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Abstract. The accuracy of ensemble streamflow forecaststure (Schaake et al., 2007; Verbunt et al., 2007). In parallel
(ESFs) is impacted by the propagation of uncertainty associwith these efforts, new verification tools have been designed
ated with quantitative precipitation forecasts (QPFs) throughto rigorously test the quality of hydrometeorological fore-
the physical processes occurring in the basin. In this studygasts, to evaluate the sensitivity of each source of uncertainty,
we consider consistent ESFs (i.e., observations and ensenand to identify improvements aimed at increasing forecast
ble members are equally likely) and we study the effect ofskill (see, for example, the report developed by the US Na-
basin area4) and antecedent rainfall (AR) on the ESF dis- tional Weather Service available on-linekdtp://www.nws.
persion, a metric of flood forecast skill. Results from a setnoaa.gov/oh/rfcdev/docs/Fingkrification Report.pdf.

of numerical experiments indicate that: (i) for small basins In arecent study of ensemble hindcasts from a hydromete-
(<180kn?), ESF dispersion is mainly dominated by the orological forecasting system, Mascaro et al. (2010) showed
runoff generation process and does not depend on the bastmow two verification metrics, the Verification Rank His-
size A; (ii) for larger areas, ESF dispersion decreases withtogram (Anderson, 1996; Hamill and Colucci, 1997; Tala-
A according to a log-linear relation due to the decreasing vagrand et al., 1997) and the Continuous Ranked Probabil-
riability of ensemble QPFs and, possibly, to the channel routity Score (Wilks, 2006; Hersbach, 2000), can be adapted
ing process. In addition, we found that, regardless the basio evaluate ensemble flood forecasts. In particular, the au-
size, the ESF dispersion decreases as AR increases, and thhbrs quantified several attributes of forecast quality (con-
the influence of AR is larger for basins with fast responsesistency, reliability, resolution and uncertainty) associated
times. Physical controls (land cover, soil texture and mor-with ensemble streamflow forecasts (ESFs). They found that
phometric features) on the analyzed basin response confiruantitative Precipitation Forecasts (QPFs) characterized by
these interpretations. ensemble consistency (or reliability) led to higher flood fore-
cast accuracy, as compared to ESFs obtained from QPFs with
ensemble deficiencies (overdispersion and underdispersion).
An ensemble forecast is consistent when observations are
statistically indistinguishable from ensemble members (An-

The increasing availability of computational resources andderson, 1997). If this condition occurs, the spread or disper-
recent modeling tools have allowed the development of floodS!On of the_ESF is directly related to the skill of the forecast
forecasting systems combining meteorological and hydro-System (Wilks, 2006). _ - .
logical models with downscaling and data assimilation tech- 1he ensemble flood forecasting verification experiments
niques (e.g., Westrick et al., 2001; Bacchi et al., 2002; Sic-conducted by Mascaro et al. (2010) also revealed two im-
cardi et al., 2005). In addition, ensemble techniques havéortant challenges for assessing the uncertainty of hydrom-
been recently adopted to account for different sources of unéteorological forecasts. The first is related to the spatiotem-

certainty in input data and model parameterization and strucPoral attenuation of a QPF as it is transformed into stream-
flow by the physical processes in a basin (e.g., Vivoni et al.,

2007a): analyses by Mascaro et al. (2010) indicated that the

Correspondence tdG. Mascaro basin smoothing effect is higher for larger areas, implying a
BY

(gmascaro@unica.it) greater need for accurate ensemble QPFs for smaller basins.

1 Introduction

Published by Copernicus Publications on behalf of the European Geosciences Union.


http://creativecommons.org/licenses/by/3.0/
http://www.nws.noaa.gov/oh/rfcdev/docs/Final_Verification_Report.pdf
http://www.nws.noaa.gov/oh/rfcdev/docs/Final_Verification_Report.pdf

1606 G. Mascaro et al.: Physical controls on the scale-dependence of ESF dispersion

A second challenge is the strong influence of the rainfall prior
to the forecasted event on the flood forecast skill: the higher
the antecedent rainfall (AR), the lower the propagation of
QPF errors into ESFs quality, while, as AR decreases, the
ensemble QPF accuracy becomes more critical.

This paper contributes to the better understanding of these
two issues by quantifying the influence of basin size and an-
tecedent rainfall on the forecast skill of a hydrometeorolog-
ical system, measured here by the ensemble streamflow dis-
persion. In this exercise, we only account for the uncertainty
associated with the rainfall forecasts, whereas all the other
sources of uncertainty, such as model parameters and basin
initial conditions, are currently neglected.

2 Data and experimental setup

The main objective of the experimental design is to create
synthetic “observations” under controlled conditions in or-
der to allow the generation of ensemble QPFs and ESFs with
known characteristics. Thus, a database of “observed” rain-
fall events at high spatiotemporal resolution and correspond-
ing “observed” streamflow was created over the Baron Fork
basin in Oklahoma (Fig. 1) during summer periods (June—
August) of 1997—2005. This was achieved by utilizing the
Space Time RAINfall (STRAIN) multifractal downscaling
model (Deidda, 2000) and the TIN-based Real-time Inte-
grated Basin Simulator (tRIBS) (Ivanov et al., 2004a) hy-
drological model, according to the following steps (Mascaro
et al., 2010):

1. Rainfall data estimated by the Next-Generation Radar
(NEXRAD) network, available on a regular 4-km grid
with a resolution of 1 h, were aggregated within a square
domain of sideL=256 km centered on the Baron Fork
(Fig. 1a) over an accumulation tim&=16h. This re-
sulted in 138 consecutive 16-h-long rainfall events for
each summer, with average precipitatiBn Figure 2a
shows an example for summer 2000.

2. The STRAIN model was used to downscale the mean
rainfall R from the coarse scald.xLxT to the
fine scalerxAxt, whereA=4km andr=15min (i.e.,
5levels of downscaling). In this way, the “observed”
high-resolution rainfall events were created. To fur-
ther explain this step, Fig. 2b reports the time series of
the mean areal precipitation (MAP) computed over the
Baron Fork basin from the high-resolution data.

3. The tRIBS model, calibrated using real precipitation
and streamflow data of summer 2000 (Mascaro et a
2010), was forced with the “observed” fine-scale rain-
fall, to obtain the “observed” streamflow response for
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| Fig. 1. (a)Baron Fork basin location within the Arkansas Red River
“basin. The coarse-scale domdir L used for rainfall downscaling

is plotted with a gray square(b) Baron Fork basin boundaries,
channel network, boundaries and outlets of the 15 sub-basins (Ta-

ea(?h summer (I_:ig. 2_C)- Simulations were conducted foryje 1), and the Westville meteorological statigo) US Geological

15 interior locations in order to study the dependence onsurvey (USGS) Digital Elevation Model (30-migl) Land Cover

basin area and other characteristics (Fig. 1b, Table 1). map derived from the USGS Land Use and Land Cover (LULC)
dataset.
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Fig. 2. Synthetic “observed” database generati@).Time series of NEXRAD rainfall estimate® during summer 2000, aggregated in the
coarse spatial domaihx L (with L=256 km) centered on the Baron Fork over an accumulation Tisiks h. (b) Time series of Mean Areal
Precipitation (MAP) over Baron Fork, calculated by averaging the high-resolution (4-km, 15-min) “observed” rainfall fields, obtained by
downscaling the coarse rainfalwith the STRAIN model(c) Time series of the “observed” hydrograph at the Baron Fork outlet, produced
by the tRIBS model with the “observed” fine-scale rainfall forcing.

Table 1. Baron Fork sub-basin characteristics (Vivoni et al., 2006): argaaximum distance to the sub-basin outle},(relief ratio
(S), drainage densityl§q); time of concentration() from Kirpich (1940): 7c=0.000325< L% 77 x §—0-385 where units ard. [m] and S

[m km~1]; minimum, mean and maximum elevation (nain gL, maxgl ); mean slopegsy); percentages of basin area covered by land
cover classes 1 and 2 (4§») and 3, 4 and 5 (L&, 4.5). For land cover classes, see Fig. 1d.

Sub-basin A L S Dy Tc ming HEL maxs. usL LCi42 LCziays
(km?)  (km) (mkm1)  (km™h)  (h) (m) (m) (m) (%) (%) (%)

1 108.23 25.73 6.06 0.99 5.78 23042 316.54 386.47 1252 39.23 60.77
2 1.41 2.59 34.01 0.83 0.51 23529 282.36 323.38 14.42 13.14 86.86
3 2.67 452 21.44 0.77 0.93 237.73 290.04 334.65 15.07 14.08 85.92
4 12.14  8.06 14.94 0.81 1.67 237.73 302.01 358.12 18.69 5.26 94.74
5 65.06 19.90 9.26 0.83 403 24810 327.61 43249 9.09 58.43 41.57
6 610.06 50.33 6.81 0.84 9.26 243.83 360.08 586.71 10.00 51.63 48.37
7 450.26 40.01 8.11 0.84 7.25 26151 37452 586.71 10.01 51.04 48.96
8 365.25 35.03 9.09 0.82 6.27 268.21 38555 586.71 10.55 48.23 51.77
9 18291 29.78 9.49 0.82 5.44 27248 386.59 554.97 10.54 5252 47.48
10 106.91 18.64 13.41 0.84 3.32 30498 407.74 55497 1050 55.12 44.88
11 49.07 12.72 19.10 0.87 2.16 31198 413.04 55497 1111 57.52 42.48
12 21.18 9.03 24.92 0.87 150 329.98 427.24 55497 12.08 54.44 45.56
13 4.29 3.53 51.27 0.77 0.55 373.98 467.99 55497 17.40 2194 78.06
14 0.78 1.33 112.77 0.30 0.19 396.98 479.37 546.97 19.22 1821 81.79
15 (Outlet) 808.39 67.26 5.47 0.86 1259 218.84 346.54 586.71 11.02 47.30 52.70

The “observed” series of rainfall and streamflow were to 0.97 mmh?. For each event, we performed hydromete-
treated as synthetic truth without accounting for any kind orological hindcasts according to the event-based approach
of observational error. Once the “observed” database washown in Fig. 3. At timet*, we assume that a Numeri-
generated, we randomly extractédy=100 coarse-scale cal Weather Prediction (NWP) model issues a rainfall fore-
precipitation eventsk, whose values range from 0.16 to castR for the next7 hours in the domairl. by L. Then,
4.07mm 1, with an average of 0.86 mnth. Average val- the STRAIN downscaling model is used to create an en-
ues of the corresponding MAP from the “observed” rainfall semble of Nens=50 consistent (fine-scale) QPFs and, sub-
at 4-km resolution over the 15 sub-basins range from 0.73equently, tRIBS simulates the ESFs at 15 nested locations.
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Fig. 3. Event-based approach for the hydrometeorological hindcasga):I(L) precipitation is observed up t&, when a NWP model issues

a coarse rainfall foreca® for the nextT hours over the. x L domain, (2) the STRAIN model produces fine-scal&f x ) consistent
ensemble QPFs betweghand ¢*+T7), and (3) the metric MA}:’?’k used to quantify the dispersion of ensemble QPF is extracted from each
rainfall member. In(b): (4) the tRIBS model, forced by the ensemble QPFs frono (:*+7) and zero padding rainfall from*{+7') up to
(t*+T+T¢), simulates the ESFs, and (5) the me@'f;l}) j used to measure the ESF dispersion is extracted from each streamflow member
within the time windowTyer at timet(th). Note that the zero-padding interval in the rainfall input is added to include the delay in the

streamflow response due to the basin response time.

We underline that the basin state‘ats determined by acon- extracted the hourly maximum, labeled as l\/[j%P (see
tinuous simulation with “observed” rainfall from the begin- Fig. 3). To quantify the ensemble rainfall dispersion for each
ning of each summer. In this exercise, we did not actually usesub-basin, we adopted a metric of the coefficient of variation
NWP outputs to determin®, but instead relied on the aggre- (CV) of the MAPlh I computed as:

gated NEXRAD rainfall data as a measure of the coarse-scale

oMAP1h

prediction. This limitation could be readily addressed in fu- MAPlh %%, J
CVi. MAP1h °’ @)

ture studies. Wi, ;

3 Analysis methods
3.1 Metrics of ESF and QPF dispersion

We introduce some notation to describe the analyses co

for each evenk=1,..., Ngy, we (i) created an ensemble of

Nens=50 conS|stent QPFS (i.e., 50 ensemble members) OVels i

the domainL x L x T at resolutiorh x A x T and (ii) simulated
the corresponding ESFs for each sub-bgs#i, ..., 15. The
generici-th member {=1, ..., Nens) of the ensemble QPF
generated to predict thleth event is expressed as QPF

while the corresponding member of the ESF simulated in

sub-basiry is ESk ;, ;.

The first analysis was aimed to characterize the varlabl-
lity of the ensemble rainfall forecasts with the basin area

(or scale). For this purpose, for each forecast ekeand
sub-basinj, we computed the MAP from each QPFand
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whereo"2P1" and ;4”11 are the standard deviation and
the average of tha/gns=50 ensemble MAEh . This led to

Ney=100 values of C‘l}"AP for each;j sub- catchment
Next, we performed a similar analysis for the correspond—

Yng ESFs. F hESE tract t
ducted in this study. As previously mentioned, a total of ng ESFs. From each Egf, ;, we extracted a me nQ

Ney=100events (i.e., 100 total events) were selected and

defined as the maximum discharge volume accumulated over
a duration of 1h in the verification time windo®,er =

T+ T, ; (Fig. 3), whereT, ; is the time of concentration
sub-basin (see Table 1) Subsequently, we calculated
the CV of the ensembIQk ija

»Qth
Qth_ %)
CVk v = “OIh 2)
M.

are the standard deviation and the av-
i As in the other case,

hereleh and quh
erage of theNENs—SO ensembl@

Ney=100 values of C}?ljh were calculated for each sub-
catchment.
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Fig. 4. Schematic of the approach used to estimate the recessiomig€a)—(b) Time series of MAP and mean soil moisture (MSM) in

the top 10 cm. Rainfall starts at timgand ends at timesy, with durationT;ajn = (fer—ts). MSM decreases aftesy and, at timee, it reaches

the initial value atts. The recession time i%ec= (fe —ter). Trec Was estimated considering rainfall events causing an increase of MSM
larger than 10% of its initial valugc)—(h) Computation of AR in three cases: the forecast event starts well after a storm (c, d); the forecast
event starts during a storm (e, f); and the forecast event starts few hours after a storm (g, h).

3.2 Quantification of basin initial condition To better understand how the antecedent rainfall computed

. : . o over Trec hours prior tor* (i.e., the beginning of the forecast
To quantify the basin condition at the beginning of each 1Eore'event) can provide information on the basin initial condition,

castt evenk, we computed_ the ante_cedent ralnfal_l AR(a let us refer to Fig. 4c—h where we presented three possible
variable readily available in operational forecasting), as the

MAP over the sub-basini averaged ovefyec hours prior to cases with varying™ for the same event. Whert is far

the bedinning of the eventl.... captures the period durin from an antecedent event (Fig. 4c—d), the previous rainfall
- 0€g 9 {rec CapL the p 9 does not affect the basin state and soil moisture redistribution
which the antecedent basin conditions impact the respons

ﬁas already occurred. In this case, AR=0. When a forecast
to a rainfall event. Herel;ec was estimated through the soll y ’

. . ; ) event starts in the middle of or immediately after the storm
moisture recession behavior averaged over the basin (MSM), y

as shown in Fig. 4a—b. At timg, a rainfall event increases (Fig. 4e—), the basin is likely wet and its conditionsrat

. . X is influenced by the previous event. In this case, AR is high.
MSM until the ralnfgll end at timaer when the MSM re- Finally, when* is placed some time after the end of a rainfall
cession starts. At tim&, MSM returns to the value prior

. . . . . event (Fig. 4g—h), the soil moisture has started to recess, but
to the_ event at times. In this way, we identify the_ralm_‘all the basin conditions still have memory of the past rainfall
duration, Tyain = (fer — ts), and soil moisture recession time,

T, (te—ter). We used a single value @fec computed as event. In this situation, AR is low.
rec= e~ ‘er. . ec ! We acknowledge that AR is not a perfect proxy of the
follows: (i) tRIBS model run with “observed” rainfall pro- g P proxy

vided MAP and MSM for the nine summers, (i) we iden- basin initial condition since it is not a direct reflection of the

" . . . absolute wetness of a basin. However, since our experiments
tified rainfall events that caused an increase in MSM larger b

are focused on summer events with rapid soil moisture re-
0,
and calouiatod the mean valus over sl he events, Inthe cagESSIonS: AR can b reasonably used as a proxy of inia
. ' conditions. In the following, we present interesting evidence
of Baron Fork, we obtained an averafjg=386 h.

www.nat-hazards-earth-syst-sci.net/10/1605/2010/ Nat. Hazards Earth Syst. Sci., 1061608610
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Fig. 5. (a) Variability of ensemble QPFs, quantified byv']\"APlh) (indexj =1,...,15 refers to the basins listed in Table 1), as a function of

the basin size4 ;. (b) Variability of ESFs, quantified byCV?lh), as a function of4 ;. Vertical bars indicate the standard deviations of the
100 CVs. The three different markers (circle, square and asterisk) are used to indicate the three groups of sub-basins as explained in the tex

of linkages between AR and ensemble dispersion. In future The analogous relation between the dispersion of the ESFs
studies, we plan to evaluate the effect of basin initial stateand the basin area is reported in Fig. 5b, where the mean of
on ensemble forecast quality by: (i) investigating how the the Ngy=100 values of c{?l.h, indicated with(CV?lh), is
soil moisture patterns at the beginning of each forecast evenglotted vs.A ;, along with the standard deviation of the CVs
interacts with ensemble QPFs characterized by different stasg yertical bars. In this case, the convergenc&:Mth) as
tistical propertie_s, and_ (i) evaluating how this interaction af- 5 function of number of events is achieved Whenj more than
fects the ESF dispersion. 75 randomly selected events are used. Interestingly, Fig. 5b
reveals a different behavior as compared to Fig. 5a. For areas
4 Results and discussion smaller than~180 kn?, it is possible to identify two groups
of sub-basins where ESF dispersion is not sensitiv&: t(a)
sub-basins 2, 3, 4, 5, and 1 (order by increasing size; cir-
The relation between the variability of ensemble rainfall in- clesz?,llt?cated in the downstream par.ts Of the basin, exhibit a
put and basin area is illustrated in Fig. 5a, where the aver{CV; ) near 0.93 and a smaller variability of the CVs, and
age of the C%I?Plh over the 100 events for each sub-basin (P) sub-basins 14, 13, 12, 11, and 10 (squares), located in

- cy/Lh
j, indicated with(CVMAPI) "is plotted versus the corre- the upper parts of the basin, havg@/7 ) of about 1.40

: A A . and a higher standard deviation of the CVs. For areas larger
sponding aread ; in logarithmic scale, together with the

standard deviations of the CVs (vertical bars). The meanthan~180 kn, the_(CVth) decreases witht; according

ing of the three kinds of markers (circles, squares, and asto a Iog-lm_ear rela_tlon and reaches the value of 0.58 for the
terisks) is defined later on. A preliminary analysis was con-ENtire basin (asterisks). Clearly, the scale-dependence of the
ducted to assess the statistical significance of results baséd'Sémble QPF dispersion is transformed significantly by the
on averages over 100 events, finding that, in each sub-basifatershed, leading to a different scale-dependence of the en-
J, (CVMAPIh) converges to an approximately constant value Semble streamflow dispersion.

when more than 50 randomly selected events are considered. These results also suggest that other features than the
In Fig. 5a, we can see tha€VMAPIN) (je. the variability — catchment area are responsible for the differing behavior be-
of the ensemble MAP in each sub-bagjrtends to decrease tween the two groups of small- and medium-sized basins
as the basin area increases since averaging precipitation vabutlined above. To investigate this issue, we analyzed here
ues over larger domains introduces an increasing smoothingwvo factors that condition the basin response time (Vivoni et
effect. Note that the MAP variability is constant for areas al., 2007b). A first factor is the basin morphometric (terrain)
smaller than 16 krhsince this is the highest spatial resolu- characteristics that influence runoff travel time over hillslope
tion of the rainfall fields. Note also that, since the ensemblepaths and within stream channels. In particular, high terrain
QPFs were generated by STRAIN using the same parameteslopes can reduce the basin response time, leading to a lower
set, the high-resolution rainfall fields are characterized by thecapacity of the basin to smoothen the rainfall variability. A
same multifractal properties in all sub-basins, and, thus, thesecond factor is the runoff generation influenced by soil and
pattern shown in Fig. 5a is only related to the basin size.  land cover characteristics. In tRIBS, four runoff generation

4.1 Effect of basin area and physical controls

Nat. Hazards Earth Syst. Sci., 10, 160615 2010 www.nat-hazards-earth-syst-sci.net/10/1605/2010/
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mechanisms are simulated including saturation excess, infil- 100
tration excess, perched subsurface stormflow, and ground- 0
water exfiltration (Ilvanov et al.,, 2004a). The occurrence 90 |
of a specific runoff type is the result of the interaction of
static characteristics of the catchment such as topography, O
land cover and soil texture, and dynamics factors such as an- 80 B I
tecedent wetness and rainfall. Here, we are comparing the
intrinsic basin characteristics; therefore, in the following, we
only focus on the static features affecting runoff generation.
The land cover and soil texture distributions within the
sub-basins affect runoff generation. For example, rainfall in-
tercepted by the trees in forested areas and water infiltrated
in permeable forest soils lead to a delayed runoff response 50
(e.g., lvanov et al., 2004b; Norbiato et al., 2009). As a re-
sult, we expect that basins with slower runoff generation will 40 . ,
attenuate rainfall variability to a greater extent, and this will 0 50 100
lead to a lower ESF dispersion. Another factor influencing Simkm]
runoff generation is the presence of regions of flow conver-

gence. We evaluated the possible effect of flow CONVergence;, ¢ scatterplot of LG, 4,5 vs. S (see Table 1). Sub-basins of

differences by calculating the topographic index (Beven andyroyp (a) are indicated with circles, those of group (b) with squares
Kirkby, 1979) defined as=In(A/tang), whereA isthe con-  and the remaining sub-catchments with asterisks.

tributing area ang is the land-surface slope angle, as in For-
man et al. (2008). We did not find any marked differences
across sub-basins, implying that this factor should not affect ) i
the observed sensitivity of the ESF dispersion. ThereforeN€se sub-basins have slower runoff responses, either due
we did not include the effect of flow convergence and only to h_|gh abstractions or long travel times. In contrast, sup—
considered land cover and soil texture distributions. basins of group (b) (10-14, squares) are located in two dif-
To address the first physical control (morphometric IorOIO_ferent areas of thg plot: sub-basins 10-12 are in the lower-
erties), we focused on the relief rati computed for each  [€ft part, with S similar to those of sub-basins 1-4, but a
sub-basin as the elevation range divided by the length of th&"uch lower LG..4.s, resulting in a faster runoff generation
main channel (Table 1). Sub-basins with high relief ratio aredu t0 & larger percentage of urban areas and croplands; sub-
likely subjected to quicker runoff response time, as compared®@Sins 13 and 14 are placed in the upper-right part of the plot,
to those with lowers. To address the second physical con- With & high percentage of forests (5(1.5~80%), butalso a
trols (land cover and soil texture), we refer the reader toVe"y high reliefratio =51.27 and 112.77mkrﬁ)'. Overall,
Fig. 1d depicting the spatial distribution of urban, croplands,these characteristics lead to a fa_lster response in sub-basins of
deciduous, evergreen and mixed forests. Following Ivanov ef"0UP (b), due to lower abstractions or quicker runoff propa-
al. (2004b), this map was also used as a surrogate for the sp4ation. Faster sub-basin responses lead to greater sensitivity
tial variability of soil properties. The calibrated parameters {© rainfall variability and a higher ESF dispersion. For com-

used in our study indicate more permeable soils in forested€t€ness, Fig. 6 also reports the other sub-catchments (6-9

areas with greater rainfall interception, as compared to crop@nd 15, asterisks), which are characterized by an intermedi-

lands and urbanized areas. Table 1 reports the aggregatéti€ Pehavior between the two groups.
percentage L& » of the basin covered by urban and crop-  For areas larger than 180 Rmthe ESF dispersion de-
land classes and the aggregated percentage 4,6 of for- creases with the basin area. This is generated by the de-
est classes 3, 4, and 5. creasing relation between dispersion of ensemble QPFs and
To interpret the differences between the two groups ofA (Fig. 5a), which is reflected on the same relation for the
sub-basins, let us consider Fig. 6 reporting the scatterplot oESF dispersion. In addition, we argue that over this range
LC34445 Vs. S for the 15sub-catchments. Sub-basins 1-4of basin areas, runoff generation may become secondary
of group (a) (plotted with circles) are placed in the upper-to channel routing processes (also see Vivoni et al., 2006).
left part of the plot, with high L@;4.5 (mostly forested) This is supported by the ensemble streamflow simulations
and low-moderate. In these sub-catchments, runoff gener- of Carpenter and Georgakakos (2006) who showed a log-
ation is likely slower due to a larger amount of intercepted linear decrease in the ensemble flow range for large basin
and infiltrated water. The other sub-basin of group (a) (sub-areas. Further, as the channel network length was increased
basin 5) has a lower value of ls¢a+5 (41.57%), but this  (due to intrinsic characteristics of the basins), these authors
is compensated by a low (9.26 mknT!). As a result, the obtained a steeper decrease in the ESF dispersion. Thus,
ESF dispersion of group (a) is relatively low (Fig. 5b), as in light of analyses presented here and results of Carpenter
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Fig. 7. Relation between ESF dispersion and AR (mnthineach  Fig. 8. Relation betweer: 1 (01" > (measured in hours fromt)
sub-basin. and AR (mm 1) in each sub-basin.

and Georgakakos (2006), we conclude that channel routingyere indicated withAR)c. and (CVRIM ¢, without refer-
can be a physical factor explaining the decrease of ensemblgnce to the sub-basin Overall, Fig. 7 shows that the ESF
streamflow dispersion for large areas. Presently, it is uncleagispersion decreases as AR increases. This implies that en-
which basin characteristics control the transition in ESF diS-semb|e flood forecasts fo||owing h|gh AR have less disper-
persion behavior between scale ranges dominated by runoffion as compared to forecasts after a low AR in the same
generation at smal and channel routing at large. sub-basin. A possible physical interpretation for this find-
ing is as follows. As previously described, rainfall prior to a
4.2 Effect of antecedent rainfall and physical controls forecasted event influences the basin state (soil moisture con-
tent, streamflow) at*, the beginning of the forecast (Figs. 3
The relation between the ESF dispersion and the antecedeaihd 4) (e.g., Fedora and Beschta, 1989; Vivoni et al., 2006;
rainfall is illustrated in Fig. 7. Each panel refers to a sub- Merz and Bloschl, 2009). If the amount of rainfall prior to
basin j and was constructed as follows. First, we sorteds* s large (high AR), most of the basin area has begun to
the AR j values in increasing order and divided them into respond, possibly leading to the streamflow rising limb. Un-
5AR classes with equal number of events (20). For eachjer these conditions, the runoff production in each ensemble
class, we computed the average of: (i) the 20kARal-  hydrological simulation will be mainly dominated by a de-
ues of events falling in that class, and (ii) the correspond-terministic pattern due to the prior storm, and the ESF dis-
ing CVE’}“. To simplify the notation, these mean quantities persion will be reduced. In contrast, if no or little rainfall
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Table 2. Values of parameter&y and K1 of Eq. (3) and the linear 04 o
correlation coefficients between(CVth)CL and log(AR)cL) in 12 1E1‘ o
each sub-basin. 03f g o 10
14 13
Sub-basin Ky K1 = a5 |
1 0.76 0.05 -0.88 1;
2 0.68 0.05 -0.72 o . &, |
3 0.83 0.04 -0.77 ’ 5 O 76
4 0.66 0.05 -0.89 o ¢
5 0.77 0.04 -0.76 0 Lo : :
6 045 0.06 -0.79 10° 10 10° 10°
7 0.55 0.06 -0.83 Alkm?]
8 060 007 -0.92 Fig. 9. Relation between paramet&y for each sub-basin, and the
9 0.78 0.08 -0.73 . :
) : ) corresponding sub-basin area.
10 090 0.12 -0.74
11 1.08 0.10 -0.75
12 1.06 0.11 -0.98 T— L .
13 102 009 -094 fied in Fig. 5b. In fact, sub-basins in group (a) (plotted with
14 100 008 -0098 circles) are characterized by a low&g as compared to sub-
15 037 009 -093 basins in group (b) (squares). The remaining sub-basins (as-

terisks), at large basins areas, have valuek pintermedi-
ate between those of the other two groups. This is consis-
tent with previous results and interpretations. The physical
prior to 7* has been observed (AR=0 or low AR), the ESF fact_ors that increase or decre_ase the runoff response times
dispersion will be mainly affected by the ensemble QPFs va{Sil texture, land cover, terrain slope) also play an impor-
riability and, to a less extent, by a deterministic componentta”t role in determining if the an.teced(.ant rainfall has a stropg
due to a prior storm (when ARO). In this case, the ESF  ©F weak contrpl on the ESF dlsp.ersmn. Those sub-basins
dispersion will be likely larger. in group (a)_ with slow response times (permeable, forestegl

The validity of this hypothesis would imply that, for high s_0|ls with high abstractions and low slopes) are less sensi-
AR, the timer (Q1") where the maximunQ,%k} _of each en- pve to AR (low K_l). In other words, the phy§|cal con_trols
semble streamflow member is found withiter (Fig. 3) is in t_hes_e sub—basms lead to an ESF dispersion for hlgh AR
shifted towards*, meaning that we expect a decreasing re-Which is not considerably smalller than the one obtglned for
lation between (") and AR. This is confirmed in Fig. 8, low AR, due to the greater spgtlotemporal attenyatlon of the
where the average of 01" over the same classes used in ensembl_e QPFs. In sub-basins of group (l_a) with faster re-
Fig. 7 (< 1(Q'") >) are plotted versusAR)c, . As an addi-  SPOnse t|m_es (less permeable croplands_ W|t_h lower abstrac-
tional consequence of these results, forecasts with high ARIONS and higher slopes), the ESF dispersion is attenuated to a
are less affected by the presence of deficiencies (e.g., biadr€ater extentwith higher AR (higkiz) due to the more lim-
underdispersion or overdispersion) in the ensemble QPFs, 4L8d basin smoothing that occurs in the rainfall-runoff trans-
compared to ESFs obtained with lower AR. formation.

As a further analysis, we investigated the differences in
the relation between ESF dispersion and AR by fitting the

following regression in the 15 sub-basins (Fig. 7): 5 Summary and conclusions

Ensemble techniques have been recently adopted in hydrom-
eteorological systems to account for different sources of un-
where Ko and K1 are parameters reported in Table 2, to- certainty. However, a limited number of studies have been
gether with the linear correlation coefficients of the regres-devoted to investigate the effect of the basin characteristics
sions (see Fig. 7, dashed gray lines). Paramigegiccounts  and initial state on the skill of ensemble forecasts. In this
for the magnitude of ESF dispersion, while the sl&hecon- study, we quantified the influence of two important factors
trols the rate of decreasing of ESF dispersion with the an-on the accuracy of the ensemble streamflow forecasts (ESFs):
tecedent rainfall. In the extreme situation whéfg=0, AR (i) the attenuation effect on the spatiotemporal variability of
does not play a role in ESF dispersion, whereakasn- ensemble rainfall forecasts due to the physical processes in
creases, the effect of AR becomes larger. The relation bea basin, and (ii) the amount of rainfall prior to the forecast
tween the parameter§; and the sub-basin area is illustrated event, which is one component affecting the initial forecast
in Fig. 9. This clearly reveals that it is possible to detect dif- state. For this purpose, we conducted a synthetic experi-
ferent patterns for the same two groups of sub-basins identiment where we generated consistent (or reliable) ESFs for

(VM| = Ko— K1log((AR)cL) , ©)
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