
CENTRO PER LA RICERCA
SCIENTIFICA E TECNOLOGICA

38050 Povo (Trento), Italy
Tel.: +39 0461 314312
Fax: +39 0461 302040
e−mail: prdoc@itc.it − url: http://www.itc.it

Graph Rewriting for Agent Oriented Visual Modeling

Novikau A., Perini A., Pistore M.

June 2004

Technical Report # T04−06−04

 Istituto Trentino di Cultura, 2004

LIMITED DISTRIBUTION NOTICE

This report has been submitted for
publication outside of ITC and will probably be copyrighted if accepted for publication. It has been
issued as a Technical Report for
early dissemination of its contents. In view of the transfert of copy right to
the outside publisher, its
distribution outside of ITC prior
to publication should be limited to peer communications and specific
requests. After outside publication,
material will be available only in
the form authorized by the copyright owner.

GT-VMT 2004 Preliminary Version

Graph Rewriting for Agent Oriented Visual
Modeling

Aliaksei Novikau, Anna Perini 1

ITC-Irst, Via Sommarive, 18, I-38050 Trento, Italy

Marco Pistore 2

University of Trento, Via Sommarive 14, I-38050 Trento, Italy
ITC-Irst, Via Sommarive, 18, I-38050 Trento, Italy

Abstract

In this paper we will describe our approach, based on Graph Rewriting (GR), to
support the visual modeling process in Tropos, an Agent Oriented software engi-
neering methodology. We will give examples of the rewriting rules which specify
the syntax of Tropos and will discuss how this graph rewriting rule-set can support
an analyst in building correct models (that is models consistent with the Tropos
language). Moreover we will consider how GR permits to adopt modeling language
variants in a flexible way and to support an incremental modeling process.

Key words: visual modeling, graph rewriting, agent-oriented
modeling, AGG.

1 Introduction

Visual modeling is a common practice in software development, especially in
Object Oriented software development where a standard modeling language
(the Unified Modeling Language - UML [1]) has been proposed and several
CASE tools at support of the modeling activity are available [2]. This led also
to the adoption of visual modeling as a core discipline in industrial software
development processes, such as the Rational Unified Process [3]. Nevertheless,
some interesting research problems are still open, such as how to provide a
common semantics for structural and behavioral UML diagrams [4,5], how
to enhance OCL constraints for UML class diagrams with Graph Rewriting

1 Emails: novikau@irst.itc.it, perini@irst.itc.it
2 Email: pistore@dit.unitn.it

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Novikau, Perini, Pistore

(GR) concepts [6]. GR plays an important role in solving some of them, as
discussed in previous GT-VMT workshops [7].

Agent Oriented (AO) software engineering is a paradigm that has been
recently proposed (see for instance [8] and previous editions) with two main
meanings, namely, (i) as an approach to engineering Multi-Agent Systems
and (ii) as an approach to developing distributed systems based on the agent
paradigm for the analysis and the design of such systems [9]. Visual model-
ing plays a crucial role also in AO approaches. We refer, in particular, to the
Tropos methodology [10], an agent oriented software engineering methodology
(according to definition (ii)), that is based on a visual modeling language and
provides a set of analysis techniques. In particular, specific Tropos diagrams
allow to represent different aspects of a model structure, while dynamic as-
pects of the model can be specified through formal annotations expressed as
temporal logic formulas [11].

We are focusing on visual modeling in Tropos and on a set of specific issues
related to the development of a CASE tool at support of visual modeling in
Tropos , such as, how to assure that a model is correct with respect to a given
syntax, how to support the building of consistent instances of a given model,
and how to provide services for automatic restructuring of the model like the
application of different patterns and refactoring.

In this paper we discuss how GR could be used to define a solution to these
problems.

The paper is structured as follows: in Sec. 2 we will give a brief description
of the Tropos modeling language and present the set of problems related to
the development of a CASE tool for visual modeling that we intend to address
exploiting GR; we will also recall the basic features of GR that we will use
in the following. In Sec. 3, we will describe our approach, namely, the set of
graph rewriting rules for building a Tropos model; a set of rules for support-
ing instance creation and preliminary ideas on how to manage the consistent
changing or restructuring of a model. Related works are briefly discussed in
Sec. 4. Finally, conclusions and future work are presented in Sec. 5.

2 Background

2.1 Tropos methodology

Tropos [10] is an AO methodology for building distributed software systems
which provides a visual modeling language. Visual modeling is used for the
analysis of the application domain as well as for the requirements, the ar-
chitectural, and the detailed design of the system-to-be. Among the basic
concepts provided by the language: the concept of actor for modeling entities
which have strategic goals and intentionality, such as a physical agent, a role
in an organization or a component in the system-to-be; the concept of goal
for representing the strategic interests of an actor; the concept of dependency

2

Novikau, Perini, Pistore

Fig. 1. An example of Tropos actor and goal diagram.

between two actors which indicates that an actor depends on another in order
to achieve a goal, execute a plan, or exploit a resource. The syntax of the
modeling language has been defined through a metamodel, described in [10].
Tropos offers a set of analysis techniques, such as and/or decomposition of
goals, means-end analysis and contribution analysis and a set of diagrams for
visualizing model properties. The diagram depicted in Fig. 1 gives a graphical
representation of goal analysis in a model which includes two actors: the ac-
tor ”Advisor” and the actor ”Producer” representing two stakeholders of the
application domain of interest 3 . The actor ”Advisor” depends on the actor
”Producer” for the achievement of the goal to acquire ”orchards data”. The
dashed balloon includes the analysis of the goal ”manage pheromone trap
plant” conducted from the point of view of the actor ”Advisor”. Examples of
and/or decomposition as well as contribution analysis are shown.

The Tropos diagram contains also implicit information about creation and
fulfillment relations between model’s entities. For example, a subgoal can be
created only after the creation of an upper level goal and a decomposed goal
can be fulfilled only if all the subgoals (and decomposition) or at least one
subgoal (or decomposition) is fulfilled.

The diagram in Fig. 2 depicts a frame sequence which expresses a desired
behavior of the system modeled in Fig. 1. Specifying the frame sequence, an

3 The domain is that of Integrated Production in Agriculture. The example is taken from
[12].

3

Novikau, Perini, Pistore

Fig. 2. An example of frame sequence. Frame 2 to 3 have been omitted. A gray goal
is a fulfilled goal. Going from frame 4 to frame 5 we can notice how goal fulfillment
propagates from the goal in the dependency towards the original goal, along the
goal decomposition chain.

analyst would like to validate the previously specified model with respect to
a specific scenario, that is to ensure that the goal ”historical data analysis”
of the actor instance ”a1” (of type ”Advisor”) can be fulfilled by means of
the actor instance ”a2” (of type ”Producer”) who commits herself for the
satisfaction of the ”a1”’s goal of acquiring ”orchards data”.

Further information on Tropos and on its application to different case-
studies can be found in [13].

2.2 Supporting Tropos visual modeling

Here we focus on a set of specific issues related to the development of a CASE
tool which supports the analyst in the process of building and revising a visual
model in Tropos .

The output of a visual modeling process should be a model which is correct
with respect to the syntax of the modeling language. However this process
goes through the specification of partially correct models. An example could
be a creation of a goal without an actor owning it (while according to the
language every goal belongs to an actor). Such model should be considered as
non completed and the analyst should be warned about this. Moreover, the
analyst should be guided towards possible model completions. For example
when the analyst starts decomposing a certain goal, the tool should highlight
all the goals that can be part of the decomposition. The analyst should also
be informed why a building step is forbidden. For instance, if the analyst
attempts to create an actor with an already existing name, a clear message
should point out the error.

Building a model instance can be helpful for the analyst, for instance, in
order to check if the model includes a specific scenario (or behavior). Sup-
porting the analyst in building a consistent instance of a model means that
in case she wants to mark ”orchards historical data” in frame 1 of Fig. 2 as
fulfilled (colored goals) then the tool should warn that it is impossible because

4

Novikau, Perini, Pistore

the goal should be delegated to the ”Producer” actor which should fulfill it
then (e.g. the correct instance is the one depicted in frame 5 of Fig. 2).

The tool should be easily adaptable with respect to language variants,
such as using only a subset of the modeling language or an extended language
where new elements or syntax requirements have been added (for example a
new type of decomposition links in addition to and/or).

The tool should support also automatic restructuring of the model such
as the application of different patterns and refactoring. For instance, if the
analyst changes the actor and goal diagram depicted in Fig. 1, then the asso-
ciated instance diagrams should be consistently updated. An example can be
a change of a ”historical data analysis” decomposition type from or to and,
which means that in order to fulfil the goal all the subgoals should be fulfilled.
So the frame 5 would be no more valid and would require the creation and
fulfillment of another subgoal. Another example of model restructuring can
be the movement of a goal and all its subgoals from one actor to another.
More generally, restructuring process should guarantee consistency between
different views of resulting model.

2.3 GR techniques and tools

For solving the problems described above we will use GR. In particular, we
consider promising to exploit attributed GR which allow to keep some relevant
diagram information in terms of a set of attributes attached to nodes and edges
of a graph representing the model. Moreover, the rewriting system should
support complex conditions on rules application such as Negative Application
Conditions (NACs) and conditions on attributes.

Preliminary evaluation of our ideas have been conducted using a system
which implements GR techniques called AGG (Attributed Graph Grammar
System) [14]. AGG is a rule based visual language written in java support-
ing an algebraic approach to graph rewriting. It provides flexible attributed
graphs and generic application conditions including NACs and attribute con-
ditions.

3 The approach

We describe our approach along three basic steps: in Sec. 3.1 we describe a
first step in applying GR for guiding the analyst in designing valid models; in
Sec. 3.2 we address the problem of supporting instance building; in Sec. 3.3 we
point out techniques needed to provide restructuring/updating capabilities.

3.1 Graph rewriting rules for Tropos modeling

A Tropos model can be represented as a graph whose nodes represent entities
like actors, goals, resources, plans, and whose edges represent the relationships

5

Novikau, Perini, Pistore

Fig. 3. An example of rule implemented in AGG. The rule specifies the creation of
a decomposition link.

that can be defined among these entities, such as dependencies and decompo-
sition relationships. Both nodes and edges have attributes which are used to
complete the entity specification. It is hence very reasonable to represent the
syntax of Tropos using a set of rules that allow for generating all valid Tropos
models.

We implemented these GR rules with AGG. The syntax requirements are
expressed as positive application conditions (left side of the rules), NACs and
conditions on attributes. The graph representation of a Tropos model used by
AGG makes explicit some relationships between entities that are implicit in
Tropos diagrams, such as the one depicted in Fig. 1, by means of additional
edges/nodes or attributes. For instance, the fact that a goal belongs to an
actor (the goal is inside of a dashed balloon attached to the actor in Fig. 1)
is expressed with an edge has from the actor node to the goal node. Different
types of intentional entity (hardgoal, softgoal, plan, resource) are represented
as attributes of node of type goal. This allows to reduce considerably the
number of the rewriting rules. All the additional information, like names and
parts of formal specification, associated to a node are represented as attributes
as well.

Fig. 3 contains an example from the rule-set for building a Tropos model.
The example is going to be used for the explanation of how we ensure some
syntax requirements using GR rules. The input for the rule is the type of the
decomposition link (or/and). The left side of the rule (positive application
condition) guaranties the application of the rule only to two goals belonging
to the same actor. The NACs in the rule ensure that we will have the same
type of decomposition link from the same root goal and that a decomposition
link between the two goals has not been already created. Moreover, it for-
bids to have a goal that is a child of two different goal decompositions. The
condition on attributes ”cond1” controls that the source and the target in a
decomposition are compatible, according to the Tropos language syntax given

6

Novikau, Perini, Pistore

Fig. 4. The example of rules for managing nonterminal elements.

in [10].

Among the advantages of adopting this approach to address the questions
posed in Sec. 2.2 we’d like to mention the following:

• Flexibility of the modeling system. Let’s suppose we change some syntax
requirement or introduce new language constructs. In this case we have to
change or add NACs to the rules or add new rules, which is a limited effort.

• Guiding the modeling process. We can exploit the functionalities provided
by AGG such as suggesting possible rule mapping completions, for instance
to highlight possible completion objects. In the case of the rule for creating
a decomposition link, the analyst can select the goal to be decomposed and
the tool can point out all the possible subgoals that are valid completions
for the rule.

• Build partially correct models. In order to allow for partially correct mod-
els (e.g. models with goals not associated to actors) we can extend the set
of types for building a Tropos models to include terminal and nonterminal
types. The model is considered to be partially correct if the graph contains
nonterminal typed elements. Only graphs containing terminal elements rep-
resent correct models. An example of rule involving nonterminal elements
is shown in the Fig. 4. The rule ”a.” creates a goal without actor. So, we
are using a nonterminal type for such kind of goal: < goal > which is an
incorrect entity according to the Tropos syntax because it doesn’t belong to
an actor. A < goal > can not be further analyzed, e.g. it cannot be decom-
posed. The second rule ”b.” allows to assign an actor to the nonterminal
goal. Here the nonterminal element < goal > is replaced with the terminal
element goal.

3.2 Building Tropos instances and frame sequences

A Tropos model represents domain actors, goals and dependencies and it may
include, as well, instances of those entities. The process of building instances
requires an additional set of rules that can be applied to the same model. The
set of rules for creating instances has to take the fulfillment/creation depen-
dency information (described in Sec. 2.1) into account as rules conditions.

Fig. 5 depicts an example of rules of this kind. There are two new types
of links introduced in the rule: instance of link means that the object is an
instance of a Tropos diagram object, the link belongs means that an actor
instance (and thus all its goal instances) belong to an instance diagram.

7

Novikau, Perini, Pistore

Fig. 5. The example of the rules for instance creation: a) the rule creating an
instance diagram label; b) the rule for creating a subgoal; c) the rule marking
fulfillment of decomposed goal.

The rule Fig. 5a creates a new node of type instance diagram and thus a
new instance diagram. The rule in Fig. 5b creates an instance of goal. The
NAC for this rule ensures that the goal is not a subgoal. (The rule for a subgoal
creation has not been described in the Fig. 5.) The rule in Fig. 5c changes the
status of an upper level goal to ”fulfilled” only if all the subgoals are fulfilled
(and decomposition) or at least one subgoal is fulfilled (or decomposition).

We remark that an instance diagram is a snapshot of a frame sequence
(see Fig. 2). We can reproduce a frame sequence for it by reapplying the set
of rules for the instance building. Every frame corresponds to a step of the
instance building process which is performed by the analyst starting from the
rule instance diagram as a first, empty frame.

The main advantage of the approach here is that it guaranties to build
instances within a Tropos model. Using the set of rules for the instances we
can create any number of instances for the Tropos diagram. And, so that all
of them are guarantied to be compatible with the model itself.

3.3 Derivation transformations

The GR rules described above include only rules for creating new elements.
While additional rules can be added for some deletion and changing activities
it looks like several of these activities can not be done with only one graph
rewriting rule. There are two reasons why: first a deletion step may require
many preconditions (e.g., we can delete an actor only after having deleted all
the goals belonging to it); second, a rewriting step may impact to a large sub-
set of the model (e.g., movement of a goal from an actor to another involves
movement of all the dependent subgoals, Fig. 6). For such kind of diagram
modifications we foresee a derivation transformation approach as the one de-

8

Novikau, Perini, Pistore

Fig. 6. The movement of a goal to another actor.

scribed in [15,16]. This will provide a general, semantically found solution to
the problem.

For the moment, we are experimenting with a more naive approach which is
based on the idea of keeping and saving the derivation history and of applying
external, hand-written algorithms to represent specific derivation transforma-
tions. For example such an algorithm should support goal movement from one
actor to the other. It should change the rule for creation of the goal replacing
the original actor with the desired one, it should check all the dependency links
and all the subgoals, propagating then the same rule transformation to the
subgoals. All the other links, except decomposition, should be destroyed. The
new derivation can be reapplied resulting into the changed diagram. Analo-
gous updating will be done for all the instance diagrams. The same technique
can be used for other type of restructuring in a model.

Some of the derivation transformation algorithms can require the analyst
to input his/her decision. For example a decision on what the analyst is going
to do with a specific type of link in the diagram while moving a goal from one
actor to another, or on how the analyst would like to rename a goal.

4 Related work

In the field of GR for visual modeling there are different directions, and among
them OO modeling with UML is gaining a lot of attention. In particular, sev-
eral works address issues of consistency and semantics of the different types
of UML diagrams. Some works on consistency of UML class and sequence
diagrams use attributed GR for checking of consistency of the two types of
diagrams [4]. In [5] an approach is described for an integrated graph based
semantics for UML diagrams such as class, object and state diagrams. The
idea of the paper is that the analyst associates graph rewriting rule to the
operations of a class in a class diagram. Using these hand-written rules and
other rules generated from statechart diagrams, it is possible to check consis-
tency of object, sequence, and collaboration diagrams. Also in our approach
we are using GR as a basis for consistency between static and dynamic views
of a Tropos model. However, our approach does not require the analyst to
write rules by hand, since a predefined set of rules is sufficient to support

9

Novikau, Perini, Pistore

instantiation taking into account Tropos language semantics.

Among the available tools that implement GR and that offer also advanced
editing functionalities we considered GenGEd or DiaGen both described in
[17]. We preferred to use the AGG tool since our focus is on providing a
graph transformation engine. This engine shall then be integrated in a CASE
tool which provides a broader set of functionalities, and that is being developed
in our research group.

5 Conclusion and future work

In this paper we have described our approach, based on GR, to support the
visual modeling process in Tropos . We have given examples of the Tropos
rewriting rules which specify the syntax of the Tropos language and supports
an analyst in building correct models. These rules have been implemented with
AGG. The GR approach gives flexibility in adopting modeling language vari-
ants and can be adapted to allow for the definition of partially correct models.
Moreover, derivation transformation seems to be a promising way to support
the restructuring of a model in consistent ways. We are currently defining an
appropriate notation for representing derivation history and completing the
implementation and validation of the described techniques in AGG.

The work we have presented in the paper covers only the requirements
phase. We intend to push forward the usage of graph transformations also
in the later phases (in particular architectural design and detailed design)
following the guidelines of the Tropos methodology [10]. In this extension we
will refer also to the work done in [18] on a formal agent-oriented modeling
methodology based on UML and GR that covers different activities ranging
from requirements specification to analysis and design.

A long term objective is that of integrating GR into a CASE tool aimed
at supporting visual modeling within the Tropos methodology.

References

[1] OMG group. Unified Modeling Language specification. Current version: 1.5.
2003. See also UML OMG site: http://www.omg.org/uml/.

[2] CASE tools list odered by names: http://www.cs.queensu.ca/Software-
Engineering/tools.html.

[3] Rational Unified Process product overview:
http://www-306.ibm.com/software/awdtools/rup/.

[4] A. Tsiolakis and H. Ehrig. Consistency Analysis of UML Class and Sequence
Diagrams using Attributed Graph Grammars. In H. Ehrig and G. Taentzer,
editors, Proc. of Joint APPLIGRAPH/GETGRATS Workshop on Graph
Transformation Systems, Berlin, March, 2000.

10

Novikau, Perini, Pistore

[5] M. Gogolla, P. Ziemann, and S. Kushke. Towards an Integrated Graph Based
Semantics for UML. In Electronic Notes in Theoretical Computer Science,
volume 72. Elsevier, 2003.

[6] A. Schürr. Adding Graph Transformation Concepts to UML’s Constraint
Language OCL. In Electronic Notes in Theoretical Computer Science,
volume 44. Elsevier, 2001.

[7] GT-VMT02 workshop site: http://www2.cs.fau.de/GTVMT02/.

[8] F. Giunchiglia, J. Odell, and G. Weiss, editors. Agent-Oriented Software
Engineering III, volume 2585 of LNCS. Springer-Verlag, 2002. Third
International Workshop, AOSE 2002, Bologna, Italy, July 15, 2002.

[9] E. Yu. Agent-Oriented Modelling: Software versus the World. In Agent
Oriented Software Engineering, pages 206–225, 2001.

[10] P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A. Perini. Tropos:
An Agent-Oriented Software Development Methodology. Autonomous Agents
and Multi-Agent Systems, 2003. In Press.

[11] A. Fuxman, L. Liu, M. Pistore, M. Roveri, and J. Mylopolous. Specifying and
Analyzing Early Requirements: Some Experimental Results. RE-2003, the 11th
IEEE International Requirements Engineering Conference, 2003.

[12] A. Perini and A. Susi. Developing a Decision Support System for Integrated
Production in Agriculture. Environmental Modelling and Software Journal,
2003. Submitted to.

[13] Tropos Project site: http://www.troposproject.org/.

[14] C. Ermel, M. Rudolf, and G. Taentzer. The AGG approach: Language and
environment. In Handbook of Graph Grammars and Computing by Graph
Transformation, volume 2: Application, Languages and Tools. World Scientific,
1999. See also AGG site: http://tfs.cs.tu-berlin.de/agg/.

[15] D. Hirsch and U. Montanari. Two Graph-Based Techniques for Software
Architecture Reconfiguration. In M. Bauderon and A. Corradini, editors,
Electronic Notes in Theoretical Computer Science, volume 51. Elsevier, 2002.

[16] D. Hirsch and U. Montanari. Higher-Order Hyperedge Replacement
Systems and their Transformations: Specifying Software Architecture
Reconfigurations. In H. Ehrig and G. Taentzer, editors, Proceedings of the Joint
APPLIGRAPH/GETGRATS Workshop on Graph Transformation Systems
(GRATRA 2000), pages 215–223, 2000.

[17] R. Bardohl, G. Taentzer, M. Minas, and A. Schürr. Application of Graph
Transformation to Visual Languages. In Handbook of Graph Grammars and
Computing by Graph Transformation, volume 2: Application, Languages and
Tools. World Scientific, 1999.

[18] R. Depke, R. Heckel, and J.M. Küster. Formal Agent-Oriented Modeling with
UML and Graph Transformation. In Sci. Comput. Program., volume 44, pages
229–252. Elsevier, 2002.

11

