71 66 0.5 25 0 0.7 Demented 0 1 0 Demented
72 68 0.5 30 580 0.7 Demented 0 1 0 Demented
73 69 0.5 28 1209 0.7 Demented 1 0 0 Nondemented
74 82 0.5 26 0 0.7 Demented 0 1 0 Demented
75 78 1.0 21 0 0.7 Demented 0 1 0 Demented
76 72 1.0 27 563 0.7 Demented 0 1 0 Demented
77 75 0.0 29 680 0.8 Nondemented 1 0 0 Nondemented
78 76 0.0 30 1345 0.8 Nondemented 1 0 0 Nondemented
79 61 0.0 30 0 0.8 Nondemented 1 0 0 Nondemented
80 67 0.5 28 661 0.8 Demented 1 0 0 Nondemented
81 80 0.5 27 0 0.8 Demented 0 1 0 Demented
82 77 0.0 29 0 0.8 Nondemented 1 0 0 Nondemented
83 76 0.0 30 1631 0.8 Nondemented 1 0 0 Nondemented
84 82 0.5 29 0 0.7 Demented 1 0 0 Nondemented
85 86 0.5 30 1387 0.7 Demented 1 0 0 Nondemented
86 75 0.5 30 2002 0.7 Converted 0 1 0 Demented
87 87 0.0 30 675 0.7 Nondemented 1 0 0 Nondemented
88 70 1.0 22 0 0.7 Demented 0 1 0 Demented
89 65 0.5 17 881 0.7 Demented 0 1 0 Demented
90 78 0.5 20 558 0.7 Demented 0 1 0 Demented
91 75 0.5 28 504 0.7 Demented 0 1 0 Demented
92 76 0.5 27 0 0.7 Demented 0 1 0 Demented
93 74 0.0 30 576 0.8 Nondemented 0 1 0 Demented
94 78 0.0 29 1927 0.7 Nondemented 1 0 0 Nondemented
95 81 0.0 28 0 0.8 Nondemented 1 0 0 Nondemented
96 74 0.0 30 647 0.7 Nondemented 1 0 0 Nondemented
97 86 0.0 30 0 0.7 Nondemented 1 0 0 Nondemented
98 88 0.0 30 597 0.7 Nondemented 0 1 0 Demented
99 71 0.5 27 472 0.7 Demented 1 0 0 Nondemented
100 79 0.0 29 0 0.7 Converted 1 0 0 Nondemented
101 81 0.5 29 1042 0.7 Converted 1 0 0 Nondemented
102 84 0.5 29 2153 0.7 Converted 1 0 0 Nondemented
103 86 0.5 30 2639 0.7 Converted 1 0 0 Nondemented
104 76 0.0 28 0 0.8 Nondemented 1 0 0 Nondemented
105 78 0.0 30 0 0.7 Nondemented 1 0 0 Nondemented
106 82 0.0 29 1591 0.6 Nondemented 0 0 1 Converted
107 65 0.5 30 0 0.8 Converted 1 0 0 Nondemented
108 74 0.0 30 0 0.7 Nondemented 1 0 0 Nondemented
109 78 0.0 27 1146 0.7 Nondemented 1 0 0 Nondemented
110 74 0.5 28 0 0.7 Demented 1 0 0 Nondemented
111 75 0.5 30 636 0.7 Demented 1 0 0 Nondemented
112 73 0.0 29 0 0.8 Nondemented 1 0 0 Nondemented
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113 67 0.5 29 0 0.8 Demented 1 0 0 Nondemented
114 76 0.5 26 0 0.7 Demented 0 1 0 Demented
115 65 0.0 30 0 0.8 Nondemented 1 0 0 Nondemented
116 91 0.0 30 561 0.7 Nondemented 0 1 0 Demented
117 93 0.0 29 1553 0.7 Nondemented 0 0 1 Converted
118 68 0.0 30 0 0.8 Converted 1 0 0 Nondemented
119 82 0.0 30 1806 0.7 Nondemented 1 0 0 Nondemented
120 81 0.0 29 0 0.7 Nondemented 1 0 0 Nondemented
121 73 0.5 30 0 0.7 Demented 1 0 0 Nondemented
122 66 0.0 29 0 0.8 Nondemented 1 0 0 Nondemented
123 68 0.0 29 790 0.8 Nondemented 1 0 0 Nondemented
124 77 0.0 28 791 0.7 Nondemented 1 0 0 Nondemented
125 75 1.0 18 764 0.7 Demented 0 1 0 Demented
126 73 0.5 29 0 0.8 Demented 1 0 0 Nondemented
127 76 0.5 28 759 0.8 Demented 1 0 0 Nondemented
128 77 0.0 29 0 0.7 Nondemented 1 0 0 Nondemented
129 82 0.5 23 0 0.7 Demented 0 1 0 Demented
130 84 0.5 22 621 0.7 Demented 0 1 0 Demented
131 77 1.0 23 0 0.8 Demented 0 1 0 Demented
132 79 2.0 25 580 0.8 Demented 0 1 0 Demented
133 73 0.0 30 691 0.7 Nondemented 1 0 0 Nondemented
134 77 0.0 30 493 0.8 Nondemented 1 0 0 Nondemented
135 75 0.5 30 0 0.7 Demented 1 0 0 Nondemented
136 70 0.5 26 0 0.7 Demented 0 1 0 Demented
137 73 0.5 28 1343 0.7 Demented 1 0 0 Nondemented
138 87 0.0 30 774 0.7 Converted 1 0 0 Nondemented
139 68 0.0 26 0 0.8 Nondemented 0 1 0 Demented
140 70 0.0 28 665 0.8 Nondemented 1 0 0 Nondemented
141 89 0.0 29 0 0.8 Nondemented 1 0 0 Nondemented
142 90 0.0 28 600 0.7 Nondemented 0 1 0 Demented
143 79 0.5 26 0 0.7 Demented 0 1 0 Demented
144 74 0.5 26 0 0.7 Demented 0 1 0 Demented
145 73 0.5 23 0 0.7 Demented 0 1 0 Demented
146 66 0.0 30 182 0.7 Nondemented 1 0 0 Nondemented
147 86 0.5 26 2297 0.7 Demented 1 0 0 Nondemented
148 61 0.0 30 0 0.8 Nondemented 1 0 0 Nondemented
149 63 0.0 30 763 0.8 Nondemented 1 0 0 Nondemented
150 62 0.0 26 1180 0.7 Nondemented 1 0 0 Nondemented
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