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SUMMARY

The writing of efficient parallel code has always been a tedious and time-consuming process. However, the
performance prediction prototype tools devised in the last decade come of age now, thanks to the availability
of the almost unlimited computing power of clouds. This paper presents the practical use of mJADES, a
novel environment for running multiple concurrent simulations in the cloud, to predict the performance of
parallel code in multiple working conditions at once. After an introduction on mJADES and its operational
aspects, the construction of parallel code performance prediction models will be dealt with. The models and
the results obtained for a simple but complete and meaningful case study will be presented, discussing the
accuracy obtained by simulation and the time required for performing the whole set of simulations necessary
to characterize the program behavior. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Parallel programming has always been a difficult matter. Even now that it is widely practiced, due
to the wide diffusion of multi-core CPUs, writing performance-efficient code remains a tedious and
time-consuming process. As a matter of fact, the design and tuning of parallel code, whether for
shared-memory or distributed-memory architectures, is a challenging problem, and one for which
no general rules and techniques exist.

For the aforementioned reasons, in the last decade, many researchers have suggested the use
of performance-driven software engineering techniques. [1–5] Just to give the reader the flavor
of the proposal, the idea is to adopt performance prediction techniques as early as in the soft-
ware design step to avoid using program structures and patterns that would inevitably lead to low
performance. The tools used for program performance prediction were almost always based on sim-
ulation (at different levels of granularity, depending of the particular tool). The drawback of the
performance-driven approach is essentially the time required for running reasonably accurate sim-
ulations. Developers do not like to wait. They prefer to write inefficient programs, to run them, to
discover that they are far away from the desired performance, and to start all over again, possibly
asking for help from a skilled developer. But now things have changed. The almost unlimited, low-
cost computing power that can be leased from a cloud makes it possible to run multiple lengthy
simulations at once. In our opinion, this is a wonderful opportunity to look back at the old perfor-
mance prediction tools and to ‘plant’ them on the cloud in the hope that their utility could be finally
widely recognized.
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Parallel program performance prediction aims at gaining insight on a parallel code performance
behavior without resorting to extensive performance testing. The idea is to know with reasonable
accuracy how the code will perform without executing it many times on the real hardware and,
possibly, even in the absence of a fully developed code. Our research group has shown that this is
possible through the simulation of the program behavior. [6, 7] Most of our past results have been
obtained by running a program simulator fed with actual or synthetic traces. [8–11] Though decid-
edly faster than actual program executions, simulation of a complex code running on a high number
of processors is a time-consuming process. The construction of performance diagrams of a given
code (most of the times, the evaluation of speedup for progressively higher number of processors
until the knee of the curve is reached) requires many simulations. This is exactly the point where
concurrent simulation comes into play. We will show that, given a parametric simulation model, the
required simulations can be straightly executed in a single step through the mJADES system.

The mJADES is a discrete-event simulation environment [12] running in the cloud in software-
as-a-service mode. In practice, it is a cloud application that allows its users to execute multiple
simulations leasing resources from the cloud. These simulations are executed concurrently, in
that the inherent parallelism of the cloud is exploited to execute multiple sequential simulation
tasks at the same time. This is useful whenever multiple simulations are required, for example,
to sweep one or several simulation parameters, or to answer to ‘what if’ system configuration
questions. This is not the canonical approach; as in the past, almost always, parallel hardware has
been used to speed up a single simulation, leading to the development of parallel and distributed
simulation techniques. [13–15]

The mJADES aims at running sequential, monolithic discrete-event simulations, with the possi-
bility to run multiple simulation instances at the same time, leasing automatically a suitable number
of computing resources from a cloud. As discussed in the paper introducing mJADES, [12] the
rationale of this design is clear. Whenever a simulation must be executed many times, there is an
exploitable source of parallelism in running together multiple instances of the same basic simula-
tion task. This happens when simulations are stochastic and should be repeated to perform statistical
validation or for parameter-sweep simulations, where one or multiple input parameters vary over a
range of values. The latter is exactly the case with parallel code performance prediction, where it
is necessary to repeat simulation for many different values of number of processors or to sweep a
range of values of a decomposition parameter to determine the optimal setting. In this paper, we will
present our experiences of the use of mJADES for the performance prediction of a parallel Message
Passing Interface (MPI) program, the Jacobi iteration. The example has been carefully chosen to be
simple but complete and meaningful. After a discussion on the modeling phase, we will show the
accuracy obtained by simulation (by comparing the predicted results to the actually-measured ones)
and the time required for simulation.

The remainder of this paper is structured as follows: the next section presents related work, point-
ing out the original features of our approach. Section 3 gives an overview of mJADES from an
operative point of view, with references to companion papers describing its architectural features.
Section 4 describes the model development process. The case study on the use of mJADES for par-
allel software performance prediction is dealt with in section 5. Section 6 draws the conclusions and
sketches our future research directions.

2. BACKGROUND AND RELATED WORK

The mJADES simulation environment, introduced in [12], exploits cloud resources by running
multiple concurrent instances of a traditional sequential simulator. In this section, we review the
literature that deals with the interaction of simulation engines, distributed programming, and cloud
systems, and present existing work on simulation-based program performance prediction.

2.1. Process-oriented discrete-event simulation: a Java perspective

A framework running multiple sequential simulations on cloud resources can be built on the top
of any type of simulation engine. However, mJADES exploits a Java-based engine for process-
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oriented discrete-event simulation (JADES) developed by our research group and presented in [16].
The aforementioned reference presents a review of Java-based simulators.

2.2. Distributed simulation

As discussed in the introduction, mJADES exploits cloud computing resources by running multi-
ple concurrent instances of a traditional sequential simulator. This makes it fairly different from
the majority of the systems developed in the main body of research on parallel and distributed
simulation. [13–15] In these systems, the simulation model is decomposed into entities allocated
on multiple processor systems, whether shared-memory (e.g., ComplexSim [17]) or distributed-
memory ones (e.g., ns-3 [18]). In parallel and distributed simulation systems, groups of entities are
assigned to logical processes, which evolve with their own simulation clock. This entails the need to
keep the different logical processes synchronized; a problem for which different solutions have been
proposed, including conservative [19] and optimistic [20] protocols. A recent survey on Java-based
parallel simulators can be found in [21].

The mJADES relies on a completely different approach, because individual simulation runs are
not decomposed among multiple processors. mJADES instead speeds up simulation jobs by launch-
ing multiple concurrent runs (‘replications’) at a time. This technique is not new and was explored
in a seminal paper by Heidelberger in the eighties, [22] where the Authors compared the obtained
performance to the one of a more conventional parallel simulator. As a matter of fact, in the last two
decades, the dominance of clusters and grid systems focused the interest of researchers on parallel
simulation engines. Nowadays, the cloud approach, which is based on web transactions managed
by independent tasks, has made the simulation paradigm, on the basis of concurrent sequential runs,
more attractive than in the past.

2.3. Simulation-as-a-service

The ‘as-a-service’ methodology originates in the world of service-oriented architecture. In the lit-
erature, there are several contributions on the ‘as-a-service’ provisioning of simulation software.
The paper [23] presents a Java-based architecture for replicated simulations on a network of proces-
sors, called ‘alliance’. Unlike this work, mJADES relies on current cloud technologies and exploits
an open-source simulator engine instead of a closed-source one (Silk, [24]). Some architectural
aspects linked to the simulation-as-a-service paradigm (the provision of web services interfaces for
simulations and the translation of simulation requests to XML) are tackled in [25]. Reference [26]
discusses issues related to the design of simulation web services and their composition into sim-
ulation workflows. In [27], SimSaaS or simulation software-as-a-service is introduced. This is a
simulation framework with a focus on the management of multi-tenancy.

2.4. Simulation and cloud computing

Papers on the use of cloud resources for computer simulation are just beginning to appear in the lit-
erature. Most of them deal with the porting of ‘traditional’ parallel/distributed simulation schemes to
a public or private cloud. In [28], Park and Fujimoto present Aurora, an optimistic parallel discrete-
event simulator based on a master–worker approach. This structure makes Aurora more suitable
than other simulators on the basis of optimistic synchronization [29] for utility computing systems.
D’Angelo [30] argues that the high variability in performance that is typical of cloud environments
must be taken explicitly into account. His research team is developing Artis/GAIA+, a middle-
ware for parallel and distributed simulations that aims at balancing adaptively the simulation by
model decomposition, dynamic partitioning, and bottleneck removal. In [31], the authors present an
application of a master–worker platform based on volunteer computing to solve simulation models
requiring many runs. Unlike in mJADES, the generation of tasks and the analysis of results is not
performed automatically.
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2.5. Open-source cloud middleware

Nowadays, cloud computing is still a hot research topic. Public providers are growing in number, and
open-source middleware designed for private clouds has reached sufficient maturity to be deployed
in commercial and research environments. Reference [32] is an up-to-date comparison of the most
used infrastructure-as-a-service frameworks, namely Eucalyptus, Nimbus, OpenNebula, and Open-
Stack. Research prototype software providing less common features include PerfCloud, [33] which
aims at adding performance-oriented services to customary infrastructure-as-a-service provision,
and CLEVER, [34] which aims at obtaining scalability and fault tolerance.

Recently, the attention of the cloud community is shifting to higher-level architectural layers,
as platform-as-a-Service. In this field, currently dominated by proprietary solutions, open-source
frameworks are beginning to spread. They will allow the development of cloud applications portable
among different providers. Reference [35] discusses the emerging open-source proposals, also intro-
ducing mOSAIC, the open-source cloudware used to run mJADES. Details about the mOSAIC
platform are discussed in [36–38].

2.6. Simulation-based performance prediction of parallel programs

The application of simulation techniques to the performance prediction of distributed-memory
parallel programs dates back to the early nineties. In addition to the work by some of the authors
of this paper, [6, 10] early efforts include the execution-driven MPI-Sim [39] and the trace-driven
Dimemas network simulator. [40] Among the most recent contributions in the literature, Phan-
tom [41] is a hybrid prediction framework that uses direct execution of computational blocks
together with communication traces. Optimized replay techniques are used to obtain the duration
of computational blocks on a small sample of the target machine, but trace collection requires
the execution of the application on a host with the same number of processes and the same
problem size. MPI-PERF-SIM [42] is a performance simulator of hierarchical clusters. It uses a
hybrid benchmark/model-based approach with polynomial regression to predict performance of
computational blocks, and linear regression to predict communication time. SST (Structural
Simulation Toolkit) [43] is a modular architecture simulator with pluggable modules for compo-
nent modeling. This enables the user to choose dynamically between fast and detailed simulations
(e.g., using statistical versus cycle-accurate CPU models). SMPI (Simulated MPI) [44] is an online
simulator, part of the SimGrid project. It provides analytical models for network contention.The
underlying simulator is sequential. BSIM [45] is targeted at large-scale systems. It works by skele-
tonizing the source code (substituting intensive computational code with delays) and replacing
MPI communication calls with simulated calls. Big-Sim [46] is an on-line simulator that models
sequential code on target platforms by user-supplied estimates or by applying a scaling factor to
measurements on a host machine.

3. MJADES OVERVIEW

As said in the introduction, the main goal of our work is to provide an infrastructure that allows
parallel program developers to predict the impact of the design choices made for their applications,
by performing quantitative performance comparisons. If simulation is used for predictions (in fact,
it is often the only viable option), this entails running a very high number of simulation runs so
as to validate statistically the results for each configuration of interest and to make it possible to
compare them. This can be boring and time-consuming. To make practical the use of simulation for
parallel program performance prediction at the early stages of software development, the process
should be fast and automated. This can be translated in the following requirements for the simulation
environment: (i) parallel program developers should be provided with tools to easily derive simula-
tion models from their code, and to describe and to launch a large set of simulations automatically;
(ii) the simulator should be able to predict parallel application performances in a short time; (iii) the
simulation management system should be able to coordinate the execution of multiple, possibly of
many, simulation runs at a time.
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Our claim is that these requirements can be met by employing cloud technologies. In recent com-
panion papers, [12,47] we have presented mJADES, a cloud-based simulation application developed
using the mOSAIC framework [36–38] and the JADES simulation library. [16] mJADES enables
the execution of concurrent sequential simulations on computing resources leased from a cloud.
We think that such a system is an ideal candidate for the fulfillment of the requirements mentioned
earlier in the text. As for requirements, (i) the use of model annotations and of job decomposi-
tion techniques provides an easy way to generate simulation interfaces and to specify concisely the
set of simulation to be executed, respectively; (ii) the underlying JADES simulation engine offers
very good performance compared to other commonly used simulators; [16] (iii) the adoption of the
mOSAIC framework makes it possible to execute many concurrent simulation tasks on the cloud,
providing automatic scaling and load balancing. The remainder of this section will be devoted to
discuss these statements.

3.1. mJADES in brief

A detailed description of the mJADES architecture is provided in [12], to which the interested reader
is referred. Here, we will introduce only the essentials concepts and the terminology necessary to
understand how the system operates. In brief, mJADES is a system for the concurrent execution of
multiple sequential simulations on cloud resources, composed of three modules:

� the Manager module, which coordinates the distributed simulation execution.
� the Core module, which executes single simulations developed with the JADES library.
� the Analyzer module, which performs statistical analysis and produces graphical reports of the

results provided by the Core module.

Each module is implemented as a cloudlet. Cloudlets, provided by the mOSAIC framework,
are event-driven, asynchronous components, which are executed on special containers and are
able to self-scale and to interact with any kind of cloud resource. Through these components,
the mJADES cloud application offers simulation-as-a-service, available to the end user through an
hypertext-transfer-protocol-based interface. The provided services are the following:

� Model execution: Allows the users to start a set of concurrent simulation tasks using one of
the models available. A detailed explanation of this service is provided in subsection 3.2.
� Model submission: Allows the users to submit a new simulation model. This service is

described in subsection 3.3.

3.2. Model execution

The first service provided by mJADES is the execution of multiple simulations in the cloud. This
service entails a simple workflow, whose major steps are outlined in the following text:

1. Model selection: The first step in the usage of the platform is the selection of a simulation
model. The mJADES system maintains a repository of models available for its users. New
models can be submitted through a dedicated service (described in the next subsection).

2. Job submission: Once the user has selected a model, a customized web interface for that
model is generated by the system. mJADES users interact with the system through the web
interface to describe a simulation job. This is a collection of independent simulation tasks,
each of which corresponds to a single simulation. Different job specifications will result in
different simulation tasks to be executed. The current mJADES prototype offers two simple
ways to describe a job as a collection of different tasks: Parameter Sweep and Replications.
The first technique describes a job through a range of values for a given parameter, the latter
asks for a given number of repetitions of the simulation (it is useful for statistical validation).
It is also possible to specify jobs that use a mixture of both techniques.

3. Generation of tasks: After the job is submitted, the mJADES Manager decomposes the job
into a collection of tasks. Each task corresponds to a distinct tuple of parameter values and
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entails running a (single) simulation of the chosen JADES model parameterized with these
values. All the tasks are then made available for execution.

4. Execution of tasks: The Core cloudlet is able to fetch a simulation task to perform the simu-
lation and to store the results in a dedicated repository. Multiple instances of the Core cloudlet
can be concurrently in execution, executing multiple tasks at once.

5. Analysis of results: After the Core cloudlets have completed their execution, the Analyzer
fetches the results and generates a web page with statistical or graphical reports (according to
the option chosen by the user at job submission time).

3.3. Model submission

The model execution service makes it easy for parallel program developers to describe simulation
jobs that make very complex evaluations, including statistical validation (through replication) and
comparison of design choices (through parameter sweep). Another key function of the system is the
ability to support an open repository of models, which can be submitted by the users and stored in
the system for successive use. To provide a model repository, it is necessary to offer to developers a
practical way to specify the model metadata, such as the model description, its input parameters, and
its interface with the user. We have enriched the JADES library with a set of annotations that can be
used to insert the required metadata directly into the simulation models. The supported annotations
are as follows:

� @SimModel is used to annotate the model class and allows the modeler to associate to the
model useful information as a name, a domain, and a meaningful natural-language description.
� @SimParam marks a field in a Java class as a simulation parameter. This annotation is used to

identify the inputs of the model and their type.
� @SimResult can be used to mark a field that contains a simulation result. This annotation is

used to identify the outputs of the model and their type.

mJADES also contains an annotation processor that is able to parse the model code, to recover the
annotations, and to use them to understand the structure of the model. More detailed, the SimModel
annotation is used to show to users a detailed description of the model in the web interface; the
SimParam annotation is used to automatically generate the web form that gets the simulation input;
the SimResult interface is used to present a list of selectable results that the user can visualize or
send to the Analyzer for further processing.

4. MODELING PARALLEL PROGRAMS IN MJADES

In the previous section, we have discussed the operation of the mJADES platform. In this section,
we will discuss how parallel programmers can develop models to leverage the platform for their
performance prediction and evaluation tasks.

Our modeling framework adopts the layered approach shown in Figure 1. At the lowest layer, the
JADES simulation library provides support for process-oriented simulation models described in Java
language. JADES has been thoroughly presented in [16]; in brief, it allows the modeler to describe
simulation models made of interacting processes that evolve in time by discrete events, which can
be the voluntary suspension for a given time (hold operation), the use of resources, or the exchange
of messages. A resource can be a facility, which represents all-or-none resources like servers, a
storage, which models partially-allocatable resources like memories and disks, or a buffer, through
which processes can communicate and synchronize by producing and consuming items. A mailbox
makes it possible for processes to exchange messages. Finally, an event can be used for conditional
process synchronization: one or more processes wait for events to occur, and other processes declare
events as occurred.

On the top of these core components, we have developed a library of higher-level components that
simplify the development of performance models for distributed memory, message-passing parallel
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Figure 1. The modeling framework.

programs. These components make use of the core components to represent entities with behav-
iors commonly found in parallel programs. They can be thought of as building blocks that can be
composed to realize full-blown parallel program models. The components that are representative of
computational resources are:

� CPU, which is a special facility with customizable scheduling and performance-related
parameters (clock frequency, processing rate in flops);
� Network interface controller (NIC), which encompasses both a processing facility (that

accounts for message processing on the NIC) and a mailbox for communication;
� Disk, a kind of storage with customizable performance parameters (data transfer rate and access

time).

Other components that have been developed are extensions of the process abstraction. They pro-
vide additional functionality to the basic simulation processes. For example, the MPI Process shown
in the figure - and used in the case study of the next section - adds the following four entities to the
basic JADES process:

� computation, that is, the use of a CPU facility. A computation results in a possible queuing for
the use of the CPU resource, and a hold operation modeling the time spent computing. There
are several different options to define the computation time for a given section of code. In our
models, we use absolute time measurements or parametric models that predict actual compu-
tation time as a function of the sequence of instructions executed. The CPU facility allows for
the modeling of contention between multiple processes running on the same processor.
� communication, that is, the sending of a message through a network connecting two NICs. In

most of our models, communication time is computed by means of a simple linear model based
on latency and bandwidth, even if the framework makes it possible to adopt more sophisticated
models (e.g., full TCP/IP simulation, or LogP models);
� input/output (I/O), that is, the use of an I/O device. Whenever the effect of I/O is negligible as

compared to computation and communication, as in most scientific codes, I/O is not usually
modeled.
� program execution statistics collection. Low-level simulation statistics (e.g., facility and mail-

box usage) are used to compute higher-level figures, more strictly related to parallel pro-
gram execution, such as CPU usage (for each available CPU), fraction of time spent in
communication, total number of bytes exchanged, and total execution time of the simulated
application.

The building blocks provided can be composed into a model by means of different techniques.
Currently, we support handcoded and trace-driven modeling. Using handcoding, the model can be
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set up by writing a simulation code on the top of the JADES application programming interface
(API) and exploiting the special components described earlier in the text. This technique is the most
flexible, but is time-consuming, as it requires a direct programming effort from the model devel-
oper. Section 5 describes the construction of a handcoded Jacobi model. The writing of a handcoded
model can be performed at a higher level of abstraction by using a suitable metalanguage that hides
the details of the simulation application programming interface. One such language is MetaPL, [48]
an XML-based language proposed by our research group for the description of parallel programs.

In trace-driven simulation, a model is not able per se to reproduce the modeled program behavior.
It is instead a sort of player, driven by the punctual program behavior in time, recorded during actual
program execution in the form of traces. Tracing can be performed at different levels of granularity.
In the case of message-passing parallel code (e.g., for MPI applications), it is typically sufficient
to record the relevant computation and communication events. It is important to point out that the
model is just a player fed with data from a previous run, but it is parameterized. In theory, a trace
should allow to reproduce just one particular program run, the one where the trace was initially
recorded. In practice, for most program codes, the availability of a trace makes it possible to predict
with sufficient accuracy the program behavior under different working conditions to answer to ‘what
if’ questions (e.g., using faster processors, more memory, a different communication network, . . . ).
A different (and much more complicated) matter is deriving from a recorded trace another trace valid
for a different (typically, a higher) number of processes/processors. Trace extrapolation [49, 50]
is the derivation of synthetic and parametric traces from actually recorded ones. This makes it
possible to study the program behavior under significantly different conditions (in practice, for a
higher number of processes/processors) and helps to reduce the size of the recorded execution traces
(huge traces are a problem in the case of long-running programs). We provide a predefined model
driven by traces, together with a library based on the PMPI profiling interface that can record traces
during the actual execution of MPI programs.

Automated model development methods are a hot research topic. In addition to the aforemen-
tioned trace extrapolation, another approach recently considered is the use of compile-time analyses.
Compiler-derived techniques leverage on static code analysis to characterize the computational pro-
gram phases. [51,52] Another possibility is deriving the model (either in source language or in XML
interchange language) by applying source-to-source transformations. We are currently working on
compile-time analysis and trace extrapolation, which will be supported in prototype form in the
future versions of our modeling framework.

5. CASE STUDY: PERFORMANCE MODELING OF THE JACOBI ITERATION

This section will show the practical application of mJADES for performance prediction. First, the
steps needed to manually derive a performance model for simulation are described using a case study
on parallel Jacobi iteration code. Then, the simulation execution and the results obtained through
the performance model are shown, discussing the practical validity of the concurrent execution of
the simulation workload on computing resources hosted in a cloud.

5.1. Parallel algorithm description

The Jacobi method is an iterative solver used to compute a solution of the 2D Laplace equation
by the finite differences method. [53] Given a 2D grid representing the region of interest, a stencil
code can be used to update the interior points of the grid to the average of neighboring points until
convergence is reached. A parallel implementation of the algorithm can be easily constructed by
assigning rows of the grid to cooperating processes. To perform the stencil computation, each pro-
cess needs two boundary rows not belonging to its subdomain (the last row of the preceding process
and the first row of the following process). So each process allocates space for its rows and a couple
of ‘ghost’ rows, which mirror the content of the boundary rows residing on neighbor processes. The
updated values of these rows must be received at every iteration. It is worth noting that even if the
parallel Jacobi iteration is not the best algorithm for the numerical solution of systems of linear
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equations, its structure (row-wise decomposition plus ghost rows exchange) is very similar to the
one used in more efficient methods, as conjugate gradient or multigrid.

The structure of the algorithm is made of the following operations, repeated in a loop:

� Communicate ghost rows: The processes exchange boundary rows to be able to compute their
internal rows. This is done through send and receive message-passing primitives.
� Local computation: Processes update the internal points; a helper grid is used to store the new

values. At the end of the iteration, the helper grid is used to update the main grid and the local
error is computed.
� Global error computation: All local errors are compared to find the maximum error. If the value

of the global error is under a given threshold, the processes terminate, otherwise a new iteration
is started. To compute the global error, an allreduce collective operation using the maximum
function is used.

5.2. Deriving the simulation model

Starting from the informal specification presented earlier in the text, the Jacobi simulation model can
be derived by modeling the three steps of the algorithm. To model the computation cost, a regres-
sion model has been constructed from measurements of the execution time of sample iterations of
the real MPI implementation for variable number of processes. Whenever an implementation of the
algorithm is not already available (e.g., at the early stages of program design), synthetic code can
be used to obtain a reasonable estimate of computation costs. The predicted time can thus be used
as parameter of the computation behavior defined in the library components. To model communi-
cation, we can replace the communication calls in the algorithm with the corresponding simulated
versions provided by the library. Listing 1 shows the code executed by every simulated process in
the model.

The MPI calls that can be seen in the model are the aforementioned simulated calls: they do not
perform computations as their counterparts in real programs but just account for the elapsing of an
amount of simulated time (hopefully) equal to the actual one. Similarly, the compute function is
used to make simulated time advance as in a real computation on the CPU.

The aforementioned code represents the ‘blueprint’ of the simulation processes used in the Jacobi
Model. As in JADES, a model is a collection of simulation processes, the developer must also spec-
ify the model initialization code shown in Listing 2. This code defines the model specification: it
must indicate a SimModel annotation, used to generate a description of the model for its users, and
a run method that performs the instantiation of the simulation processes. In addition, as shown in
Listing 3, the developer should describe the input parameters of the simulation by marking the cor-
responding fields in his classes with the SimParam annotation, used to automatically generate the
code for the web interface. The model is then ready to be submitted to the system, augmenting the
model repository maintained by the mJADES Manager.

5.3. Running the simulation model

To execute this simulation model, the user can connect to the web interface exposed by the Manager.
The first interaction with the user is the model selection form. When the user selects the model for
execution, the system updates the interface as shown in Figure 2, adding the model-specific fields
to receive user input. These fields are the ones marked with the SimParam annotation described in
section 3.3.

In this case study, the performance analysis carried out on the mJADES platform has focused on
two main issues:

� assessing the effect of the number of processes into which the application is decomposed (each
process is supposed to be allocated on a dedicated CPU);
� assessing the effect of the interconnect, switching between a Fast Ethernet (100 Mbit/s) and a

Myrinet. [54]
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Figure 2. mJADES web interface.

In all the experiments, the problem grid size was fixed in the model to 2000 � 2000 points. For
the first analysis, we chose a sweep over the nP parameter, which represents the number of simu-
lated processes. When the user submits this request through the web interface, a JavaScript Object
Notation (JSON) message describing the job is generated, as shown in Listing 4. It is worth pointing
out that the message is produced automatically by scripts in the web interface (expressed through
the jQuery language) and it is completely hidden from the developer. Then this message is received
by the Manager, which starts the execution workflow described in section 3.2.

For the second analysis, a sweep was performed over a compound parameter representing latency
and bandwidth of the interconnection network. The values of these parameters for Fast Ethernet and
Myrinet networks were obtained on our PoweRcost cluster through benchmarking. The two inter-
connects were simulated for every number of processes in the range of interest. For brevity, we do
not show here the simulation input and the web interface, as they are similar to the previous ones.

5.4. Experimental results

An experimental mJADES platform has been deployed on a private Eucalyptus cloud composed of
16 physical nodes hosting the virtual machines on which cloudlets are deployed. One node hosts the

Copyright © 2013 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:1467–1482
DOI: 10.1002/cpe



1478 A. CUOMO, M. RAK AND U. VILLANO

(a) Predicted speed-up

(b) Measured speed-up

(c) Prediction Error

Figure 3. Results for the Jacobi model case study.
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Figure 4. Simulation time and speedup versus number of cloudlets used.

web server and the mJADES manager cloudlet, whereas the others are dedicated to host instances of
the mJADES core cloudlets. For simplicity’s sake, in this study, we have not investigated the effect
of oversubscribing the processors, running just one cloudlet for each CPU core.

Even if the objective of this paper is to stress the ease of use and the fast response times of con-
current simulation in a cloud, it is nevertheless interesting to present the simulation results and to
compare them to the actual results measured on the real target machine. We can not refrain from
pointing out once again that simulation results are practically indistinguishable from actual mea-
surements, and so that performing long and exhausting performance testing on the target machine
is often just a waste of time. Figure 3 shows the plots of the speedup of an MPI version of the code
of the Jacobi iteration, as predicted by simulation (Figure 3(a)) and as measured on the test machine
(Figure3(b)). Prediction errors are in Figure 3(c): the maximum relative error throughout the range
from 2 to 16 processes is 5.35%.

Simulation can be very effective but, on the bad side, launching a large number of simulation ses-
sions for different values of the parameters can be as frustrating as running tests on the real hardware
(the latter requires hardware availability, in addition). This is the point where the almost unlimited
resources of clouds and mJADES come into play. To evaluate the benefit of running multiple sim-
ulations concurrently, multiple tests have been run with the mJADES manager configured to use a
varying number of instances of the Core cloudlet. Figure 4 shows the effect of running one of the
composite simulation jobs, the sweep over the number of processes, on a number of Core cloudlets
ranging from 1 to 15. The sweep varies nP from 10 to 510, at increments of 25. This produces a
total of 20 simulations with progressively growing execution time. To help load balancing, the tasks
are handed from the largest (the one for the highest value of nP ) to the smallest. Running all the
20 simulations on the same Core cloudlet requires about 4500 seconds of simulation time, while
as the number of cloudlets grows, the time drops to 330 seconds, leading to a near linear speedup
even if a minor imbalance is still present. Furthermore, the overhead introduced by the workload
distribution mechanism of mJADES is almost negligible. In our opinion, this is an interesting result,
showing the substantial validity of the concurrent simulation approach, which spreads beyond the
field of the application presented here as an example.

6. CONCLUSIONS AND FUTURE WORK

The objective of this paper has been to show that finally the use of simulation techniques and tools
for parallel program performance prediction has become viable. We have discussed the problems
linked to their use to obtain quantitative performance evaluations for multiple working conditions
at once. We claim that the use of mJADES, which allows concurrent simulation runs on resources
automatically leased from a cloud, solves the majority of the issues that in the last decade has
prevented the widespread diffusion of performance prediction for parallel program development
and analysis.
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The program modeling process currently is made less complex by the availability of the simu-
lation components developed for mJADES; on the other hand, the model annotations simplify the
deployment. We have presented an experimentation on a simple but not trivial message-passing
code. Our tests show that the concurrent simulation approach that is the distinctive feature of
mJADES can be very useful, making it possible to automatize and to speed up considerably the
launch of a bag of simulation tasks that would otherwise require long waiting times. The accuracy
of the performance prediction that can be obtained by simulation (errors smaller than 5.35%) is not
an absolute novelty but deserves a mention. Perhaps more important here is the possibility opened
by mJADES to execute a huge number of simulation tasks in parallel with little or no user interven-
tion. Our future work will try to automatize the software modeling step and to further optimize the
mJADES prototype used for the experiments presented in this paper.
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