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Hyperelastic materials based on Signorini’s strain energy density are studied by using Shannon
wavelets. Cylindrical waves propagating in a nonlinear elastic material from the circular
cylindrical cavity along the radius are analyzed in the following by focusing both on the main
nonlinear effects and on the method of solution for the corresponding nonlinear differential
equation. Cylindrical waves’ solution of the resulting equations can be easily represented in
terms of this family of wavelets. It will be shown that Hankel functions can be linked with
Shannon wavelets, so that wavelets can have some physical meaning being a good approximation
of cylindrical waves. The nonlinearity is introduced by Signorini elastic energy density and
corresponds to the quadratic nonlinearity relative to displacements. The configuration state of
elastic medium is defined through cylindrical coordinates but the deformation is considered as
functionally depending only on the radial coordinate. The physical and geometrical nonlinearities
arising from the wave propagation are discussed from the point of view of wavelet analysis.

1. Introduction

In this paper, cylindrical waves arising from the nonlinear equation of hyperelastic Signorini
materials [1–6] are studied. In particular, it will be shown that cylindrical waves can be easily
given in terms of Shannon wavelets.

Hyperelastic materials based on Signorini’s strain energy density [7, 8] were recently
investigated [1–6, 9, 10], because of the simple form of the Signorini potential, which has the
main advantage to be dependent only on three constants, including the two classical Lamé
constants (λ, μ). Hyperelastic materials and composites are interesting for the many recent
advances both in theoretical approaches and in practical discoveries of new composites,
having extreme behaviors under deformation [9].

However, Signorini hyperelastic materials, as a drawback, lead to some nonlinear
equations, to be studied in cylindrical coordinates [11–13]. The starting point, for searching
the solution of these equations, is the Weber equation, which is classically solved by
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the special functions of Bessel type. Thus the main advantage of three parameters’ potential
is counterbalanced by the Bessel function approximation. It has been recently shown [14]
that Bessel functions locally coincide with Shannon wavelets, thus enabling us to represent
cylindrical waves by the multiscale approach [9, 15, 16] of Shannon wavelets [14, 17–20].
In this way, Shannon wavelets might have some physical meaning through the cylindrical
waves propagation.

In recent years wavelets have been successfully applied to the wavelet representation
of integrodifferential operators [16–24], thus giving rise to the so-called wavelet solutions of
PDE (see, e.g., [16, 21, 22]) and integral equations (see, e.g., [20, 23, 24]).

In fact, wavelets enjoymany interesting features such as the localization, themultiscale
representation, and the fast decay to zero (either in space or in frequency domain), which are
a useful tool in many different applications, (see, e.g., [17–20] and references therein).

Usually wavelets have been used only as any other kind of orthogonal functions, with
some additional features but seldom they have shown to have also some physical meanings
[15, 25].

We will see that Shannon wavelets can approximate very well the Bessel functions,
thus being the most suitable tool for investigating cylindrical waves. Shannon wavelets are
analytically defined functions, infinitely differentiable, and sharply bounded in the frequency
domain. Their derivatives can be defined to any order by a simple analytical function [17–
20], thus enabling us to approximate a function and its derivatives and easily performing the
projection of differential operators.

This paper is organized as follows. Section 2 deals with some preliminary remarks
on the elastic materials in generalized coordinates. In Section 3, Signorini density energy is
defined and the basic equations in cylindrical coordinates for wave propagation in materials
are given. The main properties of Shannon wavelets, reconstruction of a function, and
connection coefficients are shortly described in Section 4. In Section 5 the similarities and
distinctions between Bessel functions and Shannon wavelets are given. Section 6 deals with
some remarks on perturbation method. In the same section the Shannon wavelet solution of
the nonlinear wave propagation is given and the corresponding nonlinear effects are com-
mented.

2. Preliminary Remarks

Let (θ1, θ2, θ3), be the (Lagrangian) cylindrical coordinate system θ1 = r, θ2 = ϑ, θ3 = z, and
(ds)2 = gikdθidθk = (dr)2 + r2(dϑ)2 + (dz)2 with
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, (2.1)

being the corresponding vector length and metric.
The Cauchy-Green strain tensor is defined as

εik =
1
2

(

∇iuk +∇kui +∇iuj∇ku
j
)

, (2.2)

with �u = {ui} being the displacement vector (in each point of the continuum).
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The covariant derivatives of a vector {vi} are

∇iv
k =

∂vk

∂θi
+ vjΓkji, ∇ivj =

∂vj

∂θi
− vkΓkji (2.3)

and can be easily computed by means of the Christoffel’s symbols

Γmki =
1
2
gmn

(
∂gkn

∂θi
+
∂gin

∂θk
− ∂gki
∂θn

)

(2.4)

and the metric values (2.1). Thanks to (2.1) the only nonvanishing components of these
symbols are

Γ122 = −r, Γ212 = Γ221 =
(
1
r

)

. (2.5)

Concerning the deformation, it can be classified according to the nonvanishing components
of the displacement vector. We have cylindrical waves [4, 9, 10, 26–29] when

�u
(

θ1, θ2, θ3
)

= �u(r, ϑ, z) = {u1 = ur(r), u2 = r · uϑ = u3 = uz = 0}. (2.6)

When the components of the Cauchy-Green tensor are known, we can easily evaluate the
three invariants:

I1(εik) = εikgik = ε11 · 1 + ε22 · 1
r2

+ ε33 · 1,
I2(εik) = εimεnkgikgnm

= (ε11 · 1)2 +
(

ε22 · 1
r2

)2

+ (ε33 · 1)2 +
(

ε12 · 1
r

)2

+
(

ε23 · 1
r

)2

+ (ε13 · 1)2,

I3(εik) = εpmεinεkqgimgpqgkn

= (ε11)3 +
(

ε22
1
r2

)3

+ (ε33)3 + (ε13 · 1)
(

ε13ε11 + ε23ε12
1
r2

+ ε13ε33
)

+
(

ε12 · 1
r2

)(

ε12ε11 + ε12ε22
1
r2

+ ε13ε23
)

+
(

ε23 · 1
r2

)(

ε12ε13 + ε23ε22
1
r2

+ ε23ε33
)

,

(2.7)

which, in dealing with hyperelastic materials, enable us to compute the potential.
In the case of cylindrical waves (2.6), by taking into account (2.2), the only nonzero

components of the strain tensor are

ε11 = εrr = ur,r +
1
2
(ur,r)2, ε22 = r2εϑϑ = rur +

1
2
(ur)2, (2.8)
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I1(εik) = εikgik = ε11 + ε22

= ur,r +
1
2
(ur,r)2 + rur +

1
2
(ur)2,

I2(εik) = εimεnkgikgnm = ε211 +
1
r4
ε222

= (ur,r)2 + (ur,r)3 +
1
r2
(ur)2 +

1
r3
(ur)3 +

1
4
(ur,r)4 +

1
4r4

(ur)4,

I3(εik) = εpmεinεkqgimgpqgkn = ε311 +
1
r6
ε322 = (ur,r)3 +

1
r3

(ur)3

+
3
2

[

(ur,r)4 +
1
r4

(ur)4
]

+
3
4

[

(ur,r)5 +
1
r5

(ur)5
]

+
1
8

[

(ur,r)6 +
1
r6
(ur)6

]

,

(2.9)

so that, by neglecting displacements of order higher than three, we have

I1(εik) = εikgik = ε11 + ε22

= ur,r +
1
2
(ur,r)2 + rur +

1
2
(ur)2,

I2(εik) = εimεnkgikgnm = ε211 +
1
r4
ε222

∼= (ur,r)2 + (ur,r)3 +
1
r2

(ur)2 +
1
r3

(ur)3,

I3(εik) = εpmεinεkqgimgpqgkn = ε311 +
1
r6
ε322

∼= (ur,r)3 +
1
r3

(ur)3.

(2.10)

Signorini potential, which belongs to the polynomial hyperelastic model (also called gener-
alized Rivlin model) [26–29], is defined as [1–9, 14]

W =

(

1
√

IA3

)[

cIA2 +
(
1
2

)(

λ + μ −
(c

2

))

(IA1)2 +
(

λ +
(c

2

))

(1 − IA1)
]

−
(

μ +
(c

2

))

(2.11)

with

IA1 =
I1 + 2(I1)2 − 2I2 + 2(I1)3 − 6I1I2 + 4I3

1 + 2I1 + 2(I1)2 − 2I2 + (4/3)(I1)3 − 4I1I2 + (8/3)I3
,

IA2 =
1
2
(I1)2 − (1/2)(I1)2 − (1/2)I2 + (I1)3 − 3I1I2 + 2I3

1 + 2I1 + 2(I1)2 − 2I2 + (4/3)(I1)3 − 4I1I2 + (8/3)I3
,

IA3 =
2
3
I1I2 − 1

4
√
3
(I1)3

(I1)3 − I1I2 + 2I3
1 + 2I1 + 2(I1)2 − 2I2 + (4/3)(I1)3 − 4I1I2 + (8/3)I3

.

(2.12)
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Therefore from the previous equation, by taking into account (2.10), we have the approxima-
tion

IA1
∼= (ε11 + ε22) + 2(ε11 + ε22)2 − 2

(

ε211 +
1
r4
ε222

)

+ 2(ε11 + ε22)3

− 6(ε11 + ε22)
(

ε211 +
1
r4
ε222

)

+ 4
(

ε311 +
1
r6
ε322

)

= (ε11 + ε22) + 2ε11ε22,

IA2
∼= −1

2

(

ε211 + ε
2
22

)

+ (ε11 + ε22)3 − 3(ε11 + ε22)
(

ε211 +
1
r4
ε222

)

+ 2
(

ε311 +
1
r6
ε322

)

= −1
2

(

ε211 +
1
r4
ε222

)

,

IA3
∼= 2

3
(ε11 + ε22)

(

ε211 +
1
r4
ε222

)

,

(2.13)

that is

IA1
∼= (ε11 + ε22) + 2ε11ε22,

IA2
∼= −1

2

(

ε211 +
1
r4
ε222

)

,

IA3
∼= 2

3
(ε11 + ε22)

(

ε211 +
1
r4
ε222

)

,

(2.14)

and, according to (2.8),

IA1
∼=
(

ur,r +
1
2
(ur,r)2 + rur +

1
2
(ur)2

)

+ 2
[

ur,r +
1
2
(ur,r)2

][

rur +
1
2
(ur)2

]

,

IA2
∼= −1

2

([

ur,r +
1
2
(ur,r)2

]2

+
1
r4

[

rur +
1
2
(ur)2

]2
)

,

IA3
∼= 2

3

(

ur,r +
1
2
(ur,r)2 + rur +

1
2
(ur)2

)([

ur,r +
1
2
(ur,r)2

]2

+
1
r4

[

rur +
1
2
(ur)2

]2
)

.

(2.15)

3. Cylindrical Waves Equation

The basic equations of motion are [1–5, 9, 10, 14, 26–29]

∇iT
ik − ρ∇iε

ik =
∂2uk

∂t2
, (3.1)

where Tik is the Piola-Kirchoff stress tensor. For hyperelastic materials it is Tik = (∂W/∂εik)
whereW is given by (2.11), for Signorini’s materials.
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Taking into account that

∂W

∂εik
=

3∑

h=1

∂W

∂IAh

∂IAh
∂εik

, (3.2)

and, according to (2.11), it is

∂W

∂IA1
=

(

1
√

IA3

)
[(

λ + μ −
(c

2

))

IA1 −
(

λ +
(c

2

))]

,

∂W

∂IA2
=

c

2
√

IA3
,

∂W

∂IA3
=

1

2
√

IA3

[

cIA2 +
(
1
2

)(

λ + μ −
(c

2

))

(IA1)2 +
(

λ +
(c

2

))

(1 − IA1)
]

,

(3.3)

and, by (2.14), the only unvanishing derivatives are

∂IA1

∂ε11
= 1 + 2ε22,

∂IA1

∂ε22
= 1 + 2ε11,

∂IA2

∂ε11
= −ε11, ∂IA2

∂ε22
= − 1

r4
ε22,

∂IA3

∂ε11
= 2ε11 +

2
3r4

ε222 +
4
3
ε11ε22,

∂IA3

∂ε22
=

2
3
ε211 +

2
r4
ε222 +

4
3
ε11ε22.

(3.4)

The Piola-Kirchoff tensor for the Signorini model (see also [3–5, 9]) is

Tik =
[

λIA1 + cIA2 +
1
2

(

λ + μ − c

2

)

(IA1)2
]

gik + 2
[

μ −
(

λ + μ +
c

2

)

IA1

]

εik + 2c
(

εijεkj

)

. (3.5)

In the strain components, we will neglect those terms with order higher than 3, so that the
only unvanishing components of Tik are

T11 =
[

λIA1 + cIA2 +
1
2

(

λ + μ − c

2

)

(IA1)2
]

+ 2
[

μ −
(

λ + μ +
c

2

)

IA1

]

ε11 + 2c(ε11)2,

T22 =
1
r2

[

λIA1 + cIA2 +
1
2

(

λ + μ − c

2

)

(IA1)2
]

+ 2
[

μ −
(

λ + μ +
c

2

)

IA1

]ε22
r2

+ 2c
(
ε22
r2

)2

T33 =
[

λIA1 + cIA2 +
1
2

(

λ + μ − c

2

)

(IA1)2
]

.

,

(3.6)
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By using (2.8),(2.10), and (3.6) we finally get the Kirchoff tensor in terms of displacements:

T11 = Trr

=
(

λ + 2μ
)

ur,r + λ
ur
r

+
1
4
(−10λ − 4μ + 5c

)

(ur,r)2 +
1
2
(

2λ − 2μ − 5c
)1
r
urur,r

+
1
4
(

6λ + 2μ + c
) 1
r2
(ur)2 +

1
2
(6λ + 13c)(ur,r)3 +

1
4
(

70λ − 18μ + c
)1
r
urur,r

+
1
4
(−42λ + 10μ + 15c

) 1
r2
(ur)2 +

1
2
(

4λ − 2μ + 3c
) 1
r3

(ur)3,

r2T22 = Tϑϑ

=
(

λ + 2μ
)ur
r

+ λur,r +
1
4
(−2λ + 2μ + c

)

(ur,r)2 +
1
2
(

2λ − 2μ − 5c
)1
r
urur,r

+
1
4
(−2λ − 4μ + 5c

) 1
r2
(ur)2 +

(

2λ − μ + 4c
)

(ur,r)3 +
1
4
(−42λ + 10μ + 15c

)1
r
urur,r

+
1
4
(

70λ − 18μ + c
) 1
r2
(ur)2 + (−λ + 4c)

1
r3

(ur)3.

(3.7)

From (3.1) the only nontrivial equation is the first one:

(

λ + 2μ
)
(

ur,rr +
ur,r
r

+ ur − ur
r2

)

− ρür = S1ur,rrur,r + S2
1
r
ur,rrur + S3

1
r
(ur,r)2 + S4

1
r2
ur,rur

+ S5
1
r3

(ur)2 + S6ur,rr(ur,r)2 + S7
1
r3
ur,rr(ur)2

+ S8
1
r
ur,rrur,rur + S9

1
r
(ur,r)3 + S10

1
r4

(ur)3

+ S11
1
r2

(ur,r)2ur + S12
1
r3
ur,r(ur)2,

(3.8)

where the coefficients S1, S2, . . . , S12 depend on Signorini parameters λ, μ, and c:

S1 =
1
2
(−6λ + 4μ + 5c

)

, S2 =
1
2
(

4λ − 2μ − 5c
)

, S3 =
1
2
(

2λ − μ − 3c
)

,

S4 =
1
2
(

2μ − 5c
)

, S5 =
1
2
(

5μ − 3c
)

, S6 =
1
4
(

9λ − 12μ + 93c
)

,

S7 =
1
2
(

24λ − 4μ − 7c
)

, S8 = 36λ − 10μ − 2c, S9 =
1
2
(

32λ − 13μ − 2c
)

,

S10 = −1
4
(10λ + c), S11 =

1
4
(−74λ + 26μ + 33c

)

, S12 =
1
4
(

22λ − 18μ + 7c
)

.

(3.9)

In the following, we will search solutions in the following form:

ur = eiωtu(r), (3.10)
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where time-harmonic waves eiωt are separated by the longitudinal waves u(r), so that

ür = −ω2ur, ω =

√

1 − (λ + 2μ
)

ρ
, (3.11)

and u(r) is the solution of the following equation:

(

u,rr +
u,r
r

+ u − u

r2

)

= a1u,rru,r + a2
1
r
u,rru + a3

1
r
(u,r)2 + a4

1
r2
u,ru + a5

1
r3
(u)2

+ a6u,rr(u,r)2 + a7
1
r3
u,rr(u)2 + a8

1
r
u,rru,ru

+ a9
1
r
(u,r)3 + a10

1
r4

(u)3 + a11
1
r2
(u,r)2u + a12

1
r3
u,r(u)2,

(3.12)

with ai = Si/(λ + 2μ), i = 1, . . . , 12.
Equation (3.12) gives the more general model of cylindrical wave propagation for

Signorini hyperelastic materials. At the r.h.s. there appear nonlinear terms up to the third
order in u, u,r , and u,rr while the coefficients depend on both inverse r up to the 4th power
and the physical parameters λ, μ, and c. In the following we will search the Shannon wavelet
solution of (3.12), by neglectingO(r−1) terms in the r.h.s., by showing that Shannon wavelets
are linked with Bessel functions.

3.1. Linear Equation

If we neglect the nonlinear terms of the right-hand side, from (3.12) we simply get the linear
equation:

(

u,rr +
u,r
r

+ u − u

r2

)

= 0, (3.12′)

which is the (homogeneous) Weber equation [30, 31], classically solved by Bessel functions.
In fact, Bessel function Jn(x) of order n is defined as the solution of theWeber equation:

x2y′′ + xy′ +
(

x2 − n2
)

y = 0, n ∈ C. (3.13)

In particular, when n = 1, the more general solution of

x2y′′ + xy′ +
(

x2 − 1
)

y = 0 (3.14)

is

y(x) = c1J1(x) + c2J2(x). (3.15)
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−2π−4π 2π 4π
x

Figure 1: Bessel Functions J1(x) (bold) and J2(x) (dashed).

The Taylor series for Bessel function is

Jn(x) =
∞∑

k=0

(−1)k
k!Γ(n + k + 1)

(
1
2
x

)2k+n

, x ∈ (−ε, ε) (3.16)

with Γ(n) being gamma function.
So, for integer values of n, being Γ(n + 1) = n!, there result

J1(x) =
∞∑

k=0

(−1)k
k!(k + 1)!

(
1
2
x

)2k+1

=
(
1
2
x

)

− 1
2!

(
1
2
x

)3

+
1

2!3!

(
1
2
x

)5

− 1
3!4!

(
1
2
x

)7

· · · ,

J2(x) =
∞∑

k=0

(−1)k
k!(k + 2)!

(
1
2
x

)2k+2

=
1
2!

(
1
2
x

)2

− 1
3!

(
1
2
x

)4

+
1

2!4!

(
1
2
x

)6

+ · · · .

(3.17)

It can be easily seen that J2n(x) (n ∈ N) are even functions and J2n+1(x) (n ∈ N) are odd
functions, while both are localized functions with some decay to zero (Figure 1).

A good approximation of J1(x) in the interval [−π/2, π/2] can be already obtained
by the third-order polynomial, while with the 7th power polynomial we can have a good
approximation in [−π,π]:

J1(x) ∼=
(
1
2
x

)

− 1
2!

(
1
2
x

)3

+
1

2!3!

(
1
2
x

)5

− 1
3!4!

(
1
2
x

)7

. (3.16′)
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Analogously a good approximation of J2(x) is obtained in the interval [−π/2, π/2] by
a second order polynomial, whereas with the 6th power polynomial we have a good
approximation in [−π,π]

J2(x) ∼= 1
2!

(
1
2
x

)2

− 1
3!

(
1
2
x

)4

+
1

2!4!

(
1
2
x

)6

. (3.16′′)

3.2. Second-Order Equation

Equation (3.12) gives rise to many interesting nonlinear equations for cylindrical waves. In
fact, up to the second-order nonlinearities, it becomes

(

u,rr +
u,r
r

+ u − u

r2

)

= u,r
(

a1u,rr + a3
u,r
r

− a4 u
r2

)

+
1
r
u

(

a2u,rr − a5 u
r2

)

. (3.18)

So, by keeping only the first term of the right-hand side, which is equivalent to neglect terms
O(1/r), we have

(

u,rr +
u,r
r

+ u − u

r2

)

= a1u,ru,rr . (3.12′′)

3.3. Third-Order Equation

Up to the third-order nonlinearities, and neglecting all terms O(1/r), (3.12) gives

(

u,rr +
u,r
r

+ u − u

r2

)

= u,rr
[

a1u,r + a6(u,r)2
]

. (3.12′′′)

Wewill give the solutions of (3.12′), (3.12′′), and (3.12′′′) by using Shannon wavelets. In order
to do so, we need first to show that, in a sufficient large neighborhood of zero, Shannon
wavelets are equivalent to the Bessel function. We can also see that at the same approximation
the Taylor polynomial for Shannon wavelets is one order lower than the Taylor polynomial
for the corresponding Bessel function, so that Shannon wavelets are more efficient from
computational point of view.

4. Shannon Wavelet

In this section Shannonwavelets and their differential properties are shortly summarized (for
further readings and explicit computations see, e.g., [14, 17–20] and references therein).
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Shannon scaling function ϕ(x) and wavelet function ψ(x) are localized functions with
some decay to zero (like Bessel functions), defined as

ϕ(x) = sincx =
sinπx
πx

=
eπix − e−πix

2πix
,

ψ(x) =
sinπ(x − 1/2) − sin 2π(x − 1/2)

π(x − 1/2)

=
e−2iπx

(−i + eiπx + e3 iπx + i e4 iπx)

(π − 2πx)
.

(4.1)

The corresponding families of translated and dilated instances wavelet [17–20], on which is
based the multiscale analysis, are

ϕnk(x) = 2n/2ϕ(2nx − k) = 2n/2
sinπ(2nx − k)
π(2nx − k)

= 2n/2
eπi(2

nx−k) − e−πi(2nx−k)
2πi(2nx − k) ,

ψnk (x) = 2n/2
sinπ(2nx − k − 1/2) − sin 2π(2nx − k − 1/2)

π(2nx − k − 1/2)
,

=
2n/2

2π(2nx − k + 1/2)

2∑

s=1

i1+sesπi(2
nx−k) − i1−se−sπi(2nx−k),

(4.2)

with ϕ0
k
(x) = ϕk(x) and ψ0

k
(x) = ψk(x). In the following, we will denote

ϕ0
0(x) = ϕ(x), ψ0

0(x) = ψ(x). (4.3)

Both families of Shannon scaling and wavelet are L2(R)-functions, with a slow decay to zero,
so that

lim
x→±∞

ϕnk(x) = 0, lim
x→±∞

ψnk (x) = 0. (4.4)

For each f(x) ∈ L2(R) and g(x) ∈ L2(R), the inner product is defined as

〈

f, g
〉

=
∫∞

−∞
f(x)g(x)dx, (4.5)

where the bar stands for the complex conjugate.
With respect to this inner product, Shannon wavelets are orthogonal functions so that

[18–20]
〈

ψnk (x), ψ
m
h (x)

〉

= δnmδhk,
〈

ϕ0
k(x), ϕ

0
h(x)

〉

= δkh,
〈

ϕ0
k(x), ψ

m
h (x)

〉

= 0, m ≥ 0,

(4.6)

with δnm and δhk being the Kroenecker symbols.
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Let f(x) ∈ L2(R) be a function such that the integrals

αk =
〈

f(x), ϕ0
k(x)

〉

=
∫∞

−∞
f(x)ϕ0

k(x)dx,

βnk =
〈

f(x), ψnk (x)
〉

=
∫∞

−∞
f(x)ψnk (x)dx

(4.7)

exist and have finite values; it can be shown that the series

f(x) =
∞∑

h=−∞
αhϕ

0
h(x) +

∞∑

n=0

∞∑

k=−∞
βnkψ

n
k (x) (4.8)

on the right side converges to f(x). For a fixed upper bound we simply have the
approximation (for the error estimate see [20])

f(x) ∼=
K∑

h=−K
αhϕ

0
h(x) +

N∑

n=0

S∑

k=−S
βnkψ

n
k (x). (4.9)

4.1. Differentiable Properties of Shannon Wavelets

The derivatives of the Shannon wavelets are [19, 20]

d�

d x�
ϕ0
h(x) =

∞∑

k=−∞
λ
(�)
hk

ϕ0
k(x),

d�

dx�
ψmh (x) =

∞∑

n=0

∞∑

k=−∞
γ
(�)mn

hk
ψnk (x) ,

(4.10)

with

λ
(�)
kh

def=

〈

d�

dx�
ϕ0
k(x), ϕ

0
h(x)

〉

, γ
(�)mn

hk

def=

〈

d�

dx�
ψnk (x), ψ

m
h (x)

〉

(4.11)

being the connection coefficients [18–20].
It has been shown [19, 20] that

λ
(�)
kh

=

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪
⎩

(−1)k−h i
�

2π

�∑

s=1

�!πs

s![i(k − h)]�−s+1
[

(−1)s − 1
]

, k /=h,

i�π�+1

2π(� + 1)

[

1 + (−1)�
]

, k = h,

(4.12)
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when � ≥ 1, and λ(0)kh = δkh, and

γ
(�)mn

hk
= μ(h − k)δnm

{
�+1∑

s=1

(−1)[1+μ(h−k)](2�−s+1)/2 �!i�−s π�−s

(� − s + 1)!|h − k|s (−1)
−s−2(h+k)2n�−s−1

×
{

2�+1
[

(−1)4h+s + (−1)4k+�
]

− 2s
[

(−1)3k+h+� + (−1)3h+k+s
]}
}

, k /=h,

γ
(�)mn

hk = δnm
[

i�
π�2n�−1

� + 1

(

2�+1 − 1
)(

1 + (−1)�
)
]

, k = h,

(4.13)

with

μ(m) = sign(m) =

⎧

⎪⎪
⎨

⎪⎪⎩

1, m > 0,
−1, m < 0
0, m = 0.

, (4.14)

According to (4.10) the Taylor series of the scaling and Shannon wavelet, nearby the origin,
are

ϕ0
h(x) =

∞∑

�=0

1
�!
λ
(�)
h0 x

�, |x| < ε,

ψmh (x) =
∞∑

�=0

1
�!
γ
(�)mn

h0 2
m/2

(

x − 2−m−1
)�
,

∣
∣
∣x − 2−m−1

∣
∣
∣ < ε.

(4.15)

5. Similarities between Bessel Functions and Shannon Wavelets

Since Bessel functions are L2(R), they can be easily represented in terms of Shannon wavelets
as follows:

J1(x) ∼= −1
2
ψ

(
x

3
√
2
+
1
5

)

− 0.08, x ∈
(

−π
2
,
π

2

)

,

J2(x) ∼= −1
2
ϕ

(
x

2
√
2

)

+
1
2
, x ∈ (−π,π).

(5.1)

In particular, around x = 0 they nearly coincide with the Shannon scaling and wavelet, so
that the even J2n(x), (n ∈ N) can be well approximated by the scaling Shannon functions
(Figure 2), while the odd Bessel functions J2n+1(x) and (n ∈ N) can be approximated by the
Shannon wavelets (Figure 3).

Although this approximation for both is restricted to an interval, we can assume
that in the interval |ε| ≤ π/2, where the perturbation method is applied, Bessel functions
substantially coincide with the Shannon wavelet families; in other words, Shannon scaling
functions and Shannon wavelets are solution of the Weber equation in the interval |ε| ≤ π/2.
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−π π
x

−π

2
π

2

Figure 2: Bessel function J2(x) and (dashed) the Shannon scaling function −(1/2)ϕ(x/2√2) + 1/2.

−π π
x

−π

2
π

2

Figure 3: Bessel function J1(x) and (dashed) the Shannon wavelet function −(1/2)ψ(x/3√2 + 1/5) − 0.08.

According to (4.13) and (4.15) the Taylor expansion (in x = 0) for the scaling wavelet
is

ϕ(x) =
∞∑

k=0

(−1)k π2kx2k

(2k + 1)!
, (5.2)

so that at the sixth order

ϕ(x) = 1 − π2x2

3!
+
π4x4

5!
− π6x6

7!
· · · . (5.3)

Analogously, for the Shannon wavelet ψ(x), in x = 0, it is up to the sixth order;

ψ(x) = −1 + 1
2!

7
3
π2
(

x − 1
2

)2

− 1
4!

31
5
π4
(

x − 1
2

)4

+
1
6!

127
7
π6
(

x − 1
2

)6

. (5.4)

By comparing the Taylor expansion for Bessel functions, as given by (3.16′), and (3.16′′) and
the Taylor expansion of Shannon wavelets (5.3) and (5.4), we can see that a good
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−π π
x

−π

2
π

2

(a)

−π π
x

−π

2
π

2

(b)

Figure 4: Approximation of J2(x) with a second-order polynomial from (5.3) (dotted) and, dashed, the
Taylor polynomial (3.16′′) at the second order (a) and fouth order (b).

approximation of the Bessel can be obtained by a lower-order polynomial approximation
of the Shannon wavelet (Figures 4 and 5).

Taking into account (4.15) and (5.2) it can be easily shown that, for x ∈ (−π,π), the
error of the approximation in (5.1) tends to zero for k → ∞. For instance, it is

∣
∣
∣
∣
J2(x) +

1
2
ϕ

(
x

2
√
2

)

− 1
2

∣
∣
∣
∣
≤
∣
∣
∣
∣
J2(x) +

1
2
ϕ

(
x

2
√
2

)∣
∣
∣
∣
,

∣
∣
∣
∣
J2(x) +

1
2
ϕ

(
x

2
√
2

)∣
∣
∣
∣

(4.15),(5.2)
=

∞∑

k=0

(−1)k x2k

22k+1

(

x2

2k!(k + 2)!
+

π2k

2k(2k + 1)!

)

,

(5.5)

so that for |x| ≤ π it is

∣
∣
∣
∣
J2(x) +

1
2
ϕ

(
x

2
√
2

)∣
∣
∣
∣
≤

∞∑

k=0

(−1)k π
2k

22k+1

(

π2

2k!(k + 2)!
+

π2k

2k(2k + 1)!

)

. (5.6)

The series at the r.h.s is an alternating series which converges to zero, since, according to
Leibniz rule, it is

lim
k→∞

π2k

22k+1

(

π2

2k!(k + 2)!
+

π2k

2k(2k + 1)!

)

= 0. (5.7)

Analogously, we can show the same result for the wavelet approximation (4.15)1 of the Bessel
function J1(x).

By using the approximation (5.1) we can assume as solution of the Weber equation
(3.12′) the Shannon wavelet

−1
2
ψ

(
x

3
√
2
+
1
5

)

− 0.08, x ∈
(

−π
2
,
π

2

)

. (5.8)
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−π π
x

−1

1

−π

2
π

2

(a)

−π π
x

−1

1

−π

2
π

2

(b)

Figure 5: Approximation of J1(x)with a first-order (a) and third-order (b) polynomial from (5.4) (dotted)
and, dashed, the Taylor polynomial (3.16′).

The derivatives of this function, according to (4.10), are

d�

dx�

[

−1
2
ψ

(
x

3
√
2
+
1
5

)

− 0.08
]

= − 1

2
(

3
√
2
)�

∞∑

k=−∞
γ (�)000kψ

0
k

(
x

3
√
2
+
1
5

)

, (5.9)

and up to the second order,

d

dx

[

−1
2
ψ

(
x

3
√
2
+
1
5

)

− 0.08
]

∼= − 1

2
(

3
√
2
)

[
1
4
ψ0
1

(
x

3
√
2
+
1
5

)]

,

d2

dx2

[

−1
2
ψ

(
x

3
√
2
+
1
5

)

− 0.08
]

∼= − 1

2
(

3
√
2
)2

[

−7
3
ψ0
0

(
x

3
√
2
+
1
5

)

+
1
8
ψ0
1

(
x

3
√
2
+
1
5

)]

,

(5.10)

where, the explicit values of the connection coefficients are (4.13):

γ (1)0000 = 0, γ (1)0001 =
1
4
, γ (1)0002 =

1
8
, . . . ,

γ (2)0000 = −7
3
, γ (2)0001 =

1
8
, γ (2)0002 =

1
32
, . . . .

(4.13′)
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The derivatives (5.10) have two components along two orthogonal functions, so that the
projection with respect to ψ(x/3

√
2 + 1/5) gives

d

dx

[

−1
2
ψ

(
x

3
√
2
+
1
5

)

− 0.08
]

∼= 0,

d 2

dx2

[

−1
2
ψ

(
x

3
√
2
+
1
5

)

− 0.08
]

∼= 7
(

18
√
2
)ψ

(
x

3
√
2
+
1
5

)

,
(5.11)

while, with respect to ψ1(x/3
√
2 + 1/5), we get

d

dx

[

−1
2
ψ

(
x

3
√
2
+
1
5

)

− 0.08
]

∼= − 1

24
√
2

[

ψ0
1

(
x

3
√
2
+
1
5

)]

,

d2

dx2

[

−1
2
ψ

(
x

3
√
2
+
1
5

)

− 0.08
]

∼= − 1
288

[

ψ0
1

(
x

3
√
2
+
1
5

)]

.

(5.12)

It can be easily shown by a direct computation that it is also

d

dx

[

ψ

(
x

3
√
2
+
1
5

)

− 0.08
]

=
1

12
√
2

[

ψ0
1

(
x

3
√
2
+
1
5

)]

,

d

dx
ψ0
1

(
x

3
√
2
+
1
5

)

=
1

6
√
2
ψ0
1

(
x

3
√
2
+
1
5

)

,

d2

dx2
ψ0
1

(
x

3
√
2
+
1
5

)

=
1
72
ψ0
1

(
x

3
√
2
+
1
5

)

.

(5.10′)

6. Perturbation Method

In order to compute the cylindrical waves solution of the nonlinear equations (3.12′′) and
(3.12′′′) we will consider the perturbation method [9]. This method is based on the assump-
tion that the solution of the nonlinear problem

Lu(x) =Nu(x), (6.1)

with L and N being the linear and nonlinear parts of the differential operator, can be
expressed as a converging series, which depends on a small parameter 0 ≤ ε ≤ 1:

u(x, ε) =
∞∑

n=0

εnu(n)(x) (6.2)

such that u(0)(x) is the solution of the linear problem:

Lu(0)(x) = 0. (6.3)
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The other terms of the series are computed by solving the recursive set of (of linear) equa-
tions:

Lu(n+1)(x) =Nu(n)(x), n ≥ 0. (6.4)

6.1. Second-Order Nonlinearity

Let us search the solution of the second-order nonlinear equation (3.12′) (where for conve-
nience r → x):

(

u,xx +
u,x
x

+ u − u

x2

)

= a1u,xxu,x (6.5)

by assuming that

u(x) = u(0)(x) + εu(1)(x), (6.6)

where u(0)(x) is the solution of the linear equation:

(

u,xx +
u,x
x

+ u − u

x2

)

= 0. (6.7)

When u(0)(x) is known, u(1)(x) is computed as the solution of

(

u,xx +
u,x
x

+ u − u

x2

)

= a1u
(0)
,xxu

(0)
,x . (6.8)

Moreover as initial condition is taken, u(x, 0) = u(0)(x) and the perturbation is on time so
that the small parameter can be identified with time ε → t and the solution of (3.12′′) can be
written as

u(x, t) = e−iωt
[

u(0)(x) + tu(1)(x)
]

. (6.9)

The general solution of (6.8) implies some cumbersome hypergeometric series and Laguerre
polynomials (see, e.g., [14]); however, it should be noticed that since the r.h.s. of (6.8) is
obtained from (3.12), by neglecting all terms O(1/r) we can approximate also the l.h.s with
the same hypotheses so that u(1)(x) can be searched as solution of

u,xx + u = a1u
(0)
,xxu

(0)
,x . (6.10)
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The solution of (6.7) is (5.8), so that by inserting this wavelet function in the right-hand side
of (6.8) and taking into account (5.9) and (5.10′), the function u(1)(x) will be obtained by
solving

u,xx + u =
a1

4
(

3
√
2
)3

∞∑

k=−∞
γ (2)000kψ

0
k

(
x

3
√
2
+
1
5

) ∞∑

k=−∞
γ (1)000kψ

0
k

(
x

3
√
2
+
1
5

)

=
a1

4
(

3
√
2
)3

[

γ (2)0000ψ
0
0

(
x

3
√
2
+
1
5

)

+ γ (2)0001ψ
0
1

(
x

3
√
2
+
1
5

)

+ · · ·
]

×
[

γ (1)0000ψ
0
0

(
x

3
√
2
+
1
5

)

+ γ (1)0001ψ
0
1

(
x

3
√
2
+
1
5

)

+ · · ·
]

.

(6.11)

By using the values of the connection coefficients (4.13′), for −1 ≤ k ≤ 1 and the orthogonality
property of wavelets, we have

u,xx + u =
a1

4
(

3
√
2
)3

1
32

[

ψ0
1

(
x

3
√
2
+
1
5

)]2

. (6.12)

The solution u(1)(x) of (6.12) is searched in the form

u(1)(x) = f(x)
[

ψ0
1

(
x

3
√
2
+
1
5

)]2

. (6.13)

By deriving and taking into account (5.10′),

u
(1)
,x (x) =

(

f,x +
1

3
√
2
f

)[

ψ0
1

(
x

3
√
2
+
1
5

)]2

,

u
(1)
,xx(x) =

[

f,xx +
2

3
√
2
f,x +

1
18
f

][

ψ0
1

(
x

3
√
2
+
1
5

)]2

.

(6.14)

Equation (6.12) becomes

[

f,xx +
2

3
√
2
f,x +

19
18
f

][

ψ0
1

(
x

3
√
2
+
1
5

)]2

=
a1

4
(

3
√
2
)3

1
32

[

ψ0
1

(
x

3
√
2
+
1
5

)]2

, (6.15)

that is,

f,xx +
2

3
√
2
f,x +

19
18
f =

a1

128
(

3
√
2
)3
. (6.16)
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The solution is

f(x) =
a1

7296
√
2
+ e−x/(3

√
2)(c1 cosx + c2 sinx) (6.17)

so that

u(1)(x) =
[

a1

7296
√
2
+ e−x/3

√
2(c1 cosx + c2 sinx)

][

ψ0
1

(
x

3
√
2
+
1
5

)]2

. (6.18)

If we assume that at the initial time t = 0, the nonlinear effect is neglectable, in a such a way
that u(1)(0) = 0 so that

0 =
[

a1

7296
√
2
+ c1

][

ψ0
1

(
1
5

)]2

, (6.19)

which simplifies the previous form of u(1)(x) into

u(1)(x) =
a1

7296
√
2

(

1 − e−x/(3
√

2)cosx
)[

ψ0
1

(
x

3
√
2
+
1
5

)]2

. (6.20)

There follows that the general solution of (6.5) is

u(x) = −1
2
ψ

(
x

3
√
2
+
1
5

)

− 0.08 +
a1

7296
√
2

(

1 − e−x/(3
√
2) cosx

)[

ψ0
1

(
x

3
√
2
+
1
5

)]2

, (6.21)

and the explicit solution of (3.12′′) becomes (see Figure 6)

u(x, t) =

{

−1
2
ψ

(
x

3
√
2
+
1
5

)

− 0.08 + t
a1

7296
√
2

(

1 − e−x/(3
√
2) cosx

)[

ψ0
1

(
x

3
√
2
+
1
5

)]2
}

e−iωt.

(6.22)

As expected the evolution of the initial profile (Figure 6) shows the main nonlinear
effect of large (increasing) amplitude. The initial profile is deformed by showing the increas-
ing amplitude.

6.2. Third-Order Nonlinearity

Let us search the solution of the third-order nonlinear equation (3.12′′) (where r → x):

(

u,xx +
u,x
x

+ u − u

x2

)

= a6u,xx (u,x)2. (6.23)
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Figure 6: Wave solution with a1 = 104 and ω = 5.

The solution of (6.12) can be written as

u(x, t) = e−iωt
[

u(0)(x) + tu(1)(x)
]

, (6.24)

where u(0)(x) is given by (5.8). Inserting this wavelet function in the right-hand side of (6.23),
with the same approximation as in the previous case, and taking into account (5.9) and (5.10′),
the function u(1)(x)will be obtained by solving

u,xx + u = − a6
2592

∞∑

k=−∞
γ (2)000kψ

0
k

(
x

3
√
2
+
1
5

)[ ∞∑

k=−∞
γ (1)000kψ

0
k

(
x

3
√
2
+
1
5

)]2

= − a6
2592

[

γ (2)0000ψ
0
0

(
x

3
√
2
+
1
5

)

+ γ (2)0001ψ
0
1

(
x

3
√
2
+
1
5

)

+ · · ·
]

×
[

γ (1)0000ψ
0
0

(
x

3
√
2
+
1
5

)

+ γ (1)0001ψ
0
1

(
x

3
√
2
+
1
5

)

+ · · ·
]

,

(6.25)

that is,

u,xx + u = − a6
2592

γ (2)0001
[

γ (1)0001
]2
[

ψ0
1

(
x

3
√
2
+
1
5

)]3

. (6.26)

By taking into account the values of the connection coefficients (4.13′), we have

u,xx + u = − a6
331776

[

ψ0
1

(
x

3
√
2
+
1
5

)]3

. (6.27)
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The solution u(1)(x) of (6.23) is searched in the form

u(1)(x) = f(x)
[

ψ0
1

(
x

3
√
2
+
1
5

)]3
. (6.28)

By deriving and taking into account (5.10′),

u
(1)
,x (x) =

(

f,x +
1

2
√
2
f

)[

ψ0
1

(
x

3
√
2
+
1
5

)]3

,

u
(1)
,xx(x) =

[

f,xx +
3

2
√
2
f,x +

1
8
f

][

ψ0
1

(
x

3
√
2
+
1
5

)]3

.

(6.29)

Equation (6.27) becomes

[

f,xx +
3

2
√
2
f,x +

9
8
f

][

ψ0
1

(
x

3
√
2
+
1
5

)]3

= − a6
331776

[

ψ0
1

(
x

3
√
2
+
1
5

)]3

. (6.30)

So, by assuming the same hypotheses of the previous quadratic case, and with the same
computations, we have

u(1)(x) = − a6
373248

⎛

⎝1 − e−3x/(4
√
2)cos

3
4

√

3
2
x

⎞

⎠

[

ψ0
1

(
x

3
√
2
+
1
5

)]3

. (6.31)

The general solution of (6.23) is

u(x) = −1
2
ψ

(
x

3
√
2
+
1
5

)

− 0.08 − a6
373248

⎛

⎝1 − e−3x/(4
√
2) cos

3
4

√

3
2
x

⎞

⎠

[

ψ0
1

(
x

3
√
2
+
1
5

)]3

,

(6.32)

and the explicit solution of (3.12′′′) becomes (Figure 7)

u(x, t)

⎧

⎪⎪
⎨

⎪⎪⎩

− 1
2
ψ

(
x

3
√
2
+
1
5

)

− 0.08 − a6
373248

t

×
⎛

⎝1 − e−3x/(4
√
2) cos

3
4

√

3
2
x

⎞

⎠

[

ψ0
1

(
x

3
√
2
+
1
5

)]3
⎫

⎬

⎭
e−iωt.

(6.33)

As in the previous case we can observe the rapid growing of the amplitude, together with a
splitting of the peak.
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2

0

Figure 7: Wave solution with a6 = 105 and ω = 5.

7. Conclusions

It has been shown that cylindrical waves in a quadratic nonlinear Signorini structural model
can be easily investigated by using Shannon wavelets. The initial profile, (solution of the
linear equation) can be represented by Shannon wavelets and the evolution in time is
described by the deforming wavelet profile thus giving a physical meaning to these kinds of
wavelets. Shannon wavelets are equivalent to the Bessel function, at least in a quite suffi-
ciently large neighborhood of 0. We have also noticed that, at the same approximation of the
cylindrical wave, the Taylor polynomial for Shannon wavelets is one order lower than the
Taylor polynomial for the corresponding Bessel function, so that Shannon wavelets are more
efficient from computational point of view. It should be also noticed that Shannon wavelets
are only the real part of the Newland harmonic wavelets [9, 17], so that also the Hankel func-
tions, which are obtained by complex combination of Bessel functions, might have the same
good approximation by harmonic wavelets.
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[24] W. Dahmen, S. Prössdorf, and R. Schneider, “Wavelet approximation methods for pseudodifferential
equations: I Stability and convergence,”Mathematische Zeitschrift, vol. 215, no. 1, pp. 583–620, 1994.

[25] C. Cattani and Y. Y. Rushchitskii, “Solitary elastic waves and elastic wavelets,” International Applied
Mechanics, vol. 39, no. 6, pp. 741–752, 2003.

[26] J. D. Achenbach,Wave Propagation in Elastic Solids, North-Holland , 1973.
[27] R. W. Ogden, Non-Linear Elastic Deformations, Dover, 1974.
[28] C. W. Macosko, Rheology: Principles, Measurement and Applications, VCH, 1994.
[29] A. Bower, Applied Mechanics of Solids, CRC, 2009.
[30] D. Zwillinger, Handbook of Differential Equations, Academic Press, Boston, Mass, USA, 3rd edition,

1997.
[31] I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products, Academic Press, San Diego,

Calif, USA, 6th edition, 2000.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


