
978-1-4673-5828-6/13/$31.00 c©2013 IEEE

Optimal Hibernation Policies for Energy Efficient Stateful Operation in High-end
Wireless Sensor Nodes

Carlo Brandolese, William Fornaciari, Luigi Rucco
Politecnico di Milano – DEIB

Piazza L. Da Vinci, 32 – 20133 Milano, Italy
{brandole,fornacia,rucco}@elet.polimi.it

Abstract—This paper proposes and studies an hibernation
technique and optimal hibernation policies aimed at minimizing
the power consumption, while allowing stateful processing and
the adoption of more powerful nodes. To this purpose the paper
models the energy trade-off for hibernating the system rather
than putting it in a memory-retention sleep mode between two
consecutive bursts of processing. Thanks to a simplified notion
of system state, the paper formally determines the optimal
conditions for deciding whether to hibernate or not the system
during idle periods. Hibernation policies have been implemented
as a module of the operating system and results demonstrate
energy savings up to 50% compared to trivial hibernation
approaches. Moreover, the hibernation policy proved to be robust
and stable with respect to changes of the application parameters.

I. INTRODUCTION

Today, after more than thirty years of research on distributed
sensor networks, of which at least fifteen mainly focused on
Wireless Sensor Networks, a broad diffusion of this technology
outside academia and specialized niches cannot be appreciated
yet. The causes of this low acceptance should be mainly
sought in the well known limitations affecting this class of
systems, from the harsh resource constrained hardware and
software, to the need for long lifetime and minimal energy
consumption, as well as the high complexity of the radio
aspects, both in terms of energy and reliability. The high cost
of specialization required by this technology discourages their
adoption by potential investors. As a consequence, both private
and public institutions are often resorting to universities and
research centers asking for solutions which can mask this
complexity and make WSNs more practical for commercial
applications. In this direction moved the work we presented
in [1], which proposed a joint development of hardware and
software, especially at Operating System level, providing to
the end user features similar to those of a general-purpose pro-
grammable system: a truly standard programming language,
standard libraries, standard processes and threads, standard
synchronization methods and programming paradigms, mem-
ory isolation and protection, application linking and loading.
The operating model is inspired to the principle of leveraging
data processing inside the network, pointed out since the
very beginning of research on WSNs [2] and relying on
the consideration—already true—that thousands or millions
of operations per second can be done using the energy of
sending a bit over a few tens of meters [3]. This principle helps
in strongly reducing the energy consumption at network-wide
level, considering the energy spared also by avoiding the cost

of information forwarding from leaf and intermediate nodes
to the base station. This entails the evolution of processing
paradigms towards more complete applications, capable of
locally analyzing data and triggering events and communica-
tions only when strictly needed. From a technological point of
view, this requires full-fledged stateful processes and hardware
platforms that can provide adequate support: the framework
proposed in this work aims at this goal by introducing an
intelligent hibernation mechanism and a formal model for
optimal hibernation policy.

II. RELATED WORK

Duty cycling has been widely explored as a power manage-
ment technique in Wireless Sensor Networks. According to
Anastasi et al. [4], duty-cycling can be classified in Topology
Control and Power Management techniques, the last in turn
divided in two main branches: sleep/wakeup protocols and low
duty-cycle MAC protocols. In Topology Control techniques
the duty cycle is distributed and consists of keeping awake
the smallest possible subset of nodes needed to guarantee the
connectivity, while bringing the others in sleep mode. More-
over, also the radio duty cycle is optimized by maintaining
the transceiver active only when needed. Topology Control
techniques are complementary to local duty cycle management
and fall beyond the scope of the present work. We will focus,
hence, on sleep/wakeup protocols. Many approaches have been
proposed and to classify them we will follow the framework
of Anastasi et al., which divides this class of models in three
schemes, namely on-demand , asynchronous and scheduled
rendezvous. Our approach falls in the last scheme, in particular
we suppose that data are transmitted during the data processing
period of the operating model.

III. OPERATING MODEL

In the considered operating model we can logically dis-
tinguish two phases: data processing and data sensing. In
particular, data processing consists of analyzing a given set
of sampled data (and possibly transmit a result), once a given
number of samples have been collected or when a certain
threshold of the monitored parameter is reached. Operations
of data sensing, on the other hand, entail sampling a certain
sensor with an opportune frequency and push the measure
into a queue that will be analyzed during the next processing
phase. Reading a sensor and adding the retrieved measure to a
queue are simple operations, such that maintaining the system
in full active mode during this phase is indeed a waste of

energy. So a possible solution is to hibernate the system once
no more processes are performing data processing. During
the hibernation period, some data sensing operations may be
required with a fine-grained timing: in this case, the system
may be resumed in a low power mode and with a lower clock
frequency, just to perform sensor readings and put the measure
in the associated queue. This operation is very fast (typically
less than one millisecond) and does not require the boot of
the entire operating system, neither to resume the process in
charge of analyzing the entire set of data. Sensing operations
are performed by a special module, called smart sensing,
which, together with the hibernation manager, composes the
power management infrastructure of the system.

IV. HIBERNATION SCHEME

In this work we will refer to processes as generic instances
of a running program, regardless of their actual implementa-
tion, that can be either a complete process, a task, a thread,
and so on. To avoid considering trivial operation of the system,
we will concentrate on periodic processes or asynchronous
ones, which wait for events that occur with a certain statistical
distribution. We assume that the entire hibernation process is
managed through two demons: an hibernation daemon and a
resume daemon. The Hibernation daemon keeps track of the
status of all the processes and once all are in a blocked state,
takes the decision whether to either hibernate or entering sleep
mode with memory retention, according to the hibernation
policy. The hibernation daemon, moreover, saves the process
descriptors in a fixed area of the non-volatile memory, and
finally, when hibernating, swaps-out the memory images of
the processes on the external memory. The Resume daemon,
activated by an external real-time clock, swaps-in from the
external non-volatile memory to the main internal memory
the images of the processes that must be run and recreates
their execution contexts in the operating systems. Note that
the status of the operating system does not need to be saved,
as it can be reconstructed from descriptors and images.

V. MODEL OVERVIEW

Assuming that processes are either periodic or deterministic
aperiodic, at a given time tk it is possible to determine both
the next wake-up time and which processes will be active at
that time. We define the state of the system at time tk as a
boolean vector: Sk = [sk,1 sk,1 . . . sk,p], where sk,j = 0
if process qj is currently swapped-out onto the external non-
volatile memory, while sk,j = 1 if the process is residing
in RAM. The evolution of the system over time can thus be
modeled as a sequence of pairs

(t0, S0), (t1, S1), . . . , (tk, Sk), . . . (1)

indicating the current absolute time and the state of all
processes. For a periodic system the evolution is know for the
entire future, while for a system with periodic and aperiodic
processes it is know only until the latest known wake-up time
of the aperiodic processes. It is possible to demonstrate [5] that
the following global condition, referred to as Cn, guarantees

that hibernating is convenient in the time interval τk between
the current time tk and the next resume time tk+1:

Cn : τk > f(n) =
||Sk||Eo + ||Sk ∧ S(n)

k+1||Ei + EOS

PS
(2)

where Ei and Eo represent the energy consumption to swap
a single byte in and out, respectively, while PS is the power
consumption of the system in sleep mode with memory reten-
tion. EOS is the energy to shut-down and to boot the operating
system. The norm of a state Sk is defined as ||Sk|| = Sk ·W
(where the sizes’ vector W is left implicit) and S(n)

k+1 has been
defined as the cumulate memory status for the next n states,
hypothesizing that the system will never hibernate between
Sk+1 and Sk+n. If the condition Cn is not satisfied, then
putting the system in sleep with memory retention would be
the best choice. Studying the function f(n) we observe that
it has an absolute maximum fM and this occurs as soon as
S
(n)
k+1 ⊇ Sk. The function also has a lower bound fL, when
Sk ∧ S(n)

k+1 = ∅. Considering these two values we can define
two sufficient (but not necessary) conditions for determining
when hibernation, rather than sleep with memory retention, is
certainly convenient. In particular, when:

CM : τk >
||Sk||(Eo + Ei) + EOS

PS
(3)

then the decision to hibernate is guaranteed to be optimal. We
refer to this inequality as global maximum condition, or CM .

On the other hand, when:

CL : τk <
||Sk||Eo + EOS

PS
(4)

the decision to sleep with memory retention is optimal. We
will refer to this inequality as global minimum condition, or
CL. In the general case, that is with a specific look-ahead
of n states, the value of f(n) will necessarily fall between
its theoretical maximum and minimum. As anticipated, the
specific value of n to be used for a particular combination of
processes, energies, sizes and for each specific state cannot
be determined in general, as it requires an exhaustive analysis
of the system evolution, which, moreover, is only possible for
periodic processes. We thus introduce the threshold fα as:

fα = fL + α(fM − fL) (5)

with 0 ≤ α ≤ 1. This leads to the new, general, condition:

Cα : τk > fα (6)

where α can be determined experimentally in order to mini-
mize the energy consumed by the system.

VI. REFERENCE IMPLEMENTATION

The hibernation mechanism has been implemented in
MiosixOS, on the PoliNode prototype infrastructure [1]. This
platform is based on a STM32F2 microcontroller, an external
MR25H10 magnetoresistive RAM and an ultra low-power
transceiver. The hibernation and resume daemons, described in
Section IV, have been implemented as kernel threads running
in background.

Trivial policy

Global maximum policy

Global minimum policy

Fig. 1. Optimal versus sub-optimal policies energy gains

VII. RESULTS

A highly optimized simulation flow has been implemented
in C++ to meet the severe computational requirements of the
stress tests and stability analysis on the simulated evolution
of the real system. Most of the experiments reported in
the following refer to the hardware/software characteristics
described in Section VI, while others have been performed
by perturbing the ratio Eactive/Psleep, the most significant
parameter affecting hibernation choices. In the experiments
we assumed a maximum available memory of 128 KB and a
pool of 10 periodic processes, with memory image sizes ran-
domly chosen between 1 KB and 32 KB. The RAM memory
footprint of the specific operating system is about 32 KB, but
it does not need to be swapped-out in the external MRAM
since it performs a complete reboot each time the system
is resumed. The first experiment assesses the energy gain
obtained applying our policy with respect to three sub-optimal
policies, namely: a trivial policy assuming to swap-in and
out the entire memory, the global maximum and the global
minimum policies defined by the conditions CM and CL. The
gains are reported in of Figure 1 against the average time
interval τ between subsequent states. Each point corresponds
to different combination of process periods and sizes and
summarizes the average gain over 1,000 randomly generated
tests. The trivial policy, often adopted for small sensor nodes,
resulted by far the least efficient one. The gains with respect
to the global minimum policy are smaller than those for the
other policies, meaning that the global minimum policy well
captures a greater number of cases if compared to the trivial
and the global maximum policy. The parameter α strongly
affects the gain. The robustness of the model in reference
to this parameter has been assessed with a million tests,
randomly changing the periods and sizes of the processes

and by perturbing the ratio Eactive/Psleep of a factor 2, 4,
8, 12, 16 and 20. The policy has a good stability, converging
towards the two attractors α = 0, before a certain critical
average period pmin, and α = 1, after a critical average
period pmax. Amidst these two thresholds, the systems is in
a sort of gray zone where specific simulations are needed to
determine the optimal α. For energy values in the order of
magnitude of the considered microcontroller the policy shows
an almost stepwise behavior: α is always 0 when the average
of the processes’ periods is below 7s, while α is 1 when the
average of the processes’ periods is above 11s. In the gray zone
between 7s and 11s simulations have identified intermediate
values of α ranging from 0.3 to 0.7, especially around the
critical value of 8s. In such cases, by using the correct α
parameter to tune the policy, energy savings up to 20% can
be obtained. A similar trend can be observed for 2× and 4×
perturbations, while for perturbations greater than 8×, which
however account for extreme cases, the gray zone is more
extended. Finally, we studied and estimated the energy gain
of the hibernation approach (HA) with respect to classical
operation (CO), in which the system is brought in sleep mode
during idle periods. The executions periods have been varied
between 4 and 250 seconds, while the process image sizes was
selected randomly between between 1 and 32 KB. The energy
gain in function of the average period rises from the 8%, with
average periods of 10s, to the 53% for average periods of 20s
to the 84% for periods of 50s and steadily over the 90% for
average periods over the 100s. The energy gain with respect
to the average size of the swap-memory varies from over the
90%, for sizes in the range of 1 KB, to about the 70% for
average sizes of 6 KB to more than the 50% for heavy sizes,
in the order of 12KB.

VIII. CONCLUSIONS

This paper presented the achievements obtained by our re-
search on a smart autonomous hibernation mechanism and an
optimal hibernation policy enabling energy-efficient operation
in high and mid-range WSN nodes. Results shows energy
gains up to 50% compared to widely used trivial hibernation
policies, as well as a good robustness and stability.

REFERENCES

[1] Brandolese,C., Fornaciari,W. Rucco,L. and Terraneo, F. Enabling ultra-
low power operation in high-end wireless sensor networks nodes. In
Proc. of CODES+ISSS ’12. ACM, New York, NY, USA, 433-442.2012.

[2] Estrin, D. and Girod, L. and Pottie, G. and Srivastava, M., Instrumenting
the world with wireless sensor networks, In Proc. of ICASSP ’01, pp.
2033–2036 vol.4, 2001.

[3] Estrin, D., Tutorial on Wireless Sensor Networks, In MobiCom’02,
Atlanta, Georgia, USA, 2002.

[4] Anastasi,G., Conti,M., Di Francesco,M. and Passarella,A. Energy con-
servation in wireless sensor networks: A survey. Ad Hoc Netw. 7, 3
(May 2009), 537-568. 2009.

[5] Brandolese,C., Fornaciari,W. Rucco,L., Hibernation Model for Energy
Optimization of Multi-Tasking Wireless Sensor Networks, Tech. Rep. n.
2103.4 Politecnico di Milano - DEIB, Italy.

