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The static and dynamic electronic (hyper)polarizabilities of the equilibrium conformations of 2,2-bithiophene (anti-gauche and
syn-gauche) were computed in the gas phase. The calculations were carried out using Hartree-Fock (HF), Møller-Plesset second-
order perturbation theory (MP2), and density functional theory methods. The properties were evaluated for the second harmonic
generation (SHG), and electrooptical Pockels effect (EOPE) nonlinear optical processes at the typical 𝜆 = 1064 nm of the Nd:YAG
laser. The anti-gauche form characterized by the S–C2–C2–S dihedral angle of 137

∘ (MP2/6-311G∗∗) is the global minimum on the
potential energy surface, whereas the syn-gauche rotamer (S–C2–C2–S = 48∘, MP2/6-311G∗∗) lies ca. 0.5 kcal/mol above the anti-
gauche form.The structural properties of the gauche structures are rather similar to each other.TheMP2 electron correlation effects
are dramatic for the first-order hyperpolarizabilities of the 2,2-bithiophenes, decreasing theHF values by ca. a factor of three.When
passing from the anti-gauche to the syn-gauche conformer, the static and frequency-dependent first-order hyperpolarizabilities
increase by ca. a factor of two. Differently, the electronic polarizabilities and second-order hyperpolarizabilities of these rotamers
are rather close to each other. The syn-gauche structure could be discriminated from the anti-gauche one through its much more
intense SHG and EOPE signals.

1. Introduction

Thiophene-based oligomers and polymers are an interesting
class of 𝜋-conjugated materials for the development and
construction of conductive and nonlinear optical (NLO)
devices [1–5]. Electronic properties of 𝜋-conjugated poly-
meric systems are significantly affected by the twisting degree
of the backbone and extension of the electron delocalization
although molecular structure and physicochemical proper-
ties of extended oligomers and polymers are usuallymodelled
through smaller oligomeric chains [6, 7].

The C
𝛼
–C
𝛼
 bonded bithiophene oligomer, 2,2-bithio-

phene (Figure 1), is the principal building block of polythio-
phene chains, extensively characterized by experimental and
theoretical studies. In the solid state, 2,2-bithiophene pre-
dominantly exists as a planar anti-structure together with a
nonnegligible fraction of planar syn-conformation (ca. 15%)
[8]. A slightly different picture occurs in the gas phase:
two nonplanar minimum-energy structures are observed to

coexist (Figure 1), which are characterized by S–C
2
–C
2
–

S dihedral angles of 148∘± 3∘ (antigauche) and 36∘± 5∘
(syngauche) [9]. On the basis of electron diffraction data
[9] and experimental fluorescence spectra [10], the anti-
gauche is the minimum-energy form on the potential energy
surface of the 2,2-bithiophene, being more stable than the
syngauche rotamer by 1.16 ± 0.13 kcal/mol (enthalpy dif-
ference extrapolated from the dependence of the relative
abundance in the 58–130∘C range of temperatures) [10] and
0.18 kcal/mol at 100∘C (energy difference) [9]. On the theo-
retical side, there are many contributions in the literature
about relative stabilities and torsional potentials of 2,2-bithi-
ophene conformations [11–15]. In agreement with exper-
iment, correlated ab initio and density functional theory
(DFT) levels concordantly predict both the gauche structures
as stationary points on the PESs of 2,2-bithiophene, the anti-
gauche being predicted to be the globalminimum [11–15].The
torsional potentials for the rotation around the C

2
–C
2
 bond
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Figure 1: Structures of thiophene and 2,2-bithiophene rotamers.
Colours: white (hydrogen), grey (carbon), and orange (sulphur).

are characterized by flat double-well potentials, allowing a
high degree of conformational flexibility to oligothiophenes
[11–15]. In addition, the influence of the torsional potential
on the electronic polarizabilities of 2,2-bithiophene rotamers
was analyzed by Lukeš et al. [14] using HF/aug-cc-pVDZ and
MP2/aug-cc-pVDZcomputations.However, the average elec-
tronic polarizabilities of 2,2-bithiophene are little affected by
the conformation, varying within 5-6% [14]. Therefore, this
response electric property is little informative for identifica-
tion of conformations. On the other hand, electronic first-
order hyperpolarizabilities (𝛽), the related NLO electroopti-
cal Pockels effect (EOPE), and second harmonic generation
(SHG) properties are usually muchmore influenced by struc-
tural characteristics than electronic polarizabilities, being of
potential utility for discrimination of conformers [16–19].

In the present investigation, we have calculated the static
and dynamic electronic (hyper)polarizabilities of the most
stable conformations of 2,2-bithiophene in the gas phase,
aiming to identify physicochemical properties useful to dis-
criminate the different rotamers. The frequency-dependent
first-order hyperpolarizabilities were obtained for the SHG
and EOPE NLO processes at the typical experimental wave-
length of the Nd:YAG laser (1064 nm). Neither experimental
nor theoretical electronic 𝛽 values of 2,2-bithiophenes are
known so far, whereas some computational studies were
previously carried out on the first-order hyperpolarizabilities
of the monomer of thiophene [20–25].

2. Computational Details

The geometries of the anti-gauche and syn-gauche 2,2-
bithiophene rotamers (Figure 1) were optimized using ab
initio Hartree-Fock (HF) and Møller-Plesset second-order
perturbation theories (MP2) with the 6-311G∗∗ basis set. The
vibrational analysis obtained under the harmonic approxima-
tion confirmed that all the investigated structures are station-
ary points (no imaginary frequencies). The calculations were
also carried out on the thiophene molecule for comparison.

For thiophene and 2,2-bithiophenes, we computed the
dipole moments (𝜇), static and dynamic electronic polariz-
abilities (𝛼), first-order hyperpolarizabilities (𝛽), and second-
order hyperpolarizabilities (𝛾). To this purpose, the HF and
MP2 levels as well as a series of hybrid DFT methods such
as B3LYP [26, 27], PBE0 [28], BH&HLYP [26], and B97-1
[29] were employed. Additionally, we investigated the per-
formances of the long-range corrected 𝜔B97X-D functional
[30], recently employed with success for response electric
property calculations [31–34]. The present computations
were thoroughly carried out using the polarised and diffuse
Sadlej’s POL basis set [35]. There are many indications in
the literature showing that this basis set is adequate for
predicting response electric properties of organic compounds
[31, 36–39]. However, for thiophene as a test case, we also
performed (hyper)polarizability calculations using the larger
correlation-consistent Dunning’s triple-zeta basis set (aug-
cc-pVTZ) [40]. At the HF level, the static 𝛼 and 𝛽 values
were determined analytically by means of the coupled-
perturbed HF (CP-HF) theory [41, 42], whereas the MP2
and DFT 𝛼 and 𝛽 data were obtained through a finite-
field (FF) numerical scheme illustrated in detail by Kurtz
and coworkers [43]. For the FF computations, we used a
field strength amplitude of 0.005 a.u.. The accuracy of the
numerical procedure was verified at the HF level by com-
paring the FF-HF and CP-HF (hyper)polarizability values.
The static 𝛾 values were determined at the HF/POL level by
means of the FF procedure. Frequency-dependent polariz-
abilities [𝛼(−𝜔; 𝜔)] and first-order hyperpolarizabilities were
computed for the 2,2-bithiophenes by using the CP-HF
procedure at the characteristic Nd:YAG laser wavelength
(𝜆) of 1064 nm (ℎ𝜔 = 0.04282 a.u.). Specifically, the SHG
[𝛽(−2𝜔; 𝜔, 𝜔)] and EOPE [𝛽(−𝜔; 𝜔, 0)] NLO processes were
investigated. At this 𝜆 value, resonance enhancement effects
for the SHGphenomenon are expected to be rather negligible,
since the 2ℎ𝜔 value of 0.08564 a.u. (2.33 eV) is rather far
from the lowest-energy absorption of planar 2,2-bithiophene
which is observed in gas at 3.86 eV [44, 45].

As commonly used in the literature, the calculated
physicochemical properties are here expressed as dipole
moment (𝜇), average polarizability (⟨𝛼⟩), polarizability
anisotropy (Δ𝛼), first-order hyperpolarizability aligned along
the 𝜇 direction (𝛽

𝜇
), and average second-order hyperpolariz-

ability (⟨𝛾⟩), which are orientationally invariant quantities:

𝜇 = √𝜇
2

𝑥
+ 𝜇
2

𝑦
+ 𝜇
2

𝑧
,

⟨𝛼⟩ =
1

3

(𝛼
𝑥𝑥

+ 𝛼
𝑦𝑦

+ 𝛼
𝑧𝑧
) ,
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(1)

where 𝛽
𝑖
(𝑖 = 𝑥, 𝑦, 𝑧) is given by 𝛽

𝑖
= (1/3)∑

𝑗=𝑥,𝑦,𝑧
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𝑖𝑗𝑗

+

𝛽
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1

5
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𝑥𝑥𝑥𝑥

+ 𝛾
𝑦𝑦𝑦𝑦

+ 𝛾
𝑧𝑧𝑧𝑧
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𝑥𝑥𝑦𝑦

+ 2𝛾
𝑥𝑥𝑧𝑧

+ 2𝛾
𝑦𝑦𝑧𝑧

) .

(2)

For the (hyper)polarizabilities, atomic units are used
throughout the work. Conversion factors to the SI are
1 a.u. of 𝛼 (e2a2

0
E−1h ) = 1.648778 × 10−41 C2m2J−2; 1 a.u. of 𝛽

(e3a3
0
E−2h ) = 3.206361 × 10−53 C3m3J−2; 1 a.u. of 𝛾 (e4a4

0
E−3h ) =

6.235377 × 10−65 C4m4J−3. All calculations were performed
using the GAUSSIAN 09 program [46].

3. Results and Discussion

3.1. Geometries and Energetics of Thiophene and 2,2-Bithio-
phene Rotamers. The structural parameters of the equilib-
rium conformations of 2,2-bithiophene (anti-gauche and
syn-gauche) as well as those of the monomer obtained in
the gas phase at the MP2/6-311G∗∗ level are displayed in
Figure 2. On the basis of the MP2/6-311G∗∗ calculations,
the anti-gauche form is the global minimum, while the syn-
gauche form is less stable by 0.51 kcal⋅mol−1, in excellent
agreement with previous correlated ab initio results [11–15]
and in particular with the highest CCSD(T)/6-31G∗∗ and
CCSD(T)/cc-pVDZ levels (0.49 kcal⋅mol−1) [13].Thus follow-
ing the MP2/6-311G∗∗ results, the anti-gauche rotamer is the
prevailing form of 2,2-bithiophene in vacuum (ca. 70%), the
syn-gauche being, however, an important conformation (ca.
30%).

The MP2/6-311G∗∗ geometry of thiophene is in good
agreement with the experimental gas phase microwave
structure [47]. In particular, the experimental C–S, C–C,
and C=C bond lengths are well reproduced by the present
computations. As can be appreciated from the data reported
in Figure 2, the agreement between the observed [9] and
calculated geometries for the 2,2-bithiophene is slightly less
satisfactorily. In particular, the present computations under-
estimate the experimental typical S–C

2
–C
2
–S dihedral angle

(148∘) by 11∘ and the C–C interring bond length (1.46 Å) by
ca. 0.01 Å. However, the MP2/6-311G∗∗ S–C

2
–C
2
–S dihedral

angles of 137∘ (anti-gauche rotamer) and 48∘ (syn-gauche
rotamer) are in reasonable agreement with the CCSD(T)/6-
31G∗ estimates (142∘ and 44∘, resp.) [13]. Some additional
observations can be made: (i) the equilibrium geometry of
the thiophene ring shows only little differences when passing
from the monomer to the dimer; (ii) the geometries of the
gauche conformations are very similar to each other. Indeed,
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Figure 2: Gas phase MP2/6-311G∗∗ geometrical parameters of thio-
phene and 2,2-bithiophene anti-gauche and syn-gauche rotamers.
The experimental data reported in parentheses are taken from [47]
(thiophene) and [9] (2,2-bithiophene). The MP2/6-311G∗∗ (experi-
mental) S–C

2
–C
2
–S dihedral angles are 137∘ (148∘, see [9]) and 48∘

for the anti-gauche and syngauche conformation, respectively.

the bond lengths and angles of the anti-gauche rotamer differ,
respectively, by no more than 0.01 Å and 1∘ from the data of
the syn-gauche form.

3.2. Effects of the Basis Set and Theoretical Level on the Elec-
tronic (Hyper)polarizabilities of Thiophene. As widely docu-
mented in the literature, accurate estimates of electronic
(hyper)polarizabilities need polarized and diffuse basis sets
as well as introduction of electron correlation contributions
[48–52]. In particular for the series of thiophene (C

4
H
4
X, X

= O, S, Se, Te) [23] and pyrrole (C
4
H
4
YH, Y = N, P, As, Sb,

Bi) [53] homologues, the correlated MP2 method reproduces
reasonably well the response electric properties obtained
using high-level CCSD(T) and MP4-SDTQ calculations. In
the current study, we explored the effects of the basis set and
computational method on the 𝜇, 𝛼, and 𝛽 values of thiophene
as a case test, for which some experimental and high-level
theoretical data are known. Specifically, we compared the
POL and the aug-cc-pVTZ basis sets. The POL basis set
consists of [3s2p] functions for hydrogen atom, [5s3p2d] for
carbon and [7s5p2d] for sulphur, giving a total of 164 basis
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Table 1: Dipole moments (D), static electronic polarizabilities (a.u.), and first-order hyperpolarizabilities (a.u.) of thiophenea.

HFb MP2 BH and HLYP PBE0 B3LYP B97-1 𝜔B97X-D MP4-SDTQc Exp.
𝜇
𝑧

0.69 (0.70) 0.42 0.53 0.49 0.46 0.48 0.52 0.70 0.55d

𝛼
𝑥𝑥

68.61 (68.69) 71.49 7019 71.04 72.18 71.86 70.63 68.32
𝛼
𝑦𝑦

44.37 (44.51) 45.17 43.81 43.77 44.48 44.35 44.25 44.61
𝛼
𝑧𝑧

75.81 (76.00) 76.84 76.43 76.95 78.02 77.68 76.79 75.50
⟨𝛼⟩ 62.93 (63.07) 64.50 63.48 63.92 64.89 64.62 63.89 62.81 60.71e; 64.90f; 65.17g; 66.12h

Δ𝛼 28.52 (28.54) 29.36 29.99 30.66 31.03 30.83 29.94 27.99 23.25e; 31.90f; 21.56g

𝛽
𝑥𝑥𝑧

−5.2 (−1.7) −1.7 −1.2 1.7 2.2 2.9 −0.8 −5.1
𝛽
𝑦𝑦𝑧

6.2 (7.3) 9.4 9.9 12.8 12.6 12.3 9.7 10.9
𝛽
𝑧𝑧𝑧

40.4 (40.5) 4.5 28.3 26.8 25.1 26.8 30.8 7.7
𝛽
𝜇

41.3 (46.1) 12.2 37.0 41.3 39.9 42.0 39.7 13.5
aThe calculations were performed with the POL basis set on the MP2/6-311G∗∗ geometries.
bThe values in parentheses refer to the HF/aug-cc-pVTZ computations.
cValues taken from [23]. Basis set: 6-31G (3d) + pd.
dReference [55].
eReference [56].
fReference [57].
gReference [58].
hReference [59].

functions on thiophene, which are ca. half of the functions
for the aug-cc-pVTZ basis set ([4s3p2d] for H, [5s4p3d2f] for
C, and [6s5p3d2f] for S). The calculations were performed at
the HF level and the data are collected in Table 1. The results
show that, when passing from the HF/POL to HF/aug-cc-
pVTZ level, only marginal variations are observed on the
calculated properties. Indeed, the 𝜇, ⟨𝛼⟩, Δ𝛼, and 𝛽

𝜇
values

vary by 1.43, 0.22, 0.04, and 10.41%, respectively. It is worth
mentioning that the above results are in line with previous
(hyper)polarizability studies using the two basis sets [22, 31,
54]. However, it is important to notice that for thiophene the
HF/aug-cc-pVTZ hyperpolarizability computations require
a CPU demand by one order of magnitude greater than that
for the HF/POL calculations. Thus, the use of the POL basis
set can be considered a valid compromise between accuracy
and computational cost and will be entirely adopted for the
subsequent MP2 and DFT calculations on thiophene and on
the 2,2-bithiophenes.

The effects of electron correlation as evaluated at the
MP2/POL level are rather significant for the dipole moment
but negligible for the polarizabilities, decreasing the HF/POL
𝜇 datum by ca. 0.3 D (−40%) and increasing the ⟨𝛼⟩ value by
ca. 2.5% and the Δ𝛼 value by ca. 2.9%. All the DFT methods
give similar 𝜇 and 𝛼 values to each other, being in reasonable
agreement with the MP2/POL data. The observed gas phase
dipole moment of 0.55D [55] is underestimated by the MP2
andDFT calculations (by 0.03–0.13D), the smallest deviation
being obtained by the𝜔B97X-D functional.The experimental
⟨𝛼⟩ (Δ𝛼) data, comprised between 61 and 66 a.u. (23 and
32 a.u.) [56–59], are reasonably well reproduced by all the
present theoretical methods, including the HF level. More
importantly, the introduction of electron correlation con-
tributions is crucial for the first-order hyperpolarizability.
In fact, when passing from the HF/POL to MP2/POL level,
the 𝛽

𝜇
value reduces by ca. a factor of three. The effect

is especially conspicuous for the 𝛽
𝑧𝑧𝑧

component, which
decreases by one order of magnitude. Note that our HF
versus MP2 comparison for thiophene agrees with those
previously obtained with other basis sets [22, 23]. Unfor-
tunately, the experimental first-order hyperpolarizability of
thiophene is not available so far. However, it is of interest
mentioning that the present MP2/POL 𝛽

𝜇
(thiophene) value

is in good agreement with the datum previously predicted by
the high-level MP4-SDTQ calculations (𝛽

𝜇
= 13.5 a.u.) [23],

showing a difference of 1.3 a.u. (−9.6%). On the other hand,
similar to the HF/POL computations, all the DFT methods
overestimate the MP2/POL 𝛽

𝜇
value by a factor between

3.0 and 3.4, the BH&HLYP functional giving the closest
value. Note that the failure of the traditional DFT methods
in the prediction of the electronic (hyper)polarizabilities
especially of 𝜋-conjugated compounds is well known and
has been exhaustively illustrated by Champagne and co-
workers [60]. Quite surprisingly, it is worth noting that the
use of the long-range corrected𝜔B97X-D functional does not
improve significantly the performances obtained using the
conventional functionals.

3.3. Static and Frequency-Dependent (Hyper)polarizabilities of
2,2-Bithiophene Rotamers. Table 2 lists the dipole moments
and static (hyper)polarizabilities of the anti-gauche and syn-
gauche 2,2-bithiophene forms calculated at the HF/POL,
MP2/POL, and BH&HLYP/POL levels. By analogy to the
monomer, both the 2,2-bithiophene forms exhibit a some-
what low polarity. Nevertheless, when passing from the
syngauche to the anti-gauche conformer, the𝜇 value decreases
by ca. a factor of two, due to the mutual disposition of the
monomeric thiophene rings. Note that, although the syn-
gauche conformation reveals a rotated structure, its 𝜇 value
is slightly less than 2 × 𝜇(thiophene). On the other hand,
in the case of the polarizabilities, the variations between
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Table 2: Dipole moments (D), static electronic polarizabilities (a.u.), first-order hyperpolarizabilities (a.u.), and second-order hyperpolariz-
abilities (a.u.) of 2,2-bithiophene rotamersa.

anti-gauche syn-gauche
HF MP2 BH and HLYP HF MP2 BH and HLYP

𝜇 0.52 0.31 0.40 1.21 0.72 0.93

𝛼
𝑥𝑥

178.53 184.76 186.63 177.29 183.13 184.95
𝛼
𝑦𝑦

84.85 86.72 84.30 125.80 127.96 126.58
𝛼
𝑧𝑧

127.99 129.81 128.68 86.73 88.65 86.27
⟨𝛼⟩ 130.46 133.76 133.20 129.94 133.25 132.60
Δ𝛼 81.71 85.28 89.22 78.70 82.29 85.98

𝛽
𝑥𝑥𝑦

2.7 −3.1 7.0 0.0 0.0 0.0
𝛽
𝑦𝑦𝑦

29.9 30.3 32.2 0.0 0.0 0.0
𝛽
𝑧𝑧𝑦

16.1 −3.3 7.0 0.0 0.0 0.0
𝛽
𝑥𝑥𝑧

0.0 0.0 0.0 45.7 31.5 59.0
𝛽
𝑦𝑦𝑧

0.0 0.0 0.0 22.5 −4.0 27.0
𝛽
𝑧𝑧𝑧

0.0 0.0 0.0 40.8 16.3 21.9
𝛽
𝜇

48.7 23.9 46.2 109.0 43.8 107.9

𝛾
𝑥𝑥𝑥𝑥

102128 90352
𝛾
𝑦𝑦𝑦𝑦

21824 22464
𝛾
𝑧𝑧𝑧𝑧

21392 21216
𝛾
𝑥𝑥𝑦𝑦

13312 12960
𝛾
𝑥𝑥𝑧𝑧

6432 7744
𝛾
𝑦𝑦𝑧𝑧

7536 6928
⟨𝛾⟩

b 39981 37859
aThe calculations were performed with the POL basis set on the MP2/6-311G∗∗ geometries.
bThe HF/POL ⟨𝛾⟩ value of the thiophene monomer is calculated to be 14850 a.u..

the studied rotamers are significantly minor. In fact, the static
MP2/POL ⟨𝛼⟩ value for the syn-gauche form is only 0.51 a.u.
smaller than the corresponding value for the anti-gauche
conformation (−0.4%). For both the dimers, 𝛼

𝑥𝑥
is the largest

component, recovering ca. 50% of the total polarizability
(𝛼
𝑥𝑥

+ 𝛼
𝑦𝑦

+ 𝛼
𝑧𝑧
). The MP2/POL ⟨𝛼⟩ data overestimate the

experimental datum obtained in tetrahydrofuran solution by
ca. 10 a.u. (+7.7%) [59]; however, they are in good agreement
with those previously computed at the MP2/aug-cc-pVDZ
level for conformations in the 0–180∘ S–C

2
–C
2
–S dihedral

angle range [14]. Note that the present Δ𝛼 values are slightly
more influenced by the structure, increasing by ca. 3 a.u.
(+3.6%) when passing from the syngauche to the antigauche
rotamer. By analogy to the results found for the monomer,
in comparison to the MP2/POL data, the HF/POL and
BH&HLYP/POLmethods furnish good ⟨𝛼⟩ andΔ𝛼 estimates
(within 2.5–4.4% and 0.4–4.6%, resp.). Similarly to the
electronic polarizabilities, the ⟨𝛾⟩ values are little dependent
on the conformation, decreasing by ca. 5% when going from
the antigauche to the syngauche form. In addition, as for the
calculated polarizabilities, the dominant 𝛾 component lies
along the x-axis for both the gauche structures, amounting to
ca. 50% of the total second-order hyperpolarizability (𝛾

𝑥𝑥𝑥𝑥
+

𝛾
𝑦𝑦𝑦𝑦

+ 𝛾
𝑧𝑧𝑧𝑧

+ 2𝛾
𝑥𝑥𝑦𝑦

+ 2𝛾
𝑥𝑥𝑧𝑧

+ 2𝛾
𝑦𝑦𝑧𝑧

).
The dispersion effects (Table 3) evaluated at ℎ𝜔 = 0.04282

and 0.08564 a.u. increase the static ⟨𝛼⟩ (Δ𝛼) values of both

Table 3: Static and frequency-dependent (ℎ𝜔 = 0.04282 a.u.)
electronic polarizabilities (a.u.) and first-order hyperpolarizabilities
(a.u.) of 2,2-bithiophene rotamersa.

anti-gauche syn-gauche
⟨𝛼⟩(0; 0) 130.46 129.94
⟨𝛼⟩(−𝜔; 𝜔) 132.57 (140.15) 131.97 (139.14)

Δ𝛼(0; 0) 81.71 78.70
Δ𝛼(−𝜔; 𝜔) 84.68 (96.33) 81.43 (92.48)

𝛽
𝜇
(0; 0) 48.7 109.0

𝛽
𝜇
(−𝜔; 𝜔; 0) 51.3 116.1

𝛽
𝜇
(−2𝜔; 𝜔; 𝜔) 54.7 126.8

aThe calculations were performed at the HF/POL level on theMP2/6-311G∗∗
geometries. The values in parentheses refer to the frequency-dependent
polarizabilities at ℎ𝜔 = 0.08564 a.u..

the conformations, respectively, by ca. 2 and 7% (4 and 18%).
It is of interest noting that the ⟨𝛼⟩ and ⟨𝛾⟩ data of the 2,2-
bithiophenes are greater than twice the corresponding values
for the monomer, suggesting a some degree of interring 𝜋-
conjugation in the dimers.

Differently from the calculated polarizabilities and
second-order hyperpolarizabilities, both the magnitude
(Table 1) and direction (Figure 1) of the 𝛽

𝜇
vector are

noticeably affected by the structural features, almost
following the behaviour found for the dipole moments.
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In fact, for the antigauche form, the 𝛽
𝜇
property which is

aligned along the 𝑦-axis is predicted to be smaller than that
for the syn-gauche rotamer (with 𝛽

𝜇
aligned along the 𝑧-axis)

by ca. a factor of two. This result is almost independent from
the theoretical level and is observed for the static first-order
hyperpolarizabilities as well as for the NLO SHG and EOPE
processes. As for the monomer, the introduction of the MP2
electron correlation contributions is negative for𝛽

𝜇
, reducing

the HF/POL data by 50–60%, the largest effect being found
for the syn-gauche rotamer. Similar to the HF behavior, the
BH&HLYP functional overestimates the MP2/POL 𝛽

𝜇
values

by 95–165%. It is of interest to note that, at the HF/POL
level when passing from the monomer to the syn-gauche
2,2-bithiophene, the static 𝛽

𝜇
value increases by a factor of

2.6, although the dimer exhibits a nonplanar arrangement.
Note that the corresponding monomer→ dimer increases
obtained at the BH&HLYP/POL and MP2/POL levels are
greater, being calculated to be 2.9 and 3.6, respectively.

Not surprisingly, for both the rotamers, 𝛽
𝜇
(SHG) >

𝛽
𝜇
(EOPE) > 𝛽

𝜇
(static) (Table 3). The dispersion effects

estimated at ℎ𝜔 = 0.04282 a.u. increase the static 𝛽
𝜇
values

by 5-6% for the EOPE and 12–16% for the SHG NLO
phenomenon, the largest percentages being predicted for the
syn-gauche conformation.

4. Conclusions

The dipole moments and static and frequency-dependent
electronic (hyper)polarizabilities of the anti-gauche and syn-
gauche minimum-energy conformations of 2,2-bithiophene
were studied in the gas phase using ab initio HF, MP2, and
DFT methods. The NLO properties for the SHG and EOPE
phenomena were explored at 𝜆 = 1064 nm. The effects of
electron correlation at MP2 level are remarkable especially
for the first-order hyperpolarizabilities, reducing the HF data
by 50–60%. The DFT methods, although furnishing good
performance for the dipole moments and polarizabilities,
significantly overestimate the MP2 first-order hyperpolar-
izabilities. The polarizabilities and second-order hyperpo-
larizabilities are little influenced by the conformation. By
contrast, both the magnitude and direction of the dipole
moment and first-order hyperpolarizabilities are strongly
affected by the structural characteristics, the magnitudes
increasing when going from the anti-gauche to the syngauche
form by ca. a factor of two. On the basis of the present
findings, the 2,2-bithiophene rotamers might be identified
through experimental SHG and EOPE NLO measurements.
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