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Abstract

Automated composition of services is a key functionality for the adop-
tion of the service-oriented development paradigm. Solving this problem in
practice requires the ability to consider asynchronous stateful services and to
express complex composition requirements which may span different phases
of the life-cycle of component services. In this paper we present a novel
automated service composition approach which addresses these challenges
by associating so-called objects to services, and by introducing a simple yet
powerful notation to express composition requirements on them. We recast
this view of the problem as a specific form of planning; our experiments on
a prototype implementation witness the ability of our approach to deal with
realistic scenarios and requirements that cannot be tackled by other current
approaches.

1. Introduction

In recent years, significant advances in web service technol-
ogy and standards have enabled a wide adoption of service-
oriented applications. One of the key ideas underlying the
service-oriented paradigm is that of allowing the combination
of existing services, to obtain new services that satisfy some
given requirements and goals. A wide range of methodologies,
languages, and approaches has been developed in order to
facilitate and support this activity.

In particular, this has led to significant research efforts
and progress in automated service composition, due to its
potential to significantly cut development time and costs.
Most current approaches consider services as atomic, stateless,
and synchronous entities [1]–[5]; as such, in essence, they
produce orchestrations which simply schedule such entities
appropriately. For instance, in the travel domain, where the
aim is to provide a combined booking service by composing
existing Hotel and a Flight reservation services, this boils down
to execute them in order, routing data between them and the
customer.

In most real-life scenarios, however, services are stateful,
realizing complex protocols (e.g., a multi-phase booking pro-
cedure includes search, selection, and checkout tasks); their
behavior may be non-deterministic (the search may provide no
result, checkout may fail), and they may exchange messages
asynchronously. This makes the composition problem signif-
icantly more complex, and requires specific ways to manage
these features, which are dealt with (in some cases partially)
only by few approaches [6]–[8].

A further source of complexity raises from the fact that
the simple requirements adopted by current approaches (i.e.,
asking that certain outputs are produced or certain service
states are reached) are not enough. Indeed, in many scenarios
the composition goals cannot be stated only in terms of some
desired final outcome: there is a need to align intermediate
states of service evolution, and to define how the composed
service should react to events at different execution stages.
For instance, in the travel scenario, the possible delay or
deletion of flights make it necessary to keep the hotel and flight
reservations consistent also after the booking, e.g. allowing a
user to change or delete the hotel reservation if a flight delay
or cancellation is reported.

Finally, there is not a one-to-one connection between a
process managing some conceptual entity and its service
realization. Often, a service only manages a particular task
or activity within a broader process. For example, flight
management may involve three distinct services that handle
flight booking, flight status notification and flight cancellation.
At the same time, in many domains the same activity may
be accomplished using different services, made available by
different providers and adopting different representations and
protocols. Given this, it is hard, if at all possible, to express
composition requirements in terms of the states or outcomes
of a particular service.

This indicates that there is a need for a composition frame-
work including more sophisticated and expressive requirement
notations and models that separate composition requirements
from service implementation details, so to (i) handle services
that express stateful, non-deterministic asynchronous behav-
iors, (ii) allow defining complex composition requirements
going beyond mere reachability, and (iii) capture compo-
sition problems in a natural and intuitive, implementation-
independent way. This paper presents a novel automated
service composition approach that addresses those challenges
by:

• introducing and formalizing the notion of domain objects,
relating them to service operations, and using them to
express the composition problem and the domain;

• providing a simple yet expressive notation for defining
control flow requirements over the service composition,
in terms of the evolution of domain objects, encompass-
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(a) Customer Interface
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(b) Flight Reservation Service (c) Flight Cancellation Service

(d) Flight Status Notification Service
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(e) Hotel Reservation Management Service

Fig. 1. Component services in the travel domain scenario

ing user preferences and going beyond reachability;
• presenting a formal framework for the automated com-

position of services, which allows producing executable
services according to the above-mentioned object-driven
requirements.

The paper is organized as follows. The next two sections
present a motivating example and introduce the overall ap-
proach at a conceptual level. Section 4 presents some for-
mal background on the underlying asynchronous planning
framework, allowing us to define our modelling notations in
Section 5. Then, in Section 6 we spell out the details of
our automated service composition approach, also describing
some experimental results. Finally, we discuss related work
and provide some concluding remarks.

2. Motivating Example

In order to illustrate the need for a new approach to service
composition we use a variant of a well-known travel domain
scenario, which appears in various forms in the literature
on service composition for demonstration purposes. In such
a scenario, we aim to provide a composed service that can
deliver to the users and manage travel packages consisting of
flight tickets and hotel reservations.

Fig. 1 represents the five stateful services involved in our
version of the scenario, whose actual implementation can be
carried out in a standard service description language such as
e.g. BPEL1.

In particular, Fig. 1 (a) shows the expected customer in-
terface, which allows the user to book a compound travel
package (if available), and then to receive information on its
modifications (e.g., in case of the flight delays) or cancellation.
Figure 1 (b,c) represent the services for booking a flight ticket
and for cancelling it respectively. The service depicted in
Fig. 1 (d) shows a flight status notification service, which sends
notifications about the flight delays or cancellations. Finally,

1. In the graphical representation, input and output operations are prepended
by “?” and “!” respectively, and for the sake of space we abstract away from
details related to the data manipulated by the services.

Fig. 1 (e) represents a unique protocol managing in full an
hotel reservation, i.e., able to create, modify, and delete it.

The problem of providing a composed service in this
scenario is complicated by three main factors.

First, the involved services have a sophisticated behavior:
they are stateful and non-deterministic, and message interac-
tions are asynchronous.

Second, our aim is to cover the whole process of the travel
package reservation and management. This means not only
to book the hotel and flight reservation, but also to align
further flight modifications with the modification of the hotel
reservation and of the travel package. More precisely, we aim
to build here a composed process which should satisfy the
following goals:

1) It should provide a way to obtain a travel package based
on the flight and hotel reservations. This should be done
transactionally, i.e., the hotel shall not be booked if the
flight is not available and vice versa.

2) If the flight is delayed, the composed service has to
provide a way to modify the hotel reservation (and
the resulting offer) as well. If this is not possible, the
reservations should be cancelled.

3) If the flight is cancelled, the other reservations should
be cancelled as well.

We note that such requirements cannot be expressed in terms
of finally achieving some state or outcome. Requirement
(1) asks reaching an intermediate state, where further events
and actions may still take place, while (2,3) define reaction
rules that the process should perform in order to handle
specific events. Moreover, requirements (1,2) express potential
alternatives that should be considered due non-determinism of
the services, and a preference order among them (booking
is preferred to non-booking, and modification to cancellation).
Thus, an appropriate formalism is needed in order to represent
and manage such requirements.

Finally, the example shows that a single service may not
cover all aspects of a conceptual process. While this is the
case for the hotel service, the flight services perform only
particular operations of the flight reservation management.

18



�

�

���������	

��
���

������� �������	
��

������

������������ ��������������

�������	

������

�������	
��

���

���

���

���

Fig. 2. Composition framework

Also, alternative hotel booking implementations could also be
split over a set of services. Therefore, expressing the above
composition requirements in terms of service actions and states
may be difficult, and any service implementation modification
would also force re-thinking the requirements.

These three issues make even the most expressive current
approaches inadequate to tackle this scenario, and call for a
novel solution, conceptually presented in the next section.

3. Description of the Approach

Our automated service composition approach is schemati-
cally represented in Fig. 2, and revolves around the central
notion of a domain object, which we introduce to explicitly
model the key elements of the composition problem and their
evolution (e.g., in our example, the hotel reservation, the flight
ticket, and the travel package). Objects may have a complex
life-cycle; e.g., in our scenario they may be created, modified,
and deleted. The idea is that, while activities performed by
component services may make objects evolve, the modeling
of the objects does not depend on a particular service im-
plementation. This makes it natural to express control-flow
composition requirements in terms of the domain objects and
their evolution.

Specifically, we model the evolution of an object, which
includes its creation and deletion as well as reactions to
specific actions (e.g., flight cancellation), with a state diagram,
which defines possible object states and transitions between
them. The transitions correspond to the activities that can be
performed over the object (e.g., flight reservation or cancella-
tion) and to the external events affecting the state of the object
(e.g., flight delay).

To link objects to services, we allow service activities to
be annotated with elements of the object diagrams, implicitly
defining a mapping between the execution of service opera-
tions and the evolution of objects (e.g., for our example, we
will consider the annotations appearing inside the boxes in
Fig. 1). We note that in this way, it becomes easy to modify
a scenario to account for different service implementations: it

is enough that services are annotated appropriately, while it
is not necessary to affect object models nor requirements on
them.

Indeed, given objects and labeled services, control-flow
composition requirements are defined on top of the object state
diagrams. Namely, we use object states and events to represent
both the tasks to be performed over the objects (e.g., create
both flight ticket and hotel reservation), and to specify coordi-
nation requirements defining a consistent evolution of sets of
related objects (e.g., delete hotel reservation in case of flight
cancellation). A side-remark is in order. In general, as pointed
out e.g. in [9], also data flow requirements must be considered,
to define data dependencies between various activities. For the
sake of space, in this paper we focus on modelling control
flow requirements, and embed the approach of [9] for data-
flow specifications, omitting a specific discussion on them.

Once domain objects and composition requirements are
specified and component services are annotated, the spec-
ifications are converted into a formal representation which
is passed to a synthesis engine. Such engine automatically
identifies and generates a composite service that satisfies
the composition requirements by orchestrating the component
services. In particular, the engine is based on the asynchronous
planning framework of [7]; therefore, the next section will
be devoted to some background on such framework, prior to
stepping into our novel modelling notations and formalisms,
and to discussing their translation in terms of asynchronous
planning.

4. Background

Our approach to service composition builds upon the com-
position framework presented in [7], based on planning in
asynchronous domains. There, component services define a
planning domain, composition requirements are formalized as
a planning goal, and advanced planning algorithms are used to
generate the composite service. Differently from other current
approaches, such a framework assumes an asynchronous com-
munication model, and provides the ability to deal with stateful
and non-deterministic services, considering preference-based
(reachability) requirements on services. As such, it provides a
good basis to build upon; in the following, we discuss its key
concepts.

Formally, a planning domain is defined as a state transition
system, which describes a dynamic system that can be in
one of its possible states (some of which are marked as
initial states and/or as accepting states) and can evolve to
new states as a result of performing some actions. Actions are
distinguished in input actions, which represent the reception
of messages, output actions, which represent messages sent
to external services, and internal action τ , modelling internal
computations and decisions.

Definition 1 (STS): A state transition system (STS) is a
tuple 〈S,S0, I,O,R,SF ,F〉, where

• S is the set of states and S0 ⊆ S are the initial states;
• I and O are the input and output actions respectively;
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• R ⊆ S×Bool×(I∪O∪{τ})×S is a transition relation,
• SF ⊆ S is the set of accepting states.
• F : S → 2P is a labelling function that links the states

with a set of propositions P associated to the STS.
Given a boolean expression b ∈ Bool over propositions in P ,
the labelling function defines whether the expression holds in
a state:

• s,F |= �;
• s,F |= p, iff p ∈ F(s);
• s,F |= ¬b, iff s,F 	|= b;
• s,F |= b1 ∨ b2, iff s,F |= b1 or s,F |= b2.

The transitions of STS are guarded: a transition 〈s, b, a, s′〉 is
possible in the state s only if the guard expression b holds in
that state, i.e., s,F |= b. A run π of STS is a finite sequence
of transitions π = 〈s0, b0, a0, s1〉, . . . , 〈sn, bn, an, sn+1〉, with
ai ∈ I ∪ O ∪ {τ}, si,F |= bi, s0 ∈ S0, and sn+1 ∈ SF . The
set of all runs of a STS Σ is denoted with Π(Σ).

Component services can be recast as STSs, and, given a set
of component services W1, . . . , Wn, the planning domain Σ
is defined as a synchronous product of the all the STSs of the
component services: Σ = ΣW1

‖ . . . ‖ΣWn
. The synchronous

product Σ1‖Σ2 models the fact that the systems Σ1 and Σ2

evolve simultaneously on common actions and independently
on actions belonging to a single system.

A composed service can also be represented as a state
transition system Σc, whose aim is to control the planning
domain defined by the component services. The interactions of
Σc and Σ are modelled by the following notion of a controlled
system.

Definition 2 (Controlled System):
Let Σ = 〈S,S0, I,O,R,SF ,F〉 and Σc =
〈Sc,S

0
c , I,O,Rc,S

F
c ,Fc〉 be two state transition systems.

STS Σc � Σ, describing the behaviors of system Σ when
controlled by Σc, is defined as follows:

Σc � Σ = 〈Sc ×S,S0
c ×S0, I,O,Rc �R,SF

c ×SF ,Fc ∪F〉

where:

〈(sc, s), (bc ∧ b), a, (s′c, s
′)〉 ∈ (Rc � R), if

〈sc, bc, a, s′c〉 ∈ Rc and 〈s, b, a, s′〉 ∈ R

In this setting, service composition is stated as the following
problem: given the services W1, . . . , Wn and a composition
goal ρ, identify a composed service Σc such that the controlled
system Σc � (ΣW1

‖ . . . ‖ΣWn
) satisfies ρ. In [10] it is shown

how planning for preference-ordered goals may be applied
for this purpose, considering a list ρ = (g1, g2, . . . , gn) of
alternative requirements where each gi is a reachability goal.
In our work, this idea will be used as a stepping stone upon
which we will integrate our novel and more expressive object-
driven view of requirements.

5. Modelling Service Composition

In this section we present notations for modelling a service
composition problem, that is, the domain objects and their

evolution, their associated services, and the corresponding
control-flow composition requirements.

5.1. Representing Objects

Formally, we represent objects with object diagrams.
Definition 3 (Object Diagram): An object diagram repre-

senting an object O is a tuple 〈L,L0, E , T 〉, where
• L is a finite set of object configurations and L0 ⊆ L is a

set of initial configurations;
• E is a set of possible events that reflect the evolution of

the object;
• T ⊆ L × E+ × L is a transition relation that defines the

evolution of an object, based on events.
We require that there exists a predefined event toe(l, o), with
l ∈ L, to define that the object o moves to a configuration
l. We also require that transitions leaving a configuration are
annotated with mutually disjoint sets of events.

Example 1: The object diagram of the hotel reservation and
of the flight ticket may be represented as follows:

������� �������
	
��

���� ������� �������

	
������

The diagram contains three configurations, namely not-exist,
deleted, and created. The object moves to the configuration
created upon the event “created”, while it moves to a configu-
ration deleted upon the event “deleted”. When the reservation
exists, it may be modified, which is reflected with the event
“modified”.

5.2. Services and Service Annotations

We assume that the description of the services associated
with the considered domain objects consists of a stateful
service protocol (e.g., a BPEL process), associated to a
stateless service interface (e.g., a WSDL document). Each
service description is related with a corresponding object and
its dynamics, through special annotations. These annotations
appear within the activities of the service protocol: an activity
may be annotated with a set of events pertaining to the
corresponding object. This implicitly defines how the evolution
of the service reflects over the object.

Formally, we model services as annotated state transition
system (ASTS), similarly to the STS defined above. The transi-
tions of ASTS may be labelled with object events, thus stating
that when the transition takes place, the corresponding object
is changed. If, for example, the transition is annotated with an
event toe(l, o), then the object o moves to a configuration l

when this transition takes place.
Definition 4 (Annotated State Transition System): An an-

notated STS Σ is a tuple 〈S,S0, I,O, E ,R〉 where:
• E is the set of events;
• R ⊆ S×(I∪O∪{τ})×E∗×S is the transition relation.
The semantics of the annotated transition is intuitively

described as follows. Assume an object o with a set of events
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E , and a service transition (s, a, ε, s′) ∈ R, where s, s′ ∈ S,
a ∈ (I ∪ O ∪ {τ}), and ε ⊆ E . We say that the transition is
applicable to the object o if the object is in some configuration
l, and either ε = ∅, or there exists an object transition (l, ε′, l′),
such that ε′ ⊆ ε. As a result of performing this transition, in
the first case the object will remain in the same configuration,
while in the second case it will evolve to the configuration l′.

Example 2: An annotated STS of the Flight Cancel-
lation Service (Fig. 1, c) may be defined as Σ =
〈{s0, s1, s2}, s0}, {delete}, {flightDeleted}, E ,R〉. The out-
put operation “flightDeleted” is annotated with the event
de(f) (flight is “deleted”), as the service provider confirms
the flight ticket cancellation. That is, E = {de(f)}, and
R = {(l0, ?delete, ∅, l1), (l1, !flightDeleted, {de(f)}, l2)}.

5.3. Composition Requirements

We now present a simple language that allows fulfilling
our desiderata to model in an easy-to-specify, compositional
and implementation-independent way complex requirements,
namely (i) in which “stable” situations we intend to see our
objects, possibly ordered according certain preferences; (ii)
requirements on the evolution of objects, linking the behaviors
of different objects; and (iii) reaction rules, which define how
the composed service shall react to object events in different
situations.

Definition 5 (Composition Requirement): A composition
requirement is defined with the following generic constraint
template

clause =⇒ (clause1 � . . . � clausen),

where clause ≡ � | ss(o) | ee(o) | cl1 ∨ cl2 | cl1 ∧ cl2.
Here cl1 and cl2 are clauses, ss(o) is used to define the fact
that the object o is in the configuration s, and ee(o) defines
that the event e of the object o has taken place.

The left side of the constraint defines the “premise” of
the requirement. In case it is empty (i.e., defined as �),
the requirement expresses the need to unconditionally reach
a particular state or to achieve a particular effect, defined
by the right side. Otherwise, it defines a “reaction rule”:
whenever the corresponding situation or events take place, the
composite service should try to “recover” from it by achieving
the effects/situations defined by the right side. In both cases,
the right side of the constraint defines the expected results.
Each of them logically groups simpler results, which may
express either a certain state (require to reach a configuration)
or a certain effect (require that an event happens). These results
are ordered according to the order of preference denoted by the
� symbol, from the most preferred to the least preferred. The
following example clarifies the usage of both unconditional
and reaction-rule requirements.

Example 3: The composition requirements identified in
Section 2 may be represented as follows:

• � =⇒ (crs(f) ∧ crs(h) ∧ crs(o)) �
(ds(f)∨nes(f))∧ (ds(h)∨nes(h))∧ (ds(o)∨nes(o)).

That is, the composition should try to create the objects
o (offer), h (hotel), and f (flight), i.e., bring them to
the state “cr” (created). If this is not possible, it must
guarantee that none of them exists, i.e., they should be
in the state “d” (deleted) or “ne” (not-exist).

• mode(f) =⇒ (mode(h) ∧ mode(o)) �
(ds(f) ∧ ds(h) ∧ ds(o)).

Here as a reaction to the flight delay (event mode(f))
we require the corresponding modification of the hotel
(mode(h)) and of an offer (mode(o)). If this is not
possible, the alternative is to cancel both reservations.

• de(f) =⇒ (de(h) ∧ de(o)).

In other words, if the flight is cancelled, the composed
service should cancel also the hotel reservation (de(h))
and the offer (mode(o)).

Given a set of requirements of this form, we aim to build
a composed service that aims to satisfy all of them simulta-
neously, according to their above-mentioned “unconditional”
and “reactive” semantics and following the preference orders
specified for right side clauses.

We remark that the requirements defined in this way are
completely detached from the way services are defined and
realized, providing a degree of flexibility which is crucial for
the design and maintenance of requirements, especially in a
dynamic settings where services may not be known a priori,
or evolve in time.

6. Automated Service Composition

Our requirements impose constraints on the evolution
of objects, which must be achieved by executing services
associated to those objects. In order to recast this in terms
of planning, we therefore have to transform our objects and
the ASTSs of the component services into state transition
systems, and we must express our composition requirements
in terms of the states of such STSs. In the following, we
describe in turn the transformation of services, objects and
composition requirements.

Transformation of component services. The transformation
of the component services (i.e., ASTSs) is performed as
follows. Given an ASTS 〈S,S0, I,O, E ,R〉, we define a
corresponding STS as 〈S,S0, I,O,R′,SF ,F〉, where for
each transition (s, a, ε, s′) ∈ R we define a corresponding
(non-guarded) transition (s,�, a, s′) ∈ R′, and the states
are not labeled (for each s ∈ S F(s) = ∅). In order to
require that the service protocols are either unused or fully
completed, all the terminating and initial states of the ASTS
are marked as accepting.

Transformation of object diagrams. The transformation
of the object diagram into STS is more complex. First, to
capture the states of the objects in the requirements, we
define a set of atomic propositions P ≡ {sj

s(oi)}, which
specify that an object oi is in state sj for all objects and their
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(a) Σ(�)
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[s(o)]

(b) Σ(s(o))
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?ecl2
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(d) Σ(cl1 ∨ cl2)

!ecl

?ecl1 ?ecl2

?ecl2
?ecl1

(e) Σ(cl1 ∧ cl2)

?ecl

?ecl1

?ecl
?ecl

?ecln

…

l0

l1 ln

(f) Σ(cl =⇒ (cl1 � . . . � cln))

Fig. 3. STS diagrams of composition requirements

states. Then, given an object diagram 〈L,L0, E , T 〉 we define
an STS 〈S,S0, I,O,R,SF ,F〉, where S = L, S0 = L0,
each state is labelled with the corresponding proposition (i.e.,
∀s ∈ S : F(s) = {ss(o)}), and all object configurations are
accepting (i.e., SF = S). We define the transition relation so
to capture the effects of the evolution of component services
on the object: for each (l, ε′, l′) ∈ T and for any transition
(s, a, ε, s′) of some ASTS such that ε′ ⊆ ε we define a
(non-guarded) transition (l,�, a, l′) ∈ R.

Transformation of requirements. The composition require-
ments speak of both the object states and of occurrences of
object events. In order to capture this information, for every
requirement we define a corresponding STS that reflects the
satisfiability of the requirement. Given a clause cl, we define
a corresponding STS that contains a single output action
ecl representing the completion of the clause. The diagrams
corresponding to the different clauses, to their combinations,
and to the representing diagram itself are represented in Fig. 3.
Intuitively, they have the following meaning.

• The STS for the � clause (Fig. 3(a)) is completed
immediately.

• The STS for ss(o) (Fig. 3(b)) is blocked until the object
is not in the required state: the transition is guarded with
the corresponding proposition.

• The STS for ee(o) (Fig. 3(c)) waits for any of the service
actions that contain the corresponding event in its effects:
for any transition (s, a, ε, s′) of some ASTS such that
ee(o) ∈ ε a corresponding transition is defined. When it
happens, a completion is reported.

• The STS for cl1 ∨ cl2 (Fig. 3(d)) waits for any of the
sub-clauses to complete, while the STS of the cl1 ∧ cl2
(Fig. 3(e)) waits for both of them to be completed.

The STS that represents the evolution of a composition
requirement is represented in Fig. 3(f). The STS is initially
in an accepting location (l0). If the premise takes place (ecl

is reported), then it moves to a non-accepting state, from
which it may be satisfied by completing one of the clauses
ecl1 , . . . , ecln (moving to locations l1, . . . , ln respectively).
The corresponding goal with preferences will have the fol-
lowing form:

ρc = (l0, l1, . . . , ln). (1)

That is, we require that whenever the premise take place, the
composition tries to move the STS to one of the accepting
states, respecting the ordering of preferences.

Example 4: The requirement de(f) =⇒ (de(h) ∧ de(o)) is
modelled with the following STSs:

��df

��and

��df

l0

l1��df

������	
���	��

������	��������

���	��
���	��

��dh

�����	��

��do

��and

��do

��do

��dh

��dh

6.1. Generating a Composite Service

To integrate our approach into the automated composition
framework, we essentially need to include the STS-encoded
object diagrams and composition requirements within the
composition domain, prior to applying the approach described
in [7]. In particular, given n composite services W1, . . . , Wn,
m objects O1, . . . , Om and k (event) composition require-
ments C1, . . . , Ck we encode each component service Wi as
the corresponding state transition systems ΣWi

(Fig. 2, step
2); each object diagram Oi as ΣOi

(Fig. 2, step 1); each
composition requirement Ci as ΣCi

(Fig. 2, step 3). The
translation is defined according to the rules presented above.

Then, we build a planning domain and goal. Namely, the
planning domain Σ is defined as a synchronous product of
the all the STSs of the component services, objects, and
requirements, and the composition goal is constructed from
the requirements defined according to the formula (1):

Σ = ΣW1
‖ . . . ‖ΣWn

‖ ΣO1
‖ . . . ‖ΣOm

‖ ΣC1
‖ . . . ‖ΣCk
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ρ =
∧

c

ρc.

Finally, given the domain Σ and the planning goal ρ, we
apply the approach presented in [7] to generate a controller
Σc, which is such that Σc � Σ |= ρ. Once the state transition
system Σc has been generated, it is translated into executable
BPEL process to obtain the new process which implements
the required composition (Fig. 2, step 4). The translation is
conceptually simple; intuitively, input actions in Σc model
the receiving of a message from a component service, output
actions in Σc model the sending of a message to a component
service.

Correctness of the approach. In order to prove that the
proposed approach is correct, we have to show that all the
executions of the composed services (controller Σc) satisfy
the control flow requirements expressed as constraints. For
the sake of simplicity, we omit the formal proof, and simply
sketch the key points. It is easy to see that each execution π

of the composed service is also a run of the domain, i.e., if
π ∈ Π(Σc) then π ∈ (Σ). Under the requirement that all
the executions of requirement STSs terminate in accepting
states, we have that the executions of the domain satisfy the
composition requirements. As a consequence the following
theorem holds.

Theorem 1 (Correctness of the approach):
Let ΣC1

, . . . ,ΣCk
be the STS encoding of the composi-

tion requirements C1, . . . Ck, and ΣO1
, . . . ,ΣOm

be the STS
encoding of the domain objects O1, . . . , Om. Let Σc be
the controller for a particular composition problem Σ =
ΣW1

‖ . . . ‖ΣWn
‖ ΣO1

‖ . . . ‖ΣOm
‖ ΣC1

‖ . . . ‖ΣCk
. Then the

executions Π(Σc) satisfy the requirements C1, . . . , Ck.

6.2. Experimental Results

To evaluate the feasibility of our approach, we implemented
a prototype of the composition framework and tested it on the
reference scenario, using the control flow requirements given
in Example 3. The scenario model includes also the data flow
requirements to appropriately route data. These are defined
with the data-net approach of [9].

As a result, our prototype generated an executable composed
process that orchestrates the five services in the scenario to
realize the above requirements. The composed process tries
to perform the flight booking and hotel reservation, correctly
taking into account possible non-deterministic outcomes of the
component services, and creates a travel offer upon successful
reservations. Then the process continuously handles the delays
or cancellations from the flight status notification service. In
the first case, it tries to modify the hotel reservation: if the
hotel agrees and the user accepts the new offer, the process
is ready to handle new modifications. Otherwise, the process
deletes the reservations and terminates. In the second case, the
process cancels the hotel reservation and informs the user.

Such orchestration would be far from trivial to design and
develop even for a skilled analyst. Its BPEL representation,

which we do not report for lack of space, involves more than
50 activities (e.g., receive, invoke, assignment), and features
a fairly complex structure, which includes several decision
points, on-message clauses, and two different loops. Such
protocol is way more complex than the complex of starting
components, and its manual encoding into BPEL would be a
time-demanding and error-prone task.

The composed service was generated in about 35 seconds on
a 2.6GHz, 4Gb Dual Core machine running Linux. Given the
complexity of the composition task, we take this experiment
as a first important witness of the practical applicability of our
approach.

7. Related Work and Conclusions

In this paper we have presented a novel notation for
modelling expressive control flow requirements for service
compositions, based on the notion of domain object, and an
automated composition framework that is able to support those
requirements. Our approach allows designers to easily express
requirements that go beyond simple goals of achieving certain
state or effects, but capture more sophisticated constraints,
like, e.g., event reaction rules. Furthermore, by detaching the
requirements from the specific service implementations, we
significantly improve on current approaches in terms of the
ability to express compositions in a flexible and mainten-
able way. We also reported preliminary experimental results,
showing the feasibility of the approach. In this respect we
remark that, while in our current setting the analyst is fully
in charge of the design of objects and annotations, both
such elements feature simple structures, and are amenable to
intuitive representations, in terms of e.g. graphical languages.
As such, developing a graphical design support tool for objects
and requirements, possibly making use of specific forms of
semantic linking and allowing the adoption of libraries of
reusable business objects, is high in our agenda.

Our composition approach is significantly more expressive
than the vast set of approaches where services are viewed as
atomic entities [1]–[5]. It also significantly extends recent ap-
proaches which tackle stateful, non-deterministic services [6]–
[10], by providing a more expressive requirement language,
detached from implementation details, and giving an effective
planning problem encoding. In particular, we remark that,
concerning data-flow requirements, our framework is agnostic,
and indeed in our implementation we adopt the approach
of [9]. Detaching data-flow requirements from service imple-
mentations is a relevant research topic, high in our research
agenda.

The idea of representing service implementations and re-
quirements by more abstract “object” entities can be related
to languages such as WS-conversation [11], and to approaches
to model workflows based on formal languages such as Petri
nets [12] and graphical notations such as state-charts and
object diagrams [13], [14]. However, to the best of our
knowledge, this is the first attempt to adopt this view for
service composition purposes, and none of the approaches
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above confront with the issue of automatically deriving stateful
orchestrations from given specifications. Similarly, the gen-
eral idea of having expressive, automata-based composition
requirements is also used in the fields of program synthesis
and planning, often behind the adoption of logic languages,
see e.g. [15]–[17]. However, so far the idea has not been
exploited for service composition, and languages proposed
in the planning area do not appear as adequate tools for
the design and engineering of composition requirements by
service analysts.
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