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Abstract. The accuracy of ensemble streamflow forecasts
(ESFs) is impacted by the propagation of uncertainty associ-
ated with quantitative precipitation forecasts (QPFs) through
the physical processes occurring in the basin. In this study,
we consider consistent ESFs (i.e., observations and ensem-
ble members are equally likely) and we study the effect of
basin area (A) and antecedent rainfall (AR) on the ESF dis-
persion, a metric of flood forecast skill. Results from a set
of numerical experiments indicate that: (i) for small basins
(.180 km2), ESF dispersion is mainly dominated by the
runoff generation process and does not depend on the basin
sizeA; (ii) for larger areas, ESF dispersion decreases with
A according to a log-linear relation due to the decreasing va-
riability of ensemble QPFs and, possibly, to the channel rout-
ing process. In addition, we found that, regardless the basin
size, the ESF dispersion decreases as AR increases, and that
the influence of AR is larger for basins with fast response
times. Physical controls (land cover, soil texture and mor-
phometric features) on the analyzed basin response confirm
these interpretations.

1 Introduction

The increasing availability of computational resources and
recent modeling tools have allowed the development of flood
forecasting systems combining meteorological and hydro-
logical models with downscaling and data assimilation tech-
niques (e.g., Westrick et al., 2001; Bacchi et al., 2002; Sic-
cardi et al., 2005). In addition, ensemble techniques have
been recently adopted to account for different sources of un-
certainty in input data and model parameterization and struc-
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ture (Schaake et al., 2007; Verbunt et al., 2007). In parallel
with these efforts, new verification tools have been designed
to rigorously test the quality of hydrometeorological fore-
casts, to evaluate the sensitivity of each source of uncertainty,
and to identify improvements aimed at increasing forecast
skill (see, for example, the report developed by the US Na-
tional Weather Service available on-line athttp://www.nws.
noaa.gov/oh/rfcdev/docs/FinalVerification Report.pdf).

In a recent study of ensemble hindcasts from a hydromete-
orological forecasting system, Mascaro et al. (2010) showed
how two verification metrics, the Verification Rank His-
togram (Anderson, 1996; Hamill and Colucci, 1997; Tala-
grand et al., 1997) and the Continuous Ranked Probabil-
ity Score (Wilks, 2006; Hersbach, 2000), can be adapted
to evaluate ensemble flood forecasts. In particular, the au-
thors quantified several attributes of forecast quality (con-
sistency, reliability, resolution and uncertainty) associated
with ensemble streamflow forecasts (ESFs). They found that
Quantitative Precipitation Forecasts (QPFs) characterized by
ensemble consistency (or reliability) led to higher flood fore-
cast accuracy, as compared to ESFs obtained from QPFs with
ensemble deficiencies (overdispersion and underdispersion).
An ensemble forecast is consistent when observations are
statistically indistinguishable from ensemble members (An-
derson, 1997). If this condition occurs, the spread or disper-
sion of the ESF is directly related to the skill of the forecast
system (Wilks, 2006).

The ensemble flood forecasting verification experiments
conducted by Mascaro et al. (2010) also revealed two im-
portant challenges for assessing the uncertainty of hydrom-
eteorological forecasts. The first is related to the spatiotem-
poral attenuation of a QPF as it is transformed into stream-
flow by the physical processes in a basin (e.g., Vivoni et al.,
2007a): analyses by Mascaro et al. (2010) indicated that the
basin smoothing effect is higher for larger areas, implying a
greater need for accurate ensemble QPFs for smaller basins.
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A second challenge is the strong influence of the rainfall prior
to the forecasted event on the flood forecast skill: the higher
the antecedent rainfall (AR), the lower the propagation of
QPF errors into ESFs quality, while, as AR decreases, the
ensemble QPF accuracy becomes more critical.

This paper contributes to the better understanding of these
two issues by quantifying the influence of basin size and an-
tecedent rainfall on the forecast skill of a hydrometeorolog-
ical system, measured here by the ensemble streamflow dis-
persion. In this exercise, we only account for the uncertainty
associated with the rainfall forecasts, whereas all the other
sources of uncertainty, such as model parameters and basin
initial conditions, are currently neglected.

2 Data and experimental setup

The main objective of the experimental design is to create
synthetic “observations” under controlled conditions in or-
der to allow the generation of ensemble QPFs and ESFs with
known characteristics. Thus, a database of “observed” rain-
fall events at high spatiotemporal resolution and correspond-
ing “observed” streamflow was created over the Baron Fork
basin in Oklahoma (Fig. 1) during summer periods (June–
August) of 1997–2005. This was achieved by utilizing the
Space Time RAINfall (STRAIN) multifractal downscaling
model (Deidda, 2000) and the TIN-based Real-time Inte-
grated Basin Simulator (tRIBS) (Ivanov et al., 2004a) hy-
drological model, according to the following steps (Mascaro
et al., 2010):

1. Rainfall data estimated by the Next-Generation Radar
(NEXRAD) network, available on a regular 4-km grid
with a resolution of 1 h, were aggregated within a square
domain of sideL=256 km centered on the Baron Fork
(Fig. 1a) over an accumulation timeT =16 h. This re-
sulted in 138 consecutive 16-h-long rainfall events for
each summer, with average precipitationR. Figure 2a
shows an example for summer 2000.

2. The STRAIN model was used to downscale the mean
rainfall R from the coarse scaleL×L×T to the
fine scaleλ×λ×τ , whereλ=4 km andτ=15 min (i.e.,
5 levels of downscaling). In this way, the “observed”
high-resolution rainfall events were created. To fur-
ther explain this step, Fig. 2b reports the time series of
the mean areal precipitation (MAP) computed over the
Baron Fork basin from the high-resolution data.

3. The tRIBS model, calibrated using real precipitation
and streamflow data of summer 2000 (Mascaro et al.,
2010), was forced with the “observed” fine-scale rain-
fall, to obtain the “observed” streamflow response for
each summer (Fig. 2c). Simulations were conducted for
15 interior locations in order to study the dependence on
basin area and other characteristics (Fig. 1b, Table 1).

Fig. 1. (a)Baron Fork basin location within the Arkansas Red River
basin. The coarse-scale domainL×L used for rainfall downscaling
is plotted with a gray square.(b) Baron Fork basin boundaries,
channel network, boundaries and outlets of the 15 sub-basins (Ta-
ble 1), and the Westville meteorological station.(c) US Geological
Survey (USGS) Digital Elevation Model (30-m);(d) Land Cover
map derived from the USGS Land Use and Land Cover (LULC)
dataset.
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Fig. 2. Synthetic “observed” database generation.(a) Time series of NEXRAD rainfall estimatesR during summer 2000, aggregated in the
coarse spatial domainL×L (with L=256 km) centered on the Baron Fork over an accumulation timeT =16 h.(b) Time series of Mean Areal
Precipitation (MAP) over Baron Fork, calculated by averaging the high-resolution (4-km, 15-min) “observed” rainfall fields, obtained by
downscaling the coarse rainfallR with the STRAIN model.(c) Time series of the “observed” hydrograph at the Baron Fork outlet, produced
by the tRIBS model with the “observed” fine-scale rainfall forcing.

Table 1. Baron Fork sub-basin characteristics (Vivoni et al., 2006): area (A), maximum distance to the sub-basin outlet (L), relief ratio
(S), drainage density (Dd); time of concentration (Tc) from Kirpich (1940):Tc=0.000325×L0.77

×S−0.385, where units areL [m] andS

[m km−1]; minimum, mean and maximum elevation (minEL, µEL, maxEL); mean slope (µSL); percentages of basin area covered by land
cover classes 1 and 2 (LC1+2) and 3, 4 and 5 (LC3+4+5). For land cover classes, see Fig. 1d.

Sub-basin A L S Dd Tc minEL µEL maxEL µSL LC1+2 LC3+4+5
(km2) (km) (m km−1) (km−1) (h) (m) (m) (m) (%) (%) (%)

1 108.23 25.73 6.06 0.99 5.78 230.42 316.54 386.47 12.52 39.23 60.77
2 1.41 2.59 34.01 0.83 0.51 235.29 282.36 323.38 14.42 13.14 86.86
3 2.67 4.52 21.44 0.77 0.93 237.73 290.04 334.65 15.07 14.08 85.92
4 12.14 8.06 14.94 0.81 1.67 237.73 302.01 358.12 18.69 5.26 94.74
5 65.06 19.90 9.26 0.83 4.03 248.10 327.61 432.49 9.09 58.43 41.57
6 610.06 50.33 6.81 0.84 9.26 243.83 360.08 586.71 10.00 51.63 48.37
7 450.26 40.01 8.11 0.84 7.25 261.51 374.52 586.71 10.01 51.04 48.96
8 365.25 35.03 9.09 0.82 6.27 268.21 385.55 586.71 10.55 48.23 51.77
9 182.91 29.78 9.49 0.82 5.44 272.48 386.59 554.97 10.54 52.52 47.48
10 106.91 18.64 13.41 0.84 3.32 304.98 407.74 554.97 10.50 55.12 44.88
11 49.07 12.72 19.10 0.87 2.16 311.98 413.04 554.97 11.11 57.52 42.48
12 21.18 9.03 24.92 0.87 1.50 329.98 427.24 554.97 12.08 54.44 45.56
13 4.29 3.53 51.27 0.77 0.55 373.98 467.99 554.97 17.40 21.94 78.06
14 0.78 1.33 112.77 0.30 0.19 396.98 479.37 546.97 19.22 18.21 81.79
15 (Outlet) 808.39 67.26 5.47 0.86 12.59 218.84 346.54 586.71 11.02 47.30 52.70

The “observed” series of rainfall and streamflow were
treated as synthetic truth without accounting for any kind
of observational error. Once the “observed” database was
generated, we randomly extractedNEV=100 coarse-scale
precipitation eventsR, whose values range from 0.16 to
4.07 mm h−1, with an average of 0.86 mm h−1. Average val-
ues of the corresponding MAP from the “observed” rainfall
at 4-km resolution over the 15 sub-basins range from 0.73

to 0.97 mm h−1. For each event, we performed hydromete-
orological hindcasts according to the event-based approach
shown in Fig. 3. At timet∗, we assume that a Numeri-
cal Weather Prediction (NWP) model issues a rainfall fore-
castR for the nextT hours in the domainL by L. Then,
the STRAIN downscaling model is used to create an en-
semble ofNENS=50 consistent (fine-scale) QPFs and, sub-
sequently, tRIBS simulates the ESFs at 15 nested locations.
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Fig. 3. Event-based approach for the hydrometeorological hindcasts. In(a): (1) precipitation is observed up tot∗, when a NWP model issues
a coarse rainfall forecastR for the nextT hours over theL×L domain, (2) the STRAIN model produces fine-scale (λ×λ×τ ) consistent
ensemble QPFs betweent∗ and (t∗+T ), and (3) the metric MAP1 h

i,j,k
used to quantify the dispersion of ensemble QPF is extracted from each

rainfall member. In(b): (4) the tRIBS model, forced by the ensemble QPFs fromt∗ to (t∗+T ) and zero padding rainfall from (t∗+T ) up to
(t∗+T +Tc), simulates the ESFs, and (5) the metricQ1 h

k, i, j
used to measure the ESF dispersion is extracted from each streamflow member

within the time windowTver at time t (Q1 h). Note that the zero-padding interval in the rainfall input is added to include the delay in the
streamflow response due to the basin response time.

We underline that the basin state att∗ is determined by a con-
tinuous simulation with “observed” rainfall from the begin-
ning of each summer. In this exercise, we did not actually use
NWP outputs to determineR, but instead relied on the aggre-
gated NEXRAD rainfall data as a measure of the coarse-scale
prediction. This limitation could be readily addressed in fu-
ture studies.

3 Analysis methods

3.1 Metrics of ESF and QPF dispersion

We introduce some notation to describe the analyses con-
ducted in this study. As previously mentioned, a total of
NEV=100 events (i.e., 100 total events) were selected and,
for each eventk=1,...,NEV, we (i) created an ensemble of
NENS=50 consistent QPFs (i.e., 50 ensemble members) over
the domainL×L×T at resolutionλ×λ×τ and (ii) simulated
the corresponding ESFs for each sub-basinj=1,...,15. The
generici-th member (i=1,...,NENS) of the ensemble QPF
generated to predict thek-th event is expressed as QPFk, i ,
while the corresponding member of the ESF simulated in
sub-basinj is ESFk, i, j .

The first analysis was aimed to characterize the variabi-
lity of the ensemble rainfall forecasts with the basin area
(or scale). For this purpose, for each forecast eventk and
sub-basinj , we computed the MAP from each QPFk, i and

extracted the hourly maximum, labeled as MAP1 h
k, i, j (see

Fig. 3). To quantify the ensemble rainfall dispersion for each
sub-basin, we adopted a metric of the coefficient of variation
(CV) of the MAP1 h

k, i, j , computed as:

CVMAP1h
k, j =

σMAP1h
k, j

µMAP1h
k, j

, (1)

whereσMAP1h
k, j and µMAP1h

k, j are the standard deviation and

the average of theNENS=50 ensemble MAP1 h
k, i, j . This led to

NEV=100 values of CVMAP
k, j for eachj sub-catchment.

Next, we performed a similar analysis for the correspond-
ing ESFs. From each ESFk, i, j , we extracted a metricQ1 h

k, i, j ,
defined as the maximum discharge volume accumulated over
a duration of 1 h in the verification time windowTver =

T +Tc, j (Fig. 3), whereTc, j is the time of concentration
of the sub-basinj (see Table 1). Subsequently, we calculated
the CV of the ensembleQ1 h

k, i, j as:

CVQ1h
k,vj =

σ
Q1h
k, j

µ
Q1h
k, j

, (2)

whereσ
Q1h
k, j andµ

Q1h
k, j are the standard deviation and the av-

erage of theNENS=50 ensembleQ1h
k, i, j . As in the other case,

NEV=100 values of CVQ1h
k, j were calculated for eachj sub-

catchment.
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Fig. 4. Schematic of the approach used to estimate the recession timeTrec. (a)–(b) Time series of MAP and mean soil moisture (MSM) in
the top 10 cm. Rainfall starts at timets and ends at timeter, with durationTrain= (ter− ts). MSM decreases afterter and, at timete, it reaches
the initial value atts. The recession time isTrec= (te− ter). Trec was estimated considering rainfall events causing an increase of MSM
larger than 10% of its initial value.(c)–(h) Computation of AR in three cases: the forecast event starts well after a storm (c, d); the forecast
event starts during a storm (e, f); and the forecast event starts few hours after a storm (g, h).

3.2 Quantification of basin initial condition

To quantify the basin condition at the beginning of each fore-
cast eventk, we computed the antecedent rainfall ARk, j (a
variable readily available in operational forecasting), as the
MAP over the sub-basinj averaged overTrec hours prior to
the beginning of the event.Trec captures the period during
which the antecedent basin conditions impact the response
to a rainfall event. Here,Trec was estimated through the soil
moisture recession behavior averaged over the basin (MSM),
as shown in Fig. 4a–b. At timets, a rainfall event increases
MSM until the rainfall end at timeter when the MSM re-
cession starts. At timete, MSM returns to the value prior
to the event at timets. In this way, we identify the rainfall
duration,Train = (ter− ts), and soil moisture recession time,
Trec= (te− ter). We used a single value ofTrec computed as
follows: (i) tRIBS model run with “observed” rainfall pro-
vided MAP and MSM for the nine summers, (ii) we iden-
tified rainfall events that caused an increase in MSM larger
than 10%, and (iii) for each selected event, we computedTrec
and calculated the mean value over all the events. In the case
of Baron Fork, we obtained an averageTrec=86 h.

To better understand how the antecedent rainfall computed
overTrec hours prior tot∗ (i.e., the beginning of the forecast
event) can provide information on the basin initial condition,
let us refer to Fig. 4c–h where we presented three possible
cases with varyingt∗ for the same event. Whent∗ is far
from an antecedent event (Fig. 4c–d), the previous rainfall
does not affect the basin state and soil moisture redistribution
has already occurred. In this case, AR=0. When a forecast
event starts in the middle of or immediately after the storm
(Fig. 4e–f), the basin is likely wet and its conditions att∗

is influenced by the previous event. In this case, AR is high.
Finally, whent∗ is placed some time after the end of a rainfall
event (Fig. 4g–h), the soil moisture has started to recess, but
the basin conditions still have memory of the past rainfall
event. In this situation, AR is low.

We acknowledge that AR is not a perfect proxy of the
basin initial condition since it is not a direct reflection of the
absolute wetness of a basin. However, since our experiments
are focused on summer events with rapid soil moisture re-
cessions, AR can be reasonably used as a proxy of initial
conditions. In the following, we present interesting evidence
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Fig. 5. (a)Variability of ensemble QPFs, quantified by〈CVMAP1h
j

〉 (indexj = 1,...,15 refers to the basins listed in Table 1), as a function of

the basin size,Aj . (b) Variability of ESFs, quantified by〈CVQ1h
j

〉, as a function ofAj . Vertical bars indicate the standard deviations of the
100 CVs. The three different markers (circle, square and asterisk) are used to indicate the three groups of sub-basins as explained in the text.

of linkages between AR and ensemble dispersion. In future
studies, we plan to evaluate the effect of basin initial state
on ensemble forecast quality by: (i) investigating how the
soil moisture patterns at the beginning of each forecast event
interacts with ensemble QPFs characterized by different sta-
tistical properties, and (ii) evaluating how this interaction af-
fects the ESF dispersion.

4 Results and discussion

4.1 Effect of basin area and physical controls

The relation between the variability of ensemble rainfall in-
put and basin area is illustrated in Fig. 5a, where the aver-
age of the CVMAP1h

k, j over the 100 events for each sub-basin

j , indicated with〈CVMAP1h
j 〉, is plotted versus the corre-

sponding areaAj in logarithmic scale, together with the
standard deviations of the CVs (vertical bars). The mean-
ing of the three kinds of markers (circles, squares, and as-
terisks) is defined later on. A preliminary analysis was con-
ducted to assess the statistical significance of results based
on averages over 100 events, finding that, in each sub-basin
j , 〈CVMAP1h

j 〉 converges to an approximately constant value
when more than 50 randomly selected events are considered.
In Fig. 5a, we can see that〈CVMAP1h

j 〉 (i.e., the variability
of the ensemble MAP in each sub-basinj ) tends to decrease
as the basin area increases since averaging precipitation val-
ues over larger domains introduces an increasing smoothing
effect. Note that the MAP variability is constant for areas
smaller than 16 km2 since this is the highest spatial resolu-
tion of the rainfall fields. Note also that, since the ensemble
QPFs were generated by STRAIN using the same parameter
set, the high-resolution rainfall fields are characterized by the
same multifractal properties in all sub-basins, and, thus, the
pattern shown in Fig. 5a is only related to the basin size.

The analogous relation between the dispersion of the ESFs
and the basin area is reported in Fig. 5b, where the mean of
the NEV=100 values of CVQ1h

k, j , indicated with〈CVQ1h
j 〉, is

plotted vs.Aj , along with the standard deviation of the CVs

as vertical bars. In this case, the convergence of〈CVQ1h
j 〉 as

a function of number of events is achieved when more than
75 randomly selected events are used. Interestingly, Fig. 5b
reveals a different behavior as compared to Fig. 5a. For areas
smaller than∼180 km2, it is possible to identify two groups
of sub-basins where ESF dispersion is not sensitive toA: (a)
sub-basins 2, 3, 4, 5, and 1 (order by increasing size; cir-
cles), located in the downstream parts of the basin, exhibit a
〈CVQ1h

j 〉 near 0.93 and a smaller variability of the CVs, and
(b) sub-basins 14, 13, 12, 11, and 10 (squares), located in
the upper parts of the basin, have a〈CVQ1h

j 〉 of about 1.40
and a higher standard deviation of the CVs. For areas larger
than∼180 km2, the 〈CVQ1h

j 〉 decreases withAj according
to a log-linear relation and reaches the value of 0.58 for the
entire basin (asterisks). Clearly, the scale-dependence of the
ensemble QPF dispersion is transformed significantly by the
watershed, leading to a different scale-dependence of the en-
semble streamflow dispersion.

These results also suggest that other features than the
catchment area are responsible for the differing behavior be-
tween the two groups of small- and medium-sized basins
outlined above. To investigate this issue, we analyzed here
two factors that condition the basin response time (Vivoni et
al., 2007b). A first factor is the basin morphometric (terrain)
characteristics that influence runoff travel time over hillslope
paths and within stream channels. In particular, high terrain
slopes can reduce the basin response time, leading to a lower
capacity of the basin to smoothen the rainfall variability. A
second factor is the runoff generation influenced by soil and
land cover characteristics. In tRIBS, four runoff generation
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mechanisms are simulated including saturation excess, infil-
tration excess, perched subsurface stormflow, and ground-
water exfiltration (Ivanov et al., 2004a). The occurrence
of a specific runoff type is the result of the interaction of
static characteristics of the catchment such as topography,
land cover and soil texture, and dynamics factors such as an-
tecedent wetness and rainfall. Here, we are comparing the
intrinsic basin characteristics; therefore, in the following, we
only focus on the static features affecting runoff generation.

The land cover and soil texture distributions within the
sub-basins affect runoff generation. For example, rainfall in-
tercepted by the trees in forested areas and water infiltrated
in permeable forest soils lead to a delayed runoff response
(e.g., Ivanov et al., 2004b; Norbiato et al., 2009). As a re-
sult, we expect that basins with slower runoff generation will
attenuate rainfall variability to a greater extent, and this will
lead to a lower ESF dispersion. Another factor influencing
runoff generation is the presence of regions of flow conver-
gence. We evaluated the possible effect of flow convergence
differences by calculating the topographic index (Beven and
Kirkby, 1979) defined asλ=ln(A/tanβ), whereA is the con-
tributing area andβ is the land-surface slope angle, as in For-
man et al. (2008). We did not find any marked differences
across sub-basins, implying that this factor should not affect
the observed sensitivity of the ESF dispersion. Therefore,
we did not include the effect of flow convergence and only
considered land cover and soil texture distributions.

To address the first physical control (morphometric prop-
erties), we focused on the relief ratioS, computed for each
sub-basin as the elevation range divided by the length of the
main channel (Table 1). Sub-basins with high relief ratio are
likely subjected to quicker runoff response time, as compared
to those with lowerS. To address the second physical con-
trols (land cover and soil texture), we refer the reader to
Fig. 1d depicting the spatial distribution of urban, croplands,
deciduous, evergreen and mixed forests. Following Ivanov et
al. (2004b), this map was also used as a surrogate for the spa-
tial variability of soil properties. The calibrated parameters
used in our study indicate more permeable soils in forested
areas with greater rainfall interception, as compared to crop-
lands and urbanized areas. Table 1 reports the aggregated
percentage LC1+2 of the basin covered by urban and crop-
land classes and the aggregated percentage LC3+4+5 of for-
est classes 3, 4, and 5.

To interpret the differences between the two groups of
sub-basins, let us consider Fig. 6 reporting the scatterplot of
LC3+4+5 vs. S for the 15 sub-catchments. Sub-basins 1–4
of group (a) (plotted with circles) are placed in the upper-
left part of the plot, with high LC3+4+5 (mostly forested)
and low-moderateS. In these sub-catchments, runoff gener-
ation is likely slower due to a larger amount of intercepted
and infiltrated water. The other sub-basin of group (a) (sub-
basin 5) has a lower value of LC3+4+5 (41.57%), but this
is compensated by a lowS (9.26 m km−1). As a result, the
ESF dispersion of group (a) is relatively low (Fig. 5b), as

Fig. 6. Scatterplot of LC3+4+5 vs. S (see Table 1). Sub-basins of
group (a) are indicated with circles, those of group (b) with squares
and the remaining sub-catchments with asterisks.

these sub-basins have slower runoff responses, either due
to high abstractions or long travel times. In contrast, sub-
basins of group (b) (10–14, squares) are located in two dif-
ferent areas of the plot: sub-basins 10–12 are in the lower-
left part, with S similar to those of sub-basins 1–4, but a
much lower LC3+4+5, resulting in a faster runoff generation
due to a larger percentage of urban areas and croplands; sub-
basins 13 and 14 are placed in the upper-right part of the plot,
with a high percentage of forests (LC3+4+5∼80%), but also a
very high relief ratio (S=51.27 and 112.77 m km−1). Overall,
these characteristics lead to a faster response in sub-basins of
group (b), due to lower abstractions or quicker runoff propa-
gation. Faster sub-basin responses lead to greater sensitivity
to rainfall variability and a higher ESF dispersion. For com-
pleteness, Fig. 6 also reports the other sub-catchments (6–9
and 15, asterisks), which are characterized by an intermedi-
ate behavior between the two groups.

For areas larger than 180 km2, the ESF dispersion de-
creases with the basin area. This is generated by the de-
creasing relation between dispersion of ensemble QPFs and
A (Fig. 5a), which is reflected on the same relation for the
ESF dispersion. In addition, we argue that over this range
of basin areas, runoff generation may become secondary
to channel routing processes (also see Vivoni et al., 2006).
This is supported by the ensemble streamflow simulations
of Carpenter and Georgakakos (2006) who showed a log-
linear decrease in the ensemble flow range for large basin
areas. Further, as the channel network length was increased
(due to intrinsic characteristics of the basins), these authors
obtained a steeper decrease in the ESF dispersion. Thus,
in light of analyses presented here and results of Carpenter
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Fig. 7. Relation between ESF dispersion and AR (mm h−1) in each
sub-basin.

and Georgakakos (2006), we conclude that channel routing
can be a physical factor explaining the decrease of ensemble
streamflow dispersion for large areas. Presently, it is unclear
which basin characteristics control the transition in ESF dis-
persion behavior between scale ranges dominated by runoff
generation at smallA and channel routing at largeA.

4.2 Effect of antecedent rainfall and physical controls

The relation between the ESF dispersion and the antecedent
rainfall is illustrated in Fig. 7. Each panel refers to a sub-
basin j and was constructed as follows. First, we sorted
the ARk, j values in increasing order and divided them into
5 AR classes with equal number of events (20). For each
class, we computed the average of: (i) the 20 ARk, j val-
ues of events falling in that class, and (ii) the correspond-
ing CVQ1h

k, j . To simplify the notation, these mean quantities

Fig. 8. Relation between< t(Q1 h) > (measured in hours fromt∗)
and AR (mm h−1) in each sub-basin.

were indicated with〈AR〉CL and〈CVQ1h
〉CL, without refer-

ence to the sub-basinj . Overall, Fig. 7 shows that the ESF
dispersion decreases as AR increases. This implies that en-
semble flood forecasts following high AR have less disper-
sion as compared to forecasts after a low AR in the same
sub-basin. A possible physical interpretation for this find-
ing is as follows. As previously described, rainfall prior to a
forecasted event influences the basin state (soil moisture con-
tent, streamflow) att∗, the beginning of the forecast (Figs. 3
and 4) (e.g., Fedora and Beschta, 1989; Vivoni et al., 2006;
Merz and Bloschl, 2009). If the amount of rainfall prior to
t∗ is large (high AR), most of the basin area has begun to
respond, possibly leading to the streamflow rising limb. Un-
der these conditions, the runoff production in each ensemble
hydrological simulation will be mainly dominated by a de-
terministic pattern due to the prior storm, and the ESF dis-
persion will be reduced. In contrast, if no or little rainfall
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Table 2. Values of parametersK0 andK1 of Eq. (3) and the linear
correlation coefficientsr between〈CVQ1h

〉CL and log(〈AR〉CL) in
each sub-basin.

Sub-basin K0 K1 r

1 0.76 0.05 –0.88
2 0.68 0.05 –0.72
3 0.83 0.04 –0.77
4 0.66 0.05 –0.89
5 0.77 0.04 –0.76
6 0.45 0.06 –0.79
7 0.55 0.06 –0.83
8 0.60 0.07 –0.92
9 0.78 0.08 –0.73
10 0.90 0.12 –0.74
11 1.08 0.10 –0.75
12 1.06 0.11 –0.98
13 1.02 0.09 –0.94
14 1.00 0.08 –0.98
15 0.37 0.09 –0.93

prior to t∗ has been observed (AR=0 or low AR), the ESF
dispersion will be mainly affected by the ensemble QPFs va-
riability and, to a less extent, by a deterministic component
due to a prior storm (when AR6=0). In this case, the ESF
dispersion will be likely larger.

The validity of this hypothesis would imply that, for high
AR, the timet (Q1 h) where the maximumQ1 h

k, i, j of each en-
semble streamflow member is found withinTver (Fig. 3) is
shifted towardst∗, meaning that we expect a decreasing re-
lation betweent (Q1 h) and AR. This is confirmed in Fig. 8,
where the average oft (Q1 h) over the same classes used in
Fig. 7 (< t(Q1 h) >) are plotted versus〈AR〉CL. As an addi-
tional consequence of these results, forecasts with high AR
are less affected by the presence of deficiencies (e.g., bias,
underdispersion or overdispersion) in the ensemble QPFs, as
compared to ESFs obtained with lower AR.

As a further analysis, we investigated the differences in
the relation between ESF dispersion and AR by fitting the
following regression in the 15 sub-basins (Fig. 7):

〈CVQ1h
〉CL = K0−K1log(〈AR〉CL) , (3)

whereK0 and K1 are parameters reported in Table 2, to-
gether with the linear correlation coefficients of the regres-
sions (see Fig. 7, dashed gray lines). ParameterK0 accounts
for the magnitude of ESF dispersion, while the slopeK1 con-
trols the rate of decreasing of ESF dispersion with the an-
tecedent rainfall. In the extreme situation whereK1=0, AR
does not play a role in ESF dispersion, whereas asK1 in-
creases, the effect of AR becomes larger. The relation be-
tween the parametersK1 and the sub-basin area is illustrated
in Fig. 9. This clearly reveals that it is possible to detect dif-
ferent patterns for the same two groups of sub-basins identi-

Fig. 9. Relation between parameterK1 for each sub-basin, and the
corresponding sub-basin area.

fied in Fig. 5b. In fact, sub-basins in group (a) (plotted with
circles) are characterized by a lowerK1 as compared to sub-
basins in group (b) (squares). The remaining sub-basins (as-
terisks), at large basins areas, have values ofK1 intermedi-
ate between those of the other two groups. This is consis-
tent with previous results and interpretations. The physical
factors that increase or decrease the runoff response times
(soil texture, land cover, terrain slope) also play an impor-
tant role in determining if the antecedent rainfall has a strong
or weak control on the ESF dispersion. Those sub-basins
in group (a) with slow response times (permeable, forested
soils with high abstractions and low slopes) are less sensi-
tive to AR (low K1). In other words, the physical controls
in these sub-basins lead to an ESF dispersion for high AR
which is not considerably smaller than the one obtained for
low AR, due to the greater spatiotemporal attenuation of the
ensemble QPFs. In sub-basins of group (b) with faster re-
sponse times (less permeable croplands with lower abstrac-
tions and higher slopes), the ESF dispersion is attenuated to a
greater extent with higher AR (highK1) due to the more lim-
ited basin smoothing that occurs in the rainfall-runoff trans-
formation.

5 Summary and conclusions

Ensemble techniques have been recently adopted in hydrom-
eteorological systems to account for different sources of un-
certainty. However, a limited number of studies have been
devoted to investigate the effect of the basin characteristics
and initial state on the skill of ensemble forecasts. In this
study, we quantified the influence of two important factors
on the accuracy of the ensemble streamflow forecasts (ESFs):
(i) the attenuation effect on the spatiotemporal variability of
ensemble rainfall forecasts due to the physical processes in
a basin, and (ii) the amount of rainfall prior to the forecast
event, which is one component affecting the initial forecast
state. For this purpose, we conducted a synthetic experi-
ment where we generated consistent (or reliable) ESFs for
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a large set of hydrometeorological events over the Baron
Fork basin (808 km2) and 14 sub-basins (minimum area of
0.78 km2). To quantify flood forecast skill, we introduced
a metric measuring the ESF dispersion. In this exercise, the
ensemble rainfall forecasts are characterized by the same sta-
tistical properties in all sub-basins. Results of the study can
be summarized in the following two points:

1. The variability of the ensemble rainfall forecasts has a
clear decreasing pattern with basin area, while the phys-
ical processes governing the rainfall-runoff transforma-
tion lead to a relation between ESF dispersion and basin
area which requires a careful interpretation. For small
areas, the ESF dispersion is constant and its value de-
pends on the basin features controlling runoff genera-
tion (land cover and soil texture) and travel time (mor-
phometric features). For larger areas, ESF dispersion
decreases withA according to a log-linear relation, due
to the decreasing variability of the QPFs as the area in-
creases, and, possibly, to the response time in the chan-
nel network.

2. ESF dispersion decreases as the total amount of rain-
fall prior to the forecasted event (AR) increases. This
is explained considering that, for high AR, the runoff
production in each ensemble hydrological simulation is
mainly affected by a deterministic component due to the
previous storm runoff. As a consequence, the ESF dis-
persion will be reduced.

We highlight two new contributions of this study. In a past
study, Carpenter and Georgakakos (2006) found that channel
routing is a dominant process responsible for the variability
of the ESF dispersion for relatively large basin areas. In our
study, we confirmed this result and also found that, in small
basins, runoff generation becomes an important factor con-
trolling the ESF dispersion. This was demonstrated by the
differences in the basin properties (soil texture, land cover,
slope) affecting these physical processes. A second novel
finding is that the same basin physical properties also con-
trol the impact of the antecedent rainfall on the flood forecast
skill. In basins with slower response times that are able to at-
tenuate the rainfall variability, the ESF dispersion decreases
with a lower rate as AR increases. In contrast, in basins
with a faster response, the effect of the antecedent rainfall on
the streamflow response is larger. In conclusion, this study
advances the understanding of the role of the key physical
factors affecting the scale-dependence of the ensemble flood
forecast dispersion.
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