
Chapter 4
Modeling and Simulation of Spiking
Neural Networks with Resistive
Switching Synapses

Valerio Milo

Abstract Artificial intelligence (AI) has recently reached excellent achievements
in the implementation of human brain cognitive functions such as learning, recog-
nition and inference by running intensively neural networks with deep learning on
high-performance computing platforms. However, excessive computational time and
power consumption required for achieving such performance make AI inefficient
compared with human brain. To replicate the efficient operation of human brain
in hardware, novel nanoscale memory devices such as resistive switching random
access memory (RRAM) have attracted strong interest thanks to their ability to
mimic biological learning in silico. In this chapter, design, modeling and simula-
tion of RRAM-based electronic synapses capable of emulating biological learning
rules are first presented. Then, the application of RRAM synapses in spiking neu-
ral networks to achieve neuromorphic tasks such as on-line learning of images and
associative learning is addressed.

4.1 Introduction

In recent years, artificial intelligence (AI) has achieved outstanding performance
in a wide range of machine learning tasks including recognition of faces [1] and
speech [2] which now play a crucial role in many fields such as transportation and
security. To obtain such achievements, AI has first exploited the availability of very
large datasets for training deep neural networks (DNNs) in software according to deep
learning [3]. Moreover, the maturity of high-performance computing hardware such
as the graphics processing unit (GPU) [4] and the tensor processing unit (TPU) [5]
has further contributed to accelerate DNN training, enabling to outperform human
ability in certain tasks such as image classification [6] and playing board game of
Go [7]. However, efficient implementation of AI tasks on modern digital computers
based on vonNeumann architecture and complementary metal-oxide-semiconductor
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(CMOS) technology has been recently challenged by fundamental issues such as the
excessive power consumption and latency due to the looming end of Moore’s law [8]
and physical separation between memory and processing units [9].

To overcome the so-called von Neumann bottleneck of conventional hardware,
novel non-von Neumann computing paradigms have been intensively explored with
a view of bringing data processing closer to where data are stored [10]. In this
wide range, neuromorphic computing has emerged as one of the most promising
approaches since it aims at improving dramatically computation mainly in terms of
energy efficiency taking inspiration from how the human brain processes information
via biological neural networks [11].

In the last decade, strong research efforts in the field of neuromorphic engineer-
ing have led to build medium/large-scale analog/digital neuromorphic systems using
CMOS technology [9, 12, 13]. However, the use of bulky CMOS circuits to closely
reproduce synaptic dynamics has proved to be amajor issue toward hardware integra-
tion of massive synaptic connectivity featuring human brain. This limitation has thus
led to the exploration of novel memory device concepts, such as resistive switching
random access memory (RRAM) and phase change memory (PCM), which dis-
play features suitable for synaptic application such as nanoscale size, fast switching
behavior, low power operation, and tunable resistance by application of electrical
pulses enabling to emulate synaptic plasticity at device level [14].

This chapter covers the application of hafnium-oxide (HfO2) RRAM devices as
plastic synapses in spiking neural networks (SNNs) to implement brain-inspired neu-
romorphic computing. After reviewing the main features of brain-inspired computa-
tion, physical mechanisms and operation principle of RRAM devices are described.
Then, the scheme and operation of two hybrid CMOS/RRAM synapse circuits capa-
ble of implementing bio-realistic learning rules such as spike-timing dependent plas-
ticity (STDP) and spike-rate dependent plasticity (SRDP) are presented. Finally,
SNNs with resistive synapses are explored in simulation demonstrating their abil-
ity to achieve fundamental cognitive primitives such as on-line learning of visual
patterns and associative memory.

4.2 Brain-Inspired Computing

Brain-inspired computing is considered a promising approach capable of tackling
issues challenging today’s digital processors thanks to its ability to replicate the
massive parallelism and high energy efficiency of the human brain. To achieve such
performance, human brain first relies on a high-density layered architecture consist-
ing of large networks of biological processing units referred to as neurons where each
neuron is connected with other neurons via 104 synapses on average [14]. In addi-
tion to the architecture, another feature playing a key role in brain computation is the
spike-driven information processing. As illustrated in Fig. 4.1a, in biological neural
networks the neurons interact with the next neuron by propagation of voltage spikes
along the axon and their transmission through the synapses, namely the nanoscale
gaps between the axon terminals and the dentrites. As a result of spike transmis-
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Fig. 4.1 a Illustration of some PREs connected to a single POST by synapses in a bio-realistic
neural network. PREs emit spikes that are sent to the POST causing an increase of its membrane
potential. b Sketch evidencing the strong analogy between a biological synapse where conductivity
is tuned by voltage-induced ion migration and a RRAM device where conductivity is controlled by
ionic defect migration resulting in formation/retraction of conductive paths. Reprinted from [18]

sion, calcium ions diffuse in the neuron activating the release of neurotransmitters
within the synaptic gap where they diffuse eventually binding to sites of sodium ion
channels of the post-synaptic neuron. This induces the opening of sodium ion chan-
nels and consequently the diffusion of sodium ions in the cell, which results in an
increase of membrane potential leading to the generation of a spike by post-synaptic
neuron as it crosses an internal threshold [14]. These biological processes at synap-
tic level thus suggest that information is processed by generation and transmission
of spikes whose short duration of the order of 1 ms combined with typical neuron
spiking rate of 10Hz leads to a power consumption of only 20W that is dramatically
lower than power dissipated by modern computers [9, 14]. Therefore, brain com-
puting relies on neurons integrating input signals sent by other neurons and firing
spikes after reaching the threshold, and synapses changing their weight depending
on spiking activity of pre-synaptic neuron (PRE) and post-synaptic neuron (POST).
In particular, two biological rules like STDP [15] and SRDP [16] are considered
two fundamental schemes controlling synaptic weight modulation, which is in turn
believed to underlie learning ability in the brain.

To faithfully replicate the brain-inspired computing paradigm in hardware, in
recent years neuromorphic community has intensively investigated novel material-
based devices such as RRAM which, as shown in Fig. 4.1b, can mimic biological
processes governing synaptic plasticity by exploiting its ability to change resistance
via creation/rupture of conductive filaments in response to application of voltage
pulses thanks to the resistive switching phenomenon [17, 18].

4.3 Resistive Switching in RRAM Devices

RRAM is a two-terminal nanoscale memory device displaying resistive switching,
namely the ability to change the device resistance via the creation and disruption
of filamentary conductive paths under the application of voltage pulses. The RRAM
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Fig. 4.2 Sketch ofRRAMstates, namely the reset state (left) and the set state (right). The application
of a positive voltage to theTEcauses themigration of defects toward the depleted gap, thus recreating
the continuous filamentary path. The application of a negative voltage to the TE causes the retraction
of defects back to the top reservoir, and the formation of a depleted gap

structure relies on ametal-insulator-metal (MIM) stackwhere a transitionmetal oxide
layer, such as HfOx , TiOx , TaOx and WOx , is sandwiched between two metal elec-
trodes referred to as top electrode (TE) and bottom electrode (BE), respectively [19,
20]. To initiate the filamentary path across the MIM stack, a soft breakdown pro-
cess called forming is first operated, which locally creates a high concentration of
defects, e.g., oxygen vacancies or metallic impurities, enhancing conduction. After
forming, RRAM can exhibit bipolar resistive switching, where the application of a
positive voltage can induce an increase of conductance, or set transition, whereas
the application of a negative voltage can lead to reset transition, or a decrease of
conductance [20].

Figure4.2 schematically shows the 2 states of a RRAM device, namely the reset
state (left), or high resistance state (HRS), where the filamentary path of defects is
disconnected because of a previous reset transition. Under a positive voltage applied
to the TE, defects from the top reservoirmigrate toward the depleted gap, thus leading
to the set state (right), or low resistance state (LRS), via a set transition. Applying a
negative voltage to the TE causes the retraction of defects from the filament toward
the top reservoir, and the formation of the depleted gap [20]. Note that the TE and BE
generally differ by material and/or structure, with the TE being generally chemically
active, e.g., Ti, Hf, or Ta, which enables the creation of an oxygen exchange layer
with a relatively high concentration of oxygen vacancies [21]. On the other hand, the
BE is chemically inert to prevent set transition when a positive voltage is applied to
the BE [22].

4.4 Synapse Circuits with RRAM Devices

RRAM devices exhibit features as nanoscale size and low current operation making
them attractive for realization of hardware synapses. The major challenge thus con-
sists of implementing the synaptic plasticity schemes considered at the basis of bio-
logical learning such as STDP [15] andSRDP [16] at device level. To achieve synaptic
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Fig. 4.3 Schematic of a 1T1R RRAM structure serving as synaptic connection between a PRE
circuit and a POST circuit with I&F architecture. Application of a PRE spike at FET gate induces
a synaptic current in 1T1R cell which is integrated by POST leading its membrane potential Vint
to become more positive. As Vint hits the threshold Vth , a POST spike is backward sent at TE to
update synaptic weight according to STDP rule. Adapted with permission from [24]. Copyright
2016 IEEE

plasticity in hardware, the combination of RRAM devices and field-effect transistors
(FETs) serving as both cell selectors and current limiters has been widely used lead-
ing to the design of hybrid synaptic structures such as the one-transistor/one-resistor
(1T1R) structure [23, 24] and the four-transistors/one-resistor (4T1R) structure
[24, 25].

4.4.1 1T1R Synapse

Figure4.3 shows a circuit schematic where a hybrid structure based on serial con-
nection of a Ti/HfO2/TiN RRAM cell and a FET, referred to as 1T1R structure,
works as electronic synapse connecting a PRE to a POST with an integrate-and-fire
(I&F) architecture. This building block was designed to achieve STDP rule which is
considered one of the key mechanisms regulating learning in mammals. According
to STDP rule, synaptic weight can change depending on the relative time delay �t
between spikes emitted by PRE andPOST. If the PRE spike precedes the POST spike,
�t is positive resulting in an increase of synaptic weight or long-term potentiation
(LTP) of the synapse. Otherwise, if PRE spike generation takes place slightly after
the POST spike, �t has negative value leading to a decrease of synaptic weight, or
long-term depression (LTD) of the synapse [15]. The STDP implementation in 1T1R
synapse was achieved as follows. When the PRE sends a 10-ms-long voltage pulse
at FET gate, a current proportional to RRAM conductance flows across the synapse
since its TE is biased by a continuous voltage with low amplitude used for com-
munication phase. This current thus enters POST where it is integrated, causing an
increase of POST membrane/internal potential Vint . As this integral signal crosses
a threshold Vth , the POST sends both a forward spike toward next neuron layer
and a suitably-designed spike including a 1-ms-long pulse with positive amplitude
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followed, after 9 ms, by a 1-ms-long negative pulse, which is backward delivered at
TE to activate a synaptic weight update according to STDP rule. Here, as the PRE
spike precedes the POST spike (0 < �t < 10 ms), PRE voltage overlaps only with
the positive pulse of the POST spike, thus causing a set transition within RRAM
device resulting in LTP of 1T1R synapse. Otherwise, if the PRE spike follows the
POST spike (−10ms< �t <0), overlap occurs betweenPRE spike and the negative
pulse in the POST spike, thus activating a reset transition in RRAM device resulting
in LTD of 1T1R synapse [23, 24]. Note that STDP implementation in 1T1R RRAM
synapse was demonstrated in both simulation using a stochastic Monte-Carlo model
of HfO2 RRAM [23] and hardware as reported in [26].

4.4.2 4T1R Synapse

In addition toSTDP implementationvia 1T1Rsynapse, a novel hybridCMOS/RRAM
synapsewas designed to replicate another fundamental biological learning rule called
SRDP which states that high-frequency stimulation of PREs leads to synaptic LTP
whereas a low-frequency stimulation of PREs leads to synaptic LTD [16]. As shown
in Fig. 4.4a, PRE and POST are connected by a synapse circuit based on a 4T1R
structure including a HfO2 RRAM device and 4 FETs shared into M1–M2 and M3–
M4 branches. PRE circuit includes both a signal channel transmitting a Poisson-
distributed spike train with average frequency fPRE at the M1 gate and its copy
delayed by a time �tD at the M2 gate, and a noise channel driving M3 by application
of noise spikes at low frequency f3, whereas POST circuit relies on an I&F stage
with fire and random noise outputs which alternatively control RRAM TE and M4

gate by a multiplexer. If fPRE > �tD−1, the high probability that M1 and M2 are
simultaneously enabled by overlapping PRE spikes at gate terminals leads to the
activation of synaptic currents within M1/M2 branch causing, after integration by

Fig. 4.4 a Schematic of 4T1R RRAM circuit operating as synaptic connection between a PRE
circuit and a POST circuit with I&F architecture. b Measured and calculated resistance of 4T1R
synapse for increasing fPRE supporting high-frequency synaptic potentiation. Adapted from [25]
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I&F stage, the generation of a fire pulse which is delivered at TE. As a result, overlap
between spikes applied to M1 gate, M2 gate, and TE induces a set transition within
RRAMdevice, namely LTP. Note thatM1/M2 branch is the only active branch during
LTP operation since fire pulse disables M4 because of the inversion by NOT gate in
the POST. Otherwise, if fPRE < �tD−1, no spike overlap between channels driving
M1 and M2 takes place, thus making LTP branch disabled. To achieve LTD at low
fPRE , stochastic overlap among random noise voltage spikes provided at gate of M3

and M4 and a negative pulse applied at TE is exploited. In fact, these overlapping
spikes cause a reset transition within RRAM device resulting in LTD at the synapse.
Therefore, the operation principle of 4T1R synapse supports its ability to replicate
SRDP rule implementing LTP at high fPRE and a noise-induced stochastic LTD at
low fPRE [24, 25].

The ability to reproduce SRDP in 4T1R synapse was validated testing separately
LTP and LTD by use of 2T1R integrated structures. Figure4.4b shows measured
and calculated RRAM resistance as a function of fPRE , evidencing that a resistance
change from initial HRS to LRS can be activated in a 2T1R structure serving as
M1/M2 branch only when fPRE is greater or equal than the reciprocal of�tD = 10 ms
used in the experiment, namely fPRE ≥ 100 Hz. Similar to LTP, LTD was also
experimentally demonstrated in [24, 25] evidencing that RRAMresistance initialized
in LRS can reach HRS provided that PRE noise frequency f3 is higher than POST
noise frequency f4 to achieve a sufficiently high overlap probability among random
noise spikes controlling LTD branch.

4.5 Spiking Neural Networks with RRAM Synapses

4.5.1 Unsupervised Pattern Learning by SRDP

The fundamental ability of biological brain consists of learning by adaptation to
environment with no supervision. This process, which is referred to as unsupervised
learning, relies on schemes such as STDP and SRDP that adjust synaptic weights of
neural networks according to timing or rate of spikes encoding information such as
images and sounds. In particular, unsupervised learning of visual patterns has recently
attracted increasing interest leading to many simulation/hardware demonstrations of
SNNs with RRAM synapses capable of STDP [18, 23, 24, 26–30] and SRDP
[25, 31].

Figure4.5a illustrates a SNN inspired to perceptron network model developed by
Rosenblatt in the late 1950s [32] consisting of 64 PREs fully connected to a single
POST. This network was simulated using 4T1R RRAM structures as synapses to
demonstrate unsupervised on-line learning of images with SRDP by conversion of
image pattern (the ‘X’) and its surrounding background in high-frequency spiking
activity of PREs and low-frequency spiking activity of PREs, respectively. To achieve
this goal, after random initialization of synaptic weights between HRS and LRS
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Fig. 4.5 a Sketch of a perceptron neural network where PREs are fully connected to a single POST.
PREs receive spike sequences at high/low frequency upon pattern/background presentation which
results in potentiation/depression of corresponding synaptic weights according to SRDP rule. Color
plots of synaptic weights at b t = 0, c t = 5 s and d t = 10 s during a calculated on-line learning of
two 8 × 8 sequential images. e Time evolution of calculated conductance supporting the ability of
perceptron with 4T1R SRDP synapses to learn a new pattern after forgetting the previously stored
pattern. Adapted from [25]

(Fig. 4.5b), an image including an ‘X’ pattern was submitted for 5 s to the input layer
leading to high-frequency stimulation of PREs (fPRE = 100Hz) within the ‘X’ and
low-frequency stimulation of PREs (fPRE = 5Hz) outside the ‘X’. As described in
Sect. 4.4.2, this resulted in a selective LTP of ‘X’ synapses and stochastic LTD of
background synapses, thus leading synaptic weights to adapt to submitted image
within 5 s (Fig. 4.5c). After t = 5 s, ‘X’ image was replaced by a ‘C’ image with no
overlap with ‘X’ for other 5 s resulting in a high/low frequency stimulation of PREs
within/outside ‘C’. As shown by color map in Fig. 4.5d, external stimulation causes
potentiation of ‘C’ synapses and depression of all the other synapses,which evidences
network ability to learn a new pattern erasing the previously stored pattern [25]. This
result is also supported by calculated time evolution of synaptic conductance during
learning shown in Fig. 4.5e, which displays a fast conductance increase (LTP) of
pattern synapses and a slower conductance decrease (LTD) of background synapses
achieved using PRE and POST noise frequencies equal to f3 = 50Hz and f4 = 20 Hz,
respectively [25]. This simulation study corroborated the ability of perceptron SNNs
to learn on-line sequential images thanks to 4T1RRRAMsynapses capable of SRDP,
and provided a solid basis for its experimental demonstration presented in [25].

4.5.2 Associative Memory with 1T1R RRAM Synapses

In addition to unsupervised image learning, another brain-inspired function receiving
strong interest is the associativememory, namely the ability to retrieve pastmemories
by their partial stimulation. To achieve this cognitive primitive, pioneering works by
Hopfield [33] and Amit [34] focused on a type of neural network, called recurrent



4 Modeling and Simulation of Spiking … 57

Fig. 4.6 a Sketch of a Hopfield recurrent neural network with 6 fully connected neurons receiving
external stimulation Xi , i = 1:6. b Circuit schematic of a Hopfield network with 6 neurons fully
connected via bidirectional excitatory (blue) and inhibitory (red) 1T1R RRAM synapses. c Cal-
culated attractor learning process evidencing storage of the attractor state linking N1, N2 and N3.
d Illustration of associative memory implementation by recall process in an attractor network with
RRAM synapses taking inspiration from Pavlov’s dog experiments. Adapted with permission
from [35]. Copyright 2017 IEEE

neural network or attractor neural network, where the neurons are fully connected
with each other by bidirectional excitatory/inhibitory synapses.

Figure4.6a shows a sketch of a Hopfield recurrent neural network with 6 neurons
evidencing all-to-all synaptic connections, external stimulation Xi provided to each
neuron, and the absence of self-feedback to prevent divergence of network dynamics.
Based on this configuration, the circuit schematic of Hopfield neural network with
bidirectional excitatory/inhibitory 1T1R RRAM synapses shown in Fig. 4.6b was
designed and tested in simulation [35]. In this network, each neuron is implemented
by an I&Fblock that provides signal to other neurons as a PREbut also receives signal
by other neurons as a POST. Specifically, each I&F neuron has two current inputs,
namely the external current spikes Xi and the sum of weighted currents activated
by other neurons, and three outputs driving the gate of row 1T1R synapses, the TE
of column excitatory synapses (blue 1T1R cells) and the TE of column inhibitory
synapses (red 1T1R cells) by voltage pulses, respectively [35].

To demonstrate associative memory in this Hopfield network implementation, the
network was first operated in learning mode stimulating a subset of neurons (N1, N2,
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and N3) with high-frequency Poisson distributed spike trains to store their attractor
state. This process led each attractor neuron to fire three output spikes, namely (i)
a positive voltage pulse at gate of all its row 1T1R synapses, (ii) a positive voltage
pulse at TE of its column excitatory 1T1R synapses and (iii) a negative voltage
pulse at TE of its column inhibitory 1T1R synapses, by causing a stochastic co-
activation of attractor neurons at certain times. As this event occurs, voltage overlap
at gate/TE of synapses shared by pairs of attractor neurons leads mutual excitatory
1T1R cells to undergo a set transition, thus LTP,whereas the corresponding inhibitory
1T1R cells undergo a reset transition, thus LTD. It means that learning phase in
this Hopfield SNN with 1T1R synapses consists of the storage of attractor state
associated with externally stimulated neurons via potentiation/depression of mutual
excitatory/inhibitory synapses by a STDP-based learning scheme inspired to well-
known Hebb’s postulate stating that neurons that fire together, wire together [36].

Figure4.6c shows a calculated learning process with N1, N2, and N3 as attractor
neurons evidencing the gradual storage of corresponding attractor state via potenti-
ation of mutual excitatory synapses (top) due to the convergence of corresponding
RRAM devices to high conductance values (bottom). After implementing attractor
learning, the network was operated in another mode referred to as recall mode. Dur-
ing recall process, a high-frequency stimulation of a part of stored attractor state is
applied, e.g., only one out of 3 attractor neurons, leading to activation of high cur-
rents across high conductance synapses sharedwith other attractor neurons which are
transmitted at their inputs. As a result, attractor neurons with no external stimulation
start spiking, thus retrieving the whole attractor state via a sustained spiking activity
able to persist even after removing external stimulation [35]. Importantly, the ability
of Hopfield networks to recall an attractor state by its incomplete stimulation was
exploited to replicate in simulation a fundamental mammalian primitive referred to
as associative memory taking inspiration from the Pavlov’s dog experiments [37].
Indeed, as illustrated in Fig. 4.6d, after repeatedly stimulating a dog combining the
ring of a bell with the presentation of food leading it to salivate, an external stimula-
tion only with the ring of bell is able to reactivate the bell-food-salivation attractor in
the dog [35]. Finally, Hopfield neural network with 1T1R synapses was also success-
fully used to explore in simulation pattern completion task, namely the reconstruction
of an image stimulating its small features [38], which supports the strong potential
of Hopfield neural networks with resistive synapses in computational tasks.

4.6 Conclusions

This chapter covers design, modeling and simulation of SNNs with CMOS/RRAM
synapses capable of implementing brain-inspired neuromorphic computing. First,
unsupervised learning at synaptic level has been addressed by development of 1T1R
synapse and 4T1R synapse capable of replicating STDP and SRDP, respectively.
Then, applications of these resistive synapses in SNNs have been investigated. A per-
ceptron network with 4T1R synapses has been simulated demonstrating its ability to
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achieve on-line learning of sequential images via SRDP-based adaptation of synap-
tic weights. In addition, attractor learning and recall processes have been achieved
in a Hopfield recurrent neural network with excitatory/inhibitory 1T1R synapses
by simulations supporting its ability to implement associative memory. These results
support RRAMas promising technology for future development of large-scale neuro-
morphic systems capable of emulating unrivaled energy and computational efficiency
of biological brain.
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