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Abstract
Forest classification by silvicultural systems (coppices vs. high forests) is important 
for forest resource assessment as such systems relate to a wide variety of ecosystem 
services. In this paper the potential of Airborne Laser Scanning (ALS) data for 
Mediterranean oak forests classification of coppices with standards vs. high forests 
was investigated in three study areas in Italy. We addressed the following issues: 
can coppices and high forests be distinguished using a raster Canopy Height Model 
(CHM)? Which are the most efficient CHM-derived metrics? Does the scale of 
analysis influence the classification potential of CHM metrics? Our results show that 
CHM in grid format (1-m2 pixel) provides support information to classify silvicultural 
systems.
Keywords: ALS; Canopy Height Model; image segmentation; classification.

Introduction
Forest management determines rotation length and the presence of different stages in 
forest succession. It implies important consequences in ecosystem functioning and 
services. Silvicultural systems are among the main drivers of differences in forest 
management and are mainly classified into high forest systems and coppice systems 
according to the method of tree regeneration. In high forest systems (conifer and 
broadleaved species) the stand is regenerated from seedlings, either natural or planted, 
or a combination of both, and rotation period is generally long. In coppice systems 
the regeneration of broadleaved species consists mainly of sprouts originating from 
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cut stumps, and rotation is generally shorter. The conversion of a coppice to a high 
forest is the transition from a stand based on vegetative reproduction to a stand that 
regenerates by seed [Matthews, 1991]. In Europe coppice systems account for 16% 
of the area of forest available for wood supply, covering extensive areas in several 
countries, including France, Italy, Greece, Turkey, Spain and Bulgaria [UN/ECE-
FAO, 2000].
In Italy forest and other wooded lands extend over 10.5 million hectares [INFC, 2005]; 
high forest systems represent 42% of total forest area, with a slight majority of even-
aged stands; coppice systems represent the other 58% of total forest area. Most coppices 
are located along the lower slopes of the Alps and all along the Italian peninsula and the 
islands, from the coast to the upper mountain zone in the Apennines. The majority are 
coppices with standards, i.e. even-aged stands with 40-150 trees ha-1 of two to three times 
the rotation age which are released at coppicing [Ciancio and Nocentini, 2004; Ciancio 
et al., 2006]. Felling is carried out by clearcutting at the end of rotation (usually 15-35 
years), on areas from a few square hundred meters up to 10-20 hectares, but clearcut size is 
most usually in the range of 1-5 hectares. Coppice with standards is the only silvicultural 
system for which clearcut is allowed in Italy [Chirici et al., 2011]. Only small areas are 
covered by selection coppices (uneven aged coppices) or compound coppices (a mixture 
of coppice and high forest). Oaks (Quercus cerris L., Quercus pubescens Willd, Quercus 
ilex L.), sweet chestnut (Castanea sativa Miller) and beech (Fagus sylvatica L.) are the 
most common species in coppices, and often form pure stands [Ciancio and Nocentini, 
2004]. 
The main product from coppice systems is fuelwood and polewood, the latter from 
chestnut stands. In the last years increasing oil prices and growing interest towards 
energy from renewable sources have further increased fuelwood demand, for both 
domestic and industrial uses [Lasserre et al., 2010; Picchio et al., 2009] and coppicing 
has again become a profitable management option in many private forests. An 
example of the renewed interest towards coppices in Europe is COST Action FP 1301 
[EuroCoppice, http://www.eurocoppice.uni-freiburg.de ] started in 2013, which has the 
aim of bringing together European scientists, experts and young scholars to exchange 
knowledge on coppice forestry and to develop innovative management and harvesting 
concepts/techniques for modern multifunctional coppice management systems.
Classification of high forest vs. coppices is important for forest resource assessment 
as such different systems relate to a different variety of ecosystem processes and 
services, and it is necessary for sustainable forest management at the stand level, 
since they are characterized by different forest structures and require different felling 
patterns.
Under management framework, coppice and high forest classification is carried out at 
the forest compartment level and it is traditionally based on ground observation or is 
performed by manual delineation of aerial photographs with the support of local field 
knowledge and observation. Even if these methods provide accurate classification, 
they are costly and time consuming.
Recently, the key importance of silvicultural systems for sustainable forestry has been 
confirmed by the development of methods for mapping potential forest management, 
especially in relation to the difficulties of detecting such systems [Hengeveld et al., 
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2012]. Several studies have investigated the potential of multispectral sensor for forest 
structure variable estimation [e.g., Cohen and Spies, 1992; Hall et al., 2006; Lamonaca 
et al., 2008; Gebreslasie et al., 2010; Ozdemir and Karnieli, 2011]. However, as a 
general trend, passive optical sensors have limitations for characterizing vertical 
forest structure due do their relative insensitivity to canopy structure, especially when 
compared to Airborne Laser Scanning (ALS) [e.g., Lefsky et al., 2001; Hudak et al., 
2002; Lu, 2006; Pflugmacher et al., 2012; Ozdemir and Donoghue, 2013].
ALS is an active remote sensing technology that can provide detailed information 
on forest canopy structure [Lefsky et al., 2002]. Several papers have documented the 
promising use of ALS data to predict relevant and basic forest structural attributes 
in boreal [e.g., Lim et al., 2003; Næsset, 2004; Hyyppä et al., 2008; van Leeuwen 
and Nieuwenhuis, 2010], Alpine [e.g., Hollaus et al., 2006; Clementel et al., 2012; 
Alberti et al., 2013], temperate and Mediterranean environments [Corona et al., 2012; 
Cartisano et al., 2013; Montaghi et al., 2013]. For instance, ALS data (alone or with 
spectral data) were used to estimate forest height [e.g., Magnussen and Boudewyn, 
1998; Næsset and Økland, 2002], to predict biomass and volume of trees [e.g., Næsset, 
1997; van Aardt et al., 2006; Corona and Fattorini, 2008] and shrubs [e.g., Estornell 
et al., 2012], to assess vertical stratification of forest vegetation [e.g., Zimble et al., 
2003; Morsdorf et al., 2010; Ferraz et al., 2012], to map tree species composition [e.g., 
Ke et al., 2010; Cho et al., 2012], and to assess tree size and species diversity [e.g., 
Simons et al., 2012, 2013; Ozdemir and Donoghue, 2013].
Lefsky et al. [2005] found that mean height and height variability assessed by ALS 
data were useful to examine the relationships between comprehensive assemblages 
of forest canopy and stand structure indices. Pascual et al. [2008] found that median 
and standard deviation of height computed from ALS-derived digital Canopy Height 
Model (CHM) were slightly better than mean and standard deviation of height for 
distinguishing among forest structure types based on cluster analysis, especially in 
case of horizontally heterogeneous forests. Falkowski et al. [2009] used a variety 
of ALS metrics in conjunction with the Random Forests algorithm to classify forest 
successional stage across a structurally diverse mixed-species forest, and found 
that canopy cover and mean height were the most important ALS metrics for the 
classification.
Detecting silvicultural systems by ALS under temperate and Mediterranean conditions 
(i.e. the discrimination between high forest and coppice stands) has never been 
investigated (at least in our knowledge), even if this problem is still unresolved by 
conventional remote sensing approaches by optical imagery. 
On the other hand, at least in Europe, it is quite frequent that ALS surveys are committed 
on large territories by governmental (national or local) administrations for purposes 
like topographical or hydrogeological investigations, and the ALS-derived CHM data 
are then released to the general public at low or no cost (the so called open data) [e.g., 
Corona et al., 2012; Montaghi et al., 2013].

Objectives
Taking into account the above considerations, in this study the potential of ALS-derived 
CHM data for Mediterranean oak forests classification into coppice stands and high forest 
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stands was investigated. We have addressed the following issues: 1) can coppices and high 
forests be distinguished using a raster CHM? 2) Which are the most efficient CHM metrics? 
3) Does the scale of analysis influence the classification potential of CHM metrics to map 
coppices vs. high forests?
To our knowledge, this is the first attempt of using CHM metrics for coppice vs. high forest 
classification.

Material and methods
Study area
The work was carried out in three study areas in Italy, hereafter named A, B and C (Fig. 1). 
The study areas were selected on the basis of the availability of laser scanning data in forest 
regions with coppices and high forests.

Figure 1 - Location of the study areas (on the left side) and distribution of forest stands according to 
their partitioning into training and test sites (on the right side).

Area A is located in the Tuscany Region, in the Province of Pisa (43° 43’ - 43° 45’ 
N, 10° 40’ - 10° 44’ E). It is a hilly area with gentle slopes and altitudes ranging 
between 0 and 100 m a.s.l. The average yearly temperature is 14 °C, and the average 
yearly precipitation is 910 mm. The forest landscape is characterized by maritime pine 
(Pinus pinaster Aiton) forests and mixed broadleaved forests dominated by turkey 
oak (Quercus cerris L.), the latter associated with other deciduous species, especially 
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manna ash (Fraxinus ornus L.), sessile oak (Quercus petraea Matt. Liebl.) and checker 
tree (Sorbus torminalis Crantz). The understory layer is composed by shrubs with 
density inversely related to tree cover [Travaglini et al., 2011].
Area B is located in the Molise Region, in the Province of Isernia (41° 33’ - 41° 
35’ N, 14° 02’ - 14° 05’ E). The average yearly temperature is of 12 °C, and the 
average yearly precipitation is of 1180 mm. Altitude varies between 400 and 1000 m 
a.s.l. Turkey oak, downy oak (Quercus pubescens Willd.) and hop hornbeam (Ostrya 
carpinifolia Scop.) are the prevailing forest species [Garfì and Marchetti, 2011].
Area C is located in the Tuscany Region, in the Province of Florence (43° 55’ - 44° 00’ 
N, 11° 16’ - 11° 24’ E). It is a hilly area at the base of the Apennines mountain, with 
altitudes ranging between 150 and 550 m a.s.l. The average yearly temperature is 13 °C, 
and the average yearly precipitation is 1025 mm. Forests are dominated by oak stands 
(mainly turkey oak associated with manna ash, chestnut and hop hornbeam), chestnut 
stands, and European black pine stands (Pinus nigra Arn.), the latter originated from 
plantations.
In each study area the distribution of even-aged forest stands dominated by Turkey 
oak and downy oak were extracted from existing forest type maps (scale of 1:10,000) 
[Garfì and Marchetti, 2011; Nocentini et al., 2011]. A total forest surface of 45 ha, 
107 ha, and 506 ha was considered for the study areas A, B and C, respectively. 
The silvicultural systems adopted in these forests are high forest and coppice with 
standards (herewith, coppice) under a regular felling regime, mainly addressed towards 
bioenergy assortments which have an increasing market value. Forest development 
stages varies from very young (i.e., stand after final cut) to adult (i.e., stand close to 
the rotation age) for coppices, while no young stands occur for high forests. This is a 
common situation for broadleaved forests in Italy (Table 1).

Table 1 - Forest height and canopy cover of coppices and high forests in the study areas.

Study area

Coppice High forest

Forest height Canopy cover Forest height Canopy cover

m % m %

A 4-16 30-80 15-25 >80

B 3-12 30-80 12-22 >90

C 3-15 30-80 12-25 >90

Airborne laser scanning data and pre-processing
In area A, ALS survey was performed in winter 2008; an ALS ALTM (Airborne Laser 
Terrain Mapper) Gemini sensor was used; the sensor recorded two echoes per pulse 
with an average laser point density of about 1.6 laser points per m2. In area B, ALS 
dataset was acquired in June 2010 by Partenavia P68 I-GIFE aircraft carrying an 
Optech Pegasus sensor which recorded two echoes per pulse; the average laser point 
density was about 1.5 laser points per m2. In area C, ALS survey was performed in 
winter 2007 by an ALS ALTM 3033 sensor which registered two echoes per pulse; the 
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average laser point density was about 1.0 laser points per m2.
The ALS data were filtered and classified in order to separate points belonging to 
forest and natural vegetation cover from ground points. In order to do so, outlying 
pulses due to sensor errors were first identified and erased from the ALS dataset 
using TerraScan software [Terrasolid, 2005]. Subsequently, ground level echoes were 
separated from echoes of the outer forest canopy using the TerraScan software and 
the Axelsson [2000] algorithm. Both ground and canopy echoes, once separated, were 
spatially interpolated and resampled in a grid format with a geometric resolution of 
1 m to produce, respectively, a Digital Terrain Model (DTM) and a Digital Surface 
Model (DSM).
A CHM was generated as result of the algebraic subtraction of DTM from DSM. Later, 
pixels with height < 2 m in the CHM were set to zero to avoid the influence of the shrub 
understory [Floris et al., 2010; Gonzáles-Ferreiro, 2012]. Power lines were also masked 
on the basis of a manual delineation of electric lines over the raster CHM. Finally, pixels 
outside the selected study areas were excluded.

Ground data
In each study area forest cover was classified into high forest stands (T1) and coppice 
stands on the basis of ground observations with the support of a GPS receiver Trimble Juno 
3B Handheld with 2-5 m positional accuracy. Fieldwork was carried out in winter 2012 
by visual interpretation of forest polygons generated on the basis of CHM (see Polygon 
delineation section). In case of coppice stands, two age classes were considered taking into 
account the time lag between ALS survey and ground observation: coppice with age > 10 
years (called adult coppices, T2), and coppice with age < 10 years (called young coppices, 
T3). The surface covered by coppice stands and high forest stands in the three study areas 
is reported in Table 2.

Table 2 - Surface (in hectares) of high forest stands (T1), adult coppice stands (T2) and 
young coppice stands (T3) in the study areas.

Study area
T1 T2 T3 Total

ha ha ha ha

A 15.0 15.0 15.0 45.0

B 36.1 35.5 35.8 107.4

C 130.4 287.4 88.2 506.0

Mapping silvicultural systems
The mapping procedure involved five consecutive steps (Fig. 2): 1) polygon delineation 
from the CHM, 2) selection of training sites and test sites, 3) CHM-derived metrics 
extraction and analysis, 4) polygon classification, 5) accuracy assessment.
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Figure 2 - Flow diagram of the proposed 
silvicultural systems classification procedure.

Polygon delineation
The aim of this step was to divide forest cover into forest regions with similar characteristics 
in terms of canopy structure. The object-oriented segmentation tool available in the 
Definiens (vers. 5) software was used to delineate polygons on the basis of CHM.

Figure 3 - Example of polygon delineation over the raster Canopy 
Height Model (CHM) generated by a scale parameter of 50. 
Numbers represent high forests (1), adult coppices (2) and young 
coppices (3).
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Segmentation is the subdivision of an image into separated regions. Definiens uses a bottom-
up approach to generate polygons based upon a multiresolution segmentation technique and 
criteria of homogeneity in term of colour, smoothness and compactness; the so-called scale 
parameter influences the average object size: a larger value leads to bigger objects and vice 
versa [Baatz and Shäpe, 2000]. In this study six consecutive segmentations were applied to 
the CHM. The CHM-based segmentation was expected to provide differentiation between 
forest stands with different height. After some preliminary tests which were carried out to 
assess the effect of different user-specified parameters through a trial-and-error approach, 
a first segmentation level with a scale parameter of 50 was derived, assigning a weight of 
0.5 to colour, smoothness and compactness (Fig. 3). This setting was chosen empirically 
by visual inspection as it was judged able to delineate homogeneous forest regions 
representing coppices and high forest stands. These regions were later sub-segmented into 
five hierarchical levels with a scale parameter of 30, 20, 15, 10 and 5. Colour, smoothness 
and compactness were unchanged during the multiple level segmentation process. More 
details on LiDAR-based segmentation and related issues can be found in Ke et al. [2010].
At the first segmentation level a total of 30, 191, and 778 polygons were generated in the 
study areas A, B and C, respectively, with an average size of 1.19 ha, 0.56 ha and 0.65 ha, 
respectively. Total number and average size of polygons generated with the multiple level 
object-oriented segmentation are given in Table 3.

Table 3 - Total number and average size (in hectares), with standard deviation in brackets, of the 
polygons generated by the multiple level object-oriented segmentation.

Study 
area

Level 1
(scale 
parameter = 50)

Level 2
(scale 
parameter = 30)

Level 3
(scale 
parameter = 20)

Level 4
(scale 
parameter = 15)

Level 5
(scale 
parameter = 10)

Level 6
(scale 
parameter = 5)

Num. Average 
size (ha) Num. Average 

size (ha) Num. Average 
size (ha) Num. Average 

size (ha) Num. Average 
size (ha) Num Average 

size (ha)

A 30 1.190 
(0.821) 224 0.203 

(0.176) 652 0.069 
(0.066) 1311 0.034 

(0.030) 3122 0.014 
(0.011) 11346 0.004 

(0.003)

B 191 0.560 
(0.430) 564 0.190

(0.137) 1259 0.085
(0.061) 2345 0.046

(0.033) 5556 0.019
(0.015) 22341 0.005

(0.004)

C 778 0.650 
(0.531) 2340 0.216 

(0.179) 5799 0.087 
(0.069) 11295 0.045 

(0.034) 29144 0.017 
(0.013) 132682 0.004 

(0.003)

Training sites and test sites
In each study area training sites and test sites were selected from polygons delineated at 
the first segmentation level using a random selection method; 20% of the forest area was 
selected for training sites and the remaining 80% was used as test sites (Fig. 1). At the lower 
hierarchical levels training and test site distribution was the same as that adopted for the 
first segmentation level. Training and test site polygons were classified into silvicultural 
systems by observations in the field (see Ground data section).
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Metrics extraction and analysis
For each polygon delineated by the multiple level object-oriented segmentation process, 
the following ALS metrics were computed on the basis of the CHM: minimum height, 
maximum height, mean height, range of the heights, standard deviation (SD) of the heights, 
and coefficient of variation (CV) of the heights. These metrics were selected as they are 
known to be related to forest stand structural characteristics [e.g., Zimble et al., 2003; Parker 
and Russ, 2004; Lefsky et al., 2005; Pascual et al., 2008; Barbati et al., 2009; Falkowski 
et al., 2009; Monnet et al., 2010; Corona et al., 2012]. Indeed, silvicultural systems are 
expected to be distinguished on the basis of forest height and height variations: the former 
should be lower in coppices which are, on average, younger than high forests, the latter 
should be higher in coppices due to the presence of standards which are taller than the 
shoots, even though these dissimilarities progressively decrease as coppice age increases.
To investigate the capability of each metric in distinguishing between high forest stands, 
adult coppice stands and young coppice stands, a statistical analysis was performed on 
CHM metrics computed on training sites using SPSS for Windows. To this end two non 
parametric tests (Kruskal-Wallis test and Median test) were used to check whether the 
selected metrics varied significantly among T1, T2 and T3. In case of statistically significant 
differences (p < 0.001) the Mann-Whitney U test (a Two-Independent-Samples Test) was 
used to determine the differences between groups.

Polygon classification and accuracy assessment
Polygon classification was performed using the Maximum Likelihood algorithm available 
in Idrisi Selva software, a well known classification method for remote sensing applications 
[Lillesand and Kiefer, 2000], with reference to the training sites described above (see 
Training sites and test sites section).
The thematic accuracy of the classification was estimated over the test sites by means 
of a comparison between the classification of remote sensing data and ground truth. The 
following indexes were computed: overall accuracy (OA), producer’s accuracy (PA), user’s 
accuracy (UA), and kappa index of agreement (KIA) [Congalton, 1991].

Results
Results of the statistical analysis for study areas A, B and C are shown in Tables 4, 5 and 6. They 
indicate that the CHM metrics are able to discriminate between coppice and high forest stands.
Some metrics seem to be influenced by the scale of the analysis, as they produced different 
results in relation to the scale parameter adopted in the segmentation process. The ALS 
metrics that showed such behaviour were: minimum height (in all the areas), SD (in A and 
B), maximum height and range (in B and C). Minimum height was able to distinguish types 
T1, T2 and T3 when scale parameter was ≤ 15 in areas A and C, and ≤ 30 in area B; with 
a scale parameter of 20 the types T2 and T3 were not discriminated by minimum height in 
the study area A. These results can be explained by the fact that when larger polygons are 
delineated, gaps in the forest cover with CHM heights close to zero are not detected by the 
segmentation process, so that coppices and high forests cannot be discriminated. As shown 
by CHM height histograms computed on training sites (Figs. 4, 5 and 6), CHM heights equal 
to zero occur in every silvicultural system, even thought with a smaller proportion in high 
forest than in coppice stands. Maximum height distinguishes the target forest classes when 
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scale parameter is ≤ 15 in area B and ≤ 30 in area C, while it is not able to separate T2 from 
T3 when a greater scale parameter is used: when larger polygons are delineated, maximum 
height in young coppices corresponded to the height of the tallest standard, which is similar 
to the maximum height determined in adult coppices as shown by CHM height histograms 
(Figs. 5 and 6). The results provided by range are similar to those reported for maximum 
height: range worked well in area C when scale parameter was ≤ 30, while in area B it was 
able to discriminate the types T1, T2 and T3 only with a scale parameter of 5.

Table 4 - Study area A: results of the statistical analysis (Kruskal-Wallis test, Median test and Mann-
Whitney test) carried out on CHM-derived metrics computed on training site polygons for high 
forest (T1), adult coppice (T2) and young coppice (T3) (SD = standard deviation, CV = coefficient 
of variation).

Level of 
segmentation 
(scale 
parameter)

Number of 
training site 
polygons

CHM-
derived 
metric

Average value of 
the CHM-derived 
metric computed 
on training site 
polygons

Kruskal-
Wallis 
test
(p-level)

Media��n 
test
(p-level)

Mann-Whitney 
test

T1 T2 T3 T1 T2 T3

L1 (50) 7 8 9

Min 0.0 0.0 0.0 - - -
Max 26.5 20.5 13.0 0.000 0.001 T1≠T2; T2≠T3
Mean 18.9 6.4 2.2 0.000 0.001 T1≠T2; T2≠T3
Range 26.5 20.5 13.0 0.000 0.001 T1≠T2; T2≠T3
SD 4.3 4.3 3.1 0.002 0.002 T1=T2; T2≠T3
CV 0.2 0.7 1.4 0.000 0.000 T1≠T2; T2≠T3

L2 (30) 10 16 21

Min 0.4 0.0 0.0 0.157 0.151 T1=T�������� 2; T2=T3
Max 26.8 20.1 12.9 0.000 0.000 T1≠T2; T2≠T3
Mean 19.5 7.0 2.3 0.000 0.000 T1≠T2; T2≠T3
Range 26.3 20.1 12.9 0.000 0.000 T1≠T2; T2≠T3
SD 4.3 4.2 3.1 0.000 0.000 T1=T2; T2≠T3
CV 0.2 0.7 1.5 0.000 0.00�0 T1≠T2; T2≠T3

L3 (20) 37 48 42

Min 1.7 0.5 0.0 0.000 0.000 T1≠T2; T2=T3
Max 23.5 16.7 10.4 0.000 0.000 T1≠T2; T2≠T3
Mean 17.5 7.1 2.0 0.000 0.000 T1≠T2; T2≠T3
Range 21.9 16.3 10.4 0.000 0.000 T1≠T2; T2≠T3
SD 3.6 3.5 2.6 0.000 0.001 T1=T2; T2≠T3
CV 0.2 0.7 1.6 0.000 0.00�0 T1≠T2; T2≠T3

L4 (15) 73 102 80

Min 3.7 0.8 0.0 0.000 0.000 T1≠T2; T2≠T3
Max 24.0 15.4 9.9 0.000 0.000 T1≠T2; T2≠T3
Mean 18.4 7.2 2.2 0.000 0.000 T1≠T2; T2≠T3
Range 20.2 14.5 9.9 0.000 0.000 T1≠T2; T2≠T3
SD 3.4 3.3 2.5 0.000 0.000 T1=T2; T2≠T3
CV 0.2 0.7 1.6 0.000 0.000 T1≠T2; T2≠T3

L5 (10) 169 235 212

Min 6.8 1.6 0.1 0.000 0.000 T1≠T2; T2≠T3
Max 23.3 13.4 9.0 0.000 0.000 T1≠T2; T2≠T3
Mean 18.3 7.3 2.6 0.000 0.000 T1≠T2; T2≠T3
Range 16.5 11.8 8.9 0.000 0.000 T1≠T2; T2≠T3
SD 3.2 2.8 2.4 0.000 0.029 T1≠T2; T2≠T3
CV 0.2 0.6 1.6 0.000 0.000 T1≠T2; T2≠T3

L6 (5) 770 785 882

Min 12.1 2.9 0.6 0.000 0.000 T1≠T2; T2≠T3
Max 21.9 10.7 6.2 0.000 0.000 T1≠T2; T2≠T3
Mean 18.4 7.0 2.8 0.000 0.000 T1≠T2; T2≠T3
Range 9.8 7.8 5.6 0.000 0.000 T1≠T2; T2≠T3
SD 2.4 2.0 1.6 0.000 0.000 T1≠T2; T2≠T3
CV 0.2 0.5 1.1 0.000 0.000 T1≠T2; T2≠T3
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Table 5 - Study area B: results of the statistical analysis (Kruskal-Wallis test, Median test and Mann-
Whitney test) carried out on CHM-derived metrics computed on training site polygons for high 
forest (T1), adult coppice (T2) and young coppice (T3) (SD = standard deviation, CV = coefficient 
of variation).

Level of 
segmentation 
(scale 
parameter)

Number of training 
site polygons CHM-

derived 
metric

Average value of 
the CHM-derived 
metric computed 
on training site 
polygons

Kruskal-
Wallis 
test
(p-level)

Media��n 
test
(p-level)

Mann-
Whitney test

T1 T2 T3 T1 T2 T3

L1 (50) 13 7 10

Min 2.4 0.4 0.0 0.132 0.143 T1=T2; T2=T3
Max 25.0 17.9 16.5 0.000 0.000 T1≠T2; T2=T3
Mean 17.8 9.3 4.4 0.000 0.000 T1≠T2; T2≠T3
Range 22.6 17.4 16.5 0.018 0.023 T1=T2; T2=T3
SD 2.5 3.2 3.5 0.053 0.296 T1=T2; T2=T3
CV 0.1 0.3 0.8 0.000 0.000 T1≠T2; T2≠T3

L2 (30) 37 33 43

Min 4.5 1.1 0.0 0.000 0.000 T1≠T2; T2≠T3
Max 23.5 15.6 14.8 0.000 0.000 T1≠T2; T2=T3
Mean 17.2 8.7 4.4 0.000 0.000 T1≠T2; T2≠T3
Range 19.0 14.6 14.8 0.000 0.003 T1≠T2; T2=T3
SD 2.5 2.6 2.9 0.001 0.011 T1=T2; T2=T3
CV 0.1 0.3 0.7 0.000 0.000 T1≠T2; T2≠T3

L3 (20) 79 77 87

Min 6.6 1.8 0.0 0.000 0.000 T1≠T2; T2≠T3
Max 22.2 15.3 13.2 0.000 0.000 T1≠T2; T2=T3
Mean 16.9 9.0 4.2 0.000 0.000 T1≠T2; T2≠T3
Range 15.6 13.5 13.2 0.022 0.149 T1=T2; T2=T3
SD 2.2 2.5 2.8 0.000 0.000 T1=T2; T2≠T3
CV 0.1 0.3 0.9 0.000 0.000 T1≠T2; T2≠T3

L4 (15) 159 162 131

Min 8.4 2.5 0.1 0.000 0.000 T1≠T2; T2≠T3
Max 21.0 14.8 12.5 0.000 0.000 T1≠T2; T2≠T3
Mean 16.4 9.2 4.2 0.000 0.000 T1≠T2; T2≠T3
Range 12.6 12.3 12.4 0.184 0.000 T1=T2; T2=T3
SD 2.0 2.5 2.7 0.000 0.000 T1=T2; T2≠T3
CV 0.1 0.3 0.9 0.000 0.000 T1≠T2; T2≠T3

L5 (10) 339 356 387

Min 10.5 3.7 0.6 0.000 0.000 T1≠T2; T2≠T3
Max 20.3 13.5 11.2 0.000 0.000 T1≠T2; T2≠T3
Mean 16.6 9.0 4.7 0.000 0.000 T1≠T2; T2≠T3
Range 9.8 9.8 10.6 0.000 0.000 T1=T2; T2≠T3
SD 1.7 2.1 2.4 0.000 0.000 T1≠T2; T2≠T3
CV 0.1 0.3 0.8 0.000 0.000 T1≠T2; T2≠T3

L6 (5) 1231 1349 1742

Min 13.2 5.8 2.0 0.000 0.000 T1≠T2; T2≠T3
Max 19.2 12.2 8.5 0.000 0.000 T1≠T2; T2≠T3
Mean 16.7 9.2 5.0 0.000 0.000 T1≠T2; T2≠T3
Range 6.0 6.3 6.5 0.000 0.000 T1≠T2; T2≠T3
SD 1.3 1.5 1.7 0.000 0.000 T1≠T2; T2≠T3
CV 0.1 0.2 0.6 0.000 0.000 T1≠T2; T2≠T3
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Table 6 - Study area C: results of the statistical analysis (Kruskal-Wallis test, Median test and Mann-
Whitney test) carried out on CHM-derived metrics computed on training site polygons for high 
forest (T1), adult coppice (T2) and young coppice (T3) (SD = standard deviation, CV = coefficient 
of variation).

Level of 
segmentation 
(scale 
parameter)

Number of training 
site polygons

CHM-
derived 
metric

Average value of the 
CHM-derived metric 
computed on training 
site polygons

Kruskal-
Wallis 
test
(p-level)

Media��n 
test
(p-level)

Mann-
Whitney test

T1 T2 T3 T1 T2 T3

L1 (50) 20 45 13

Min 0.0 0.0 0.0 - - -
Max 28.5 21.46 19.2 0.000 0.000 T1≠T2; T2=T3

Mean 15.3 8.2 2.4 0.000 0.000 T1≠T2; T2≠T3

Range 28.5 21.4 19.2 0.000 0.000 T1≠T2; T2=T3

SD 6.5 4.4 3.7 0.000 0.000 T1≠T2; T2≠T3

CV 0.4 0.6 1.8 0.000 0.000 T1≠T2; T2≠T3

L2 (30) 104 261 62

Min 0.0 0.0 0.0 - - -

Max 26.5 18.8 16.9 0.000 0.000 T1≠T2; T2≠T3

Mean 15.4 8.0 2.8 0.000 0.000 T1≠T2; T2≠T3

Range 26.5 18.8 16.9 0.000 0.000 T1≠T2; T2≠T3

SD 6.3 4.3 3.7 0.000 0.000 T1≠T2; T2≠T3

CV 0.4 0.6 1.7 0.000 0.000 T1≠T2; T2≠T3

L3 (20) 294 639 233

Min 0.2 0.0 0.0 0.011 0.012 T1=T2; T2=T3

Max 25.0 17.6 15.1 0.000 0.000 T1≠T2; T2≠T3

Mean 15.0 8.1 3.0 0.000 0.000 T1≠T2; T2≠T3

Range 24.8 17.5 15.1 0.000 0.000 T1≠T2; T2≠T3

SD 5.9 4.1 3.4 0.000 0.000 T1≠T2; T2≠T3

CV 0.4 0.6 2.1 0.000 0.000 T1≠T2; T2≠T3

L4 (15) 582 1202 491

Min 0.6 0.2 0.1 0.000 0.000 T1≠T2; T2=T3

Max 24.1 16.7 13.3 0.000 0.000 T1≠T2; T2≠T3

Mean 14.9 8.1 3.3 0.000 0.000 T1≠T2; T2≠T3

Range 23.5 16.5 13.3 0.000 0.000 T1≠T2; T2≠T3

SD 5.7 3.9 3.2 0.000 0.000 T1≠T2; T2≠T3

CV 0.4 0.6 2.2 0.000 0.000 T1≠T2; T2≠T3

L5 (10) 1514 3129 1324

Min 1.9 0.7 0.3 0.000 0.000 T1≠T2; T2≠T3

Max 22.9 15.3 10.5 0.000 0.000 T1≠T2; T2≠T3

Mean 14.9 8.2 3.6 0.000 0.000 T1≠T2; T2≠T3

Range 20.9 14.6 10.2 0.000 0.000 T1≠T2; T2≠T3

SD 5.2 3.5 2.6 0.000 0.000 T1≠T2; T2≠T3

CV 0.4 0.6 1.9 0.000 0.000 T1≠T2; T2≠T3

L6 (5) 8739 14118 4612

Min 6.6 2.6 0.8 0.000 0.000 T1≠T2; T2≠T3

Max 20.9 13.1 7.4 0.000 0.000 T1≠T2; T2≠T3

Mean 15.1 8.4 3.6 0.000 0.000 T1≠T2; T2≠T3

Range 14.3 10.5 6.6 0.000 0.000 T1≠T2; T2≠T3

SD 3.9 2.7 1.8 0.000 0.000 T1≠T2; T2≠T3

CV 0.3 0.5 1.2 0.000 0.000 T1≠T2; T2≠T3
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Figure 4 - Area A: CHM height histograms on training sites.
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Figure 5 - Area B: CHM height histograms on training sites.
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Figure 6 - Area C: CHM height histograms on training sites.
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Conversely, the metrics which were not affected by the scale of the analyses were: mean height 
and CV (in all the areas), range and maximum height (in A), and SD (in C). Such results clearly 
indicated that mean height and CV are the only metrics capable of separating the target forest 
classes in all the investigated study areas independently from the scale of the analysis.
Mean height and CV were finally used to map high forests, adult coppices and young coppices. 
The classification was performed on polygons delineated at the first level of segmentation (scale 
parameter = 50). The final maps are shown in Figure 7. Thematic accuracy of the classification 
is shown in Tables 7, 8 and 9: overall accuracy was 85.9% in area C, 86.0% in area A and 
92.7% in the area B. KIA was 0.75 in the area C, 0.79 in the area A and 0.89 in area B.
Classification errors between T1 and T2 and between T2 and T3 can be attributed to stand 
development (e.g., young high forests classified as mature coppices and mature coppices 
classified as high forests) and stand density (on one hand, a low tree density determines a 
reduction of the mean height computed by the raster CHM and, on the other hand, an increase 
of height variability). Other possible influencing factors are soil fertility, which influences 
stand height, or silvicultural practices such as leaving, at coppicing, a certain number of older 
standards, i.e. with ages > 2-3 times rotation period [Ciancio and Nocentini, 2004]. Since in 
the study areas soil conditions were quite uniform, this factor should have a limited influence 
on classification errors. Misclassification between T1 and T3 occurred only in area C, and on a 
very limited portion of the area characterized by large openings in the forest cover.
It is worth noting that thematic accuracy of the classification increases when no distinction 
is done between young (< 10 years) and adult (> 10 years) coppices: in this case the overall 
accuracy becomes greater than 91% in all the study areas (Tabs. 10, 11 and 12), and KIA is 
0.76 in area C, 0.89 in area B, and 1 in area A.

Figure 7 - Classification of silvicultural systems by ALS data (on the left side) and 
ground truth (on the right side).
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Table 7 - Study area A: thematic accuracy (OA = overall accuracy, PA = producer’s accuracy; 
UA = user’s accuracy) of coppice (T2 = adult coppice, T3 = young coppice) and high forest (T1) 
classification computed on test sites.

Ground truth
UA (%)

T1 (ha) T2 (ha) T3 (ha)

Classification
T1 (ha) 11.7 0.0 0.0 100.0
T2 (ha) 0.0 11.9 4.9 70.6
T3 (ha) 0.0 0.0 6.8 100.0

PA (%) 100.0 100.0 57.9 OA (%) = 86.0

Table 8 - Study area B: thematic accuracy (OA = overall accuracy, PA = producer’s accuracy; 
UA = user’s accuracy) of coppice (T2 = adult coppice, T3 = young coppice) and high forest (T1) 
classification computed on test sites.

Ground truth
UA (%)

T1 (ha) T2 (ha) T3 (ha)

Classification
T1 (ha) 28.4 4.8 0.0 85.5
T2 (ha) 0.3 23.5 1.1 94.3
T3 (ha) 0.0 0.0 27.4 100.0

PA (%) 99.0 83.0 96.1 OA (%) = 92.7

Table 9 - Study area C: thematic accuracy (OA = overall accuracy, PA = producer’s accuracy; 
UA = user’s accuracy) of coppice (T2 = adult coppice, T3 = young coppice) and high forest (T1) 
classification computed on test sites.

Ground truth
UA (%)

T1 (ha) T2 (ha) T3 (ha)

Classification
T1 (ha) 80.6 11.4 0.0 87.6
T2 (ha) 23.6 209.7 13.4 85.0
T3 (ha) 0.1 8.3 56.8 87.2

PA (%) 77.3 91.4 80.9 OA (%) = 85.9

Table 10 - Study area A: thematic accuracy (OA = overall accuracy, PA = producer’s 
accuracy; UA = user’s accuracy) of coppice (T2 = adult coppice, T3 = young coppice) 
and high forest (T1) classification computed on test sites.

Ground truth
UA (%)

T1 (ha) T2+T3 (ha)

Classification T1 (ha) 11.7 0.0 100.0
T2+T3 (ha) 0.0 23.6 100.0

PA (%) 100.0 100.0 OA (%) = 100.0

Table 11 - Study area B: thematic accuracy (OA = overall accuracy, PA = producer’s 
accuracy; UA = user’s accuracy) of coppice (T2 = adult coppice, T3 = young coppice) 
and high forest (T1) classification computed on test sites.

Ground truth
UA (%)

T1 (ha) T2+T3 (ha)

Classification T1 (ha) 28.40 3.85 88.1
T2+T3 (ha) 0.30 52.95 99.4

PA (%) 99.0 93.2 OA (%) = 95.1
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Table 12 - Study area C: thematic accuracy (OA = overall accuracy, PA = producer’s 
accuracy; UA = user’s accuracy) of coppice (T2 = adult coppice, T3 = young coppice) 
and high forest (T1) classification computed on test sites.

Ground truth
UA (%)

T1 (ha) T2+T3 (ha)

Classification T1 (ha) 80.6 11.4 87.6
T2+T3 (ha) 23.7 288.1 92.4

PA (%) 77.3 96.2 OA (%) = 91.3

Discussion and conclusions
In this study we have assessed the performance of ALS-derived CHM metrics to classify 
silvicultural systems in Mediterranean deciduous oak forests. Such classification is 
traditionally carried out by means of ground observations. We believe our results show the 
potential of raster CHM (1-m2 pixel) for classifying coppices vs. high forests.
We used a methodological approach similar to that by Pascual et al. [2008] in conifer stands. 
At least to our knowledge, this is the first time that ALS data is used for broadleaved forests 
classification by silvicultural systems.
The methodology is implicitly based on the assumption that even-aged coppices and 
high forests present different heights and height variations due to differences in age and 
structure determined by forest management in term of rotation length and felling patterns. 
Our work shows that mean and coefficient of variation of heights extracted from raster 
CHM derived from low point density ALS data (1-1.6 laser points per m2) acquired in 
different season (winter and summer) provide effective support information to discriminate 
between high forest and coppice stands. The same two metrics have been proved relevant 
for forest structure classification by Falkowski et al. [2009], Lefsky et al. [2005] and 
Pascual et al. [2008]. The classification efficiency of other four CHM metrics have proven 
to be influenced by the scale of the analysis (minimum height, maximum height, range, and 
standard deviation). Conversely, mean and coefficient of variation of heights provide robust 
results for scale parameters up to 50, which is the maximum value considered in our work. 
It is worth noting that the scale parameter of 50, which in the examined study areas proved 
to successfully separate coppice polygons from high forest polygons, falls in the optimal 
scale range 20-150 suggested by Ke et al. [2010] for forest species classification.
In the examined study cases, classification errors have proven to be quite low: the overall 
accuracy of the semiautomatic classification produced by Maximum Likelihood algorithm 
is > 85% when three classes (high forest, adult coppice, young coppice) are considered, and 
it is > 91 % when only two classes are considered (high forest vs. coppice). However, it is 
worth noting that the high accuracy achieved in our study is influenced by the low number of 
considered classes. In addition, it is interesting to note that the overall accuracy in the study 
areas A and C was similar and lower than in the area B, probably because in A and C ALS data 
was acquired during leaf-off periods, and the derived CHM underestimated the canopy height 
more than in B where ALS was acquired during leaf-on conditions (Wasser et al., 2013).
The procedure presented in this paper can be used by forest managers for stand classification 
when drafting management plans, and also for stratified estimation of forest attributes to 
increase the precision of estimates under forest inventory applications [e.g., McRoberts et 
al., 2005; Corona and Marchetti, 2007; Corona et al., 2011], and even for generating auxiliary 
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information relevant for mapping fire risk [e.g., González-Olabarria et al., 2012].
It is important to stress the simplicity and feasibility of the proposed methodological 
approach, which exploits: (i) the raster ALS-derived CHM data, which are often available 
to the general public as open data, i.e. at no (or very low) cost (see Objectives section), (ii) 
conventional image segmentation techniques, and (iii) well known classification algorithm 
available in many commercial and open-source software.
On the other hand, further studies on this topic are needed to assess the efficiency of the 
proposed method for classifying silvicultural systems on large areas, in different forests 
types with different forest developmental stages; to test the eventual advantage of more 
complex classification algorithms; to investigate whether the original ALS point cloud 
might contain additional information to such an end [e.g., Jakubowski et al., 2013], and 
to assess the eventual added value provided by the integration of ALS data with remotely 
sensed multispectral information.
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