
p � �

URL� http���www�elsevier�nl�locate�entcs�volume���html � pages

Towards Veri�ed Lazy Implementation of Concurrent

Value�Passing Languages

�Abstract�

Anna Ing�olfsd�ottir �annai�cs�auc�dk�

BRICS� Dept� of Computer Science� Aalborg University �

Rosario Pugliese �pugliese�dsi�unifi�it�

Dipartimento di Sistemi e Informatica� Universit�a di Firenze

In recent years it has become a standard to describe the behaviour of value�

passing processes by means of labelled transition systems �Mil���Ing���	 As

these semantic descriptions are used to reason about properties of processes�

they are often quite abstract and do not provide much information about

potential implementation of the mechanisms used to pass a value from one

process to another	 For instance� in all the calculi we have studied� the result

of inputting a value from a channel is described as a substitution of the form

u�v�x� where v is a value and x is a value variable that typically occurs free

in u	 The precise interpretation of the substitution is left to the reader and is

considered to be an implementation detail	

However� more and more often operational semantics is used as a stepping

stone towards implementations of languages	 Thus we believe it could be use�

ful to have semantic rules which provide more concrete information about the

implementation strategy for value�passing processes	 These rules are a step

closer to a 
nal implementation and can therefore be considered as an imple�

mentation oriented re
nement� or simply an implementation� of the original

semantics	 This could be an important step towards bridging the gap between

theory and practice in this 
eld of research	 In this study we will describe

a semantics that� in some well�de
ned sense� implements correctly the late

semantics �Ing��� for the original CCS with values� based on the following

considerations	

E�ciency in evaluation� We want our implementation to be as e�ective

as possible and therefore we try to avoid unnecessary evaluations and substi�

tutions	 We will try to explain this better by examples	 We recall here that

in the operational semantics of CCS with values� an expression is evaluated

� Basic Research in Computer Science� Centre of the Danish National Research Foundation�

c����� Published by Elsevier Science B� V�



Ingolfsdottir and Pugliese

when a process of the form if be then p else q is executed and also when

an output action is performed	

�� Unnecessary substitution� Let

p � c�� c�x� if x � �� then c�x� �� else c�x� ���

The standard operational semantics� where we assume that the substitution

takes place immediately after the value is received� yields

p
�

�� nil if �� � �� then c��� � �� else c��� � ���

Thus the substitution of �� for x in the expression x � � is performed

although its value is not needed for the process to continue	

�� Unused expressions evaluated� As another example let

q � c�� � �� c�x�

Then q
�

�� nil nil can be derived from c�� � ��
c��
�� nil and c�x

c��
��

nil� Therefore the expression � � � is evaluated although its value is never

inspected	

One way of avoiding the problem described above is to adopt the call�by�name

evaluation mechanism and allow processes to exchange unevaluated expres�

sions	 But� as well known from the literature� this may introduce another

kind of problems as illustrated by the following example	

�� The same expression evaluated more than once� Let

r � c�� � �� c�x� if x � �� then cx�� if x � �� then c�x��

Then

r
�

�� nil if � � � � �� then c�� � ���� if � � � � �� then c�� � �� � ����

c������
�� nil if � � � � �� then c�� � �� � ���

c��	�������
�� nil nil�

In this case we have to evaluate the expression � � � twice� both when eval�

uating � � � � �� and � � � � ��	

The lazy implementation� Our 
rst approach in tackling the problems

described above is to apply a lazy evaluation mechanism by using a stack�

similar to the heaps known from the theory of term rewriting �KW��� and im�

plementation of functional languages �Lau���WF��� �or implicit substitutions

that appear in the semantics for the lazy lambda calculus �ACC����	 In our

setting a heap is a stack of variable bindings �x� � e�� � � � � x � e
n
� ��� where x

i

is a value variable and e
i
a value�expression� i � �� �� � � � � n	 A con
guration in

the transition system is given by a pair consisting of a process term with pos�

sibly free value�variables together with a heap that binds those	 Thus� instead

of substituting free occurrences of x in the process term by e when an input

action is performed as described above� the element x � e is pushed onto the

top of the heap and is only evaluated when and if strictly needed� in CCS this

should only happen when a process of the form if be then p else q is to be

�



Ingolfsdottir and Pugliese

performed� all the other operations may be considered as data�independent	

In this way we completely avoid performing substitutions	 Furthermore� once

an expression in the heap has been evaluated it is overwritten by its value and

does not need to be reevaluated if its value is needed later	 In the last example

above� we start the run of the process r by providing it with an empty heap�

given by ���� and proceed as follows	

�� Using the heap based semantics and allowing uninterpreted expressions to

be passed around we get the following run	

hr� ���i
�

�� hnil if x � �� then cx�� if x � �� then c�x�� �x � � � �� ��i

c��

�� hnil if x � �� then c�x� �x � ��� ��i

c��	��
�
�� hnil nil� �x � ��� ��i�

Here the value of the expression ��� in the heap is needed to evaluate x � ��	

At the same time � � � is replaced by its value� ��� in the heap and therefore

it does not need to be evaluated again when x � �� is inspected	

Passing unevaluated expressions around by recording them directly in the heap

as described above is not very e�cient	 To avoid this� at compile time� we

list into an expression table all the expressions that occur in the process	 Si�

multaneously we update the syntactic description of the process by replacing

each expression with its address in the table	 At run time these pointers are

passed around together with information about the scope of the variables that

occur in the corresponding expression� i	e	 a closure	 A similar conversion is

performed on lambda calculus terms in �Lau��� to ensure that function argu�

ments are always variables	 However here we go a step further and separate

the syntax of the value expressions completely from the heap but replace them

by the corresponding pointers to the expression table	

First the syntax for r is replaced by

r � c�� c�x� if � then c��� if � then c��

and the expression table

� � � � �

� � � x � �� x x � �� �x

Then the run may be described as follows

hr� ���i
�

�� hnil if � then c�� if � then c�� �x � �� ��i

c�	
�� hnil if � then c�� �x � ��� ��i

c��
�� hnil nil� �x � ��� ��i�

where �� � etc	 stand for the a pointers to the expression table and �� for

the evaluated value of the expression pointed to by �	

But our problems are not completely over yet as communication between

�



Ingolfsdottir and Pugliese

parallel components of a process yields some further complications	 Of course

this is not at all surprising as here we are exactly encountering the di�erence

that is between concurrent languages and the sequential ones	 To explain

this let us have a look at the following examples	 For the sake of notational

simplicity we keep on recording the expressions directly in the heap instead

of replacing them with pointers to the corresponding expression table entry

as described above although this is what we do in our actual implementation

semantics	

Let p� � a� a�x��d�x�d�x � �� d�x b�x� b�x�b�x � ��	 Then

hp�� ���i
�

��hnil �d�x�d��x � �� d�	x b�
x���� b�x�b��x � 	�� �x � ����� ��i

�

��hnil d��x � ����� nil b�
x���
b�x�b��x � 	�� �x � 	x���

� x � ����� ��i�

As the same variable can occur again in the heap without overwriting the

scope of the previous one� pointers to the right occurrences of the variables

in the heap are given by the superscripts ��� and ���	 An obvious continua�

tion of this computation would be an exchange of data between the two last

parallel components of the process	 However pushing x � �x directly onto

the heap and getting the heap �x � �x
�	�

� x � �x
���

� x � �
���

� �� would not

give the expected result� x in �x should be bound by x � � directly but not

by x � �x and this step in the computation would be better described by

hnil d��x � ����� nil b�
x���
b�x�b��x � 	�� �x � 	x��� � x � ���� � ��i

�

��

hnil d��x � ����� nil nil b��x � 	��	�� �

x � 	x��� � x � ����

�

� �

x � 
x�	�
�

�i

From the example above we may conclude that variable scopes for concur�

rent languages are partially ordered but not totally ordered as they are for

sequential processes	 Therefore it looks more appropriate to use a tree struc�

ture� rather than a linearly ordered stack� to describe the scoping rules for such

languages	 Here we also note the dependency of the variable bindings between

the nodes in di�erent branches of the tree due to communication	 Thus� in

the example above� x in �x gets it value from x � � without overwriting that

binding of x	 The binding x � �x overwrites the binding x � � but only for

an x that might occur in the component that created this new node	

In our approach we implement such a tree structure by an array or a table�

which we refer to as a control table	 Each line of the table represents a node

in the tree and contains a pointer to the father node� the name of the variable

it binds and either a value or a closure which the variable is bound to	 Here

a closure has basically the usual meaning as we know it from the functional

languages although it consists of a reference to an expression in the expression

table together with a reference to the node where the scope of this expression

�



Ingolfsdottir and Pugliese

starts	 This last reference corresponds to the cross reference in the tree	 The

reader familiar with implementations of functional languages may notice the

similarity of our approach with the lazy version of Landin�s SECD machine

�Lan��� that is described in for instance �GHT���	

According to our implementation strategy� a new line is added to the con�

trol table every time a communication takes place	 As lines are never deleted�

the computer eventually runs out of space during run�time� even if the process

has actually completed its use of most of the lines of the table	 To avoid this

and reallocate space which is not in use any more we have de
ned a garbage�

collector� based on marking �see� e	g	� �Coh��� for an overview of garbage�

collectors�	

In the paper we formalize the approach described above and use the ideas

to de
ne an implementation of the original CCS with respect to the late se�

mantics	

Correctness� Reasoning about or proving correctness of compilers dates

back to �McC��� and �Mor���	 This is another important issue addressed in

the present paper	 To be able to state precisely and prove correctness of our

implementation we have to provide some general framework within which our

suggested implementation resides	 In the de
nition we put forward� an imple�

mentation is described by a modi
cation of the standard applicative labelled

transition system used to model the standard late semantics	

The de
nition is based on two main ideas	 First we realize that in an

implementation� unlike for the specifying transition system� some information

about the variable bindings may be recorded in the memory of the computer

and is not explicitly visible from the outside	 Thus in our suggested imple�

mentation� at run�time� some variables are not explicitly bound to a value but

implicitly� as some of the expressions involved in de
ning these values may

not yet be evaluated	 However� all the information needed to evaluate these

expressions is recorded in the control table	

Furthermore� in the general framework� if these values are retrieved from

the memory the corresponding transition system should be semantically equiv�

alent to the specifying one	 Therefore� in our de
nition we assume that the

general labelled transition systems are supplied with an interpretation map�

ping that� intuitively� can access these implicit values in the memory� by ap�

plying it one can turn an implementation into a standard applicative labelled

transition system� its interpretation� that can be compared semantically to

the speci
cation	 What kind of semantic connection there is between these

two transition systems is of course a matter of choice� our choice is based on

strong bisimulation which is strong enough to capture most of the semantic

relations we know from the literature	

Next our intuition tells us that an implementation is more concrete than

the speci
cation and should be allowed to have more states� a state in the

speci
cation may be implemented by one or more states	 This is because

�



Ingolfsdottir and Pugliese

the store may contain some super�uous variable bindings and thus two states

can be physically di�erent although logically they are the same	 For instance�

using slightly simpli
ed notation� the two states given by �cx�nil� �x � ��� and

�cx�nil� �x � �� y � ��� are physically di�erent but should both implement

the state c��nil	 Combining these two views� our correctness criterion can

be described as follows�

�i� The implementation of an applicative labelled transition system should

have at least as many states as its speci
cation	

�ii� Its interpretation should be strongly bisimilar to its speci
cation	

This in turn can be described by means of functional bisimulation �Cas���	 In

the paper we formalize these ideas� put forward an implementation re
nement

of the late version of CCS as an instantiation of the general class and prove

its correctness with respect to its speci
cation� i	e	 the standard late CCS	

We also prove the correctness of the garbage�collection� i	e	 that applying it

to the implementation of a system does not change its semantic meaning	 As

far as we know none of the existing implementations of concurrent or parallel

languages is based on lazy evaluation nor are they provided with a correctness

proof with respect to some formal semantics	

Related work� In �FKW��� a correctness criterion� similar to ours� and a

corresponding proof is presented for a term rewriting system	 Like in our case

both the abstract semantics and the concrete implementation are described

by transition systems but the semantic correspondence is based on a notion

of simulation introduced earlier by two of the authors �KW���	

In �Lau��� the author puts forward a transition system that describes a

lazy implementation of the functional language Haskell	 The correctness of

this implementation is proven by showing that this new operational semantics

is fully abstract with respect to a standard denotational semantics for the lan�

guage	 � Similar operational rules for a concurrent rewrite system� including

a garbage�collection� are given in �Jef���	 Like in �Lau��� the author proves

the correctness of these rules by showing that the operational semantics they

de
ne is equivalent to an existing denotational semantics	

References

�ACC��� M Abadi� L Cardelli and P�L Curien Explicit substitution Journal of
Functional Programming� �����
�������October ����

�Cas��� I Castellani Bisimulations and abstraction homomorphisms Journal of
Computer and System Sciences� 
��	�
��	���	
�� ����

�Coh��� J Cohen Garbage collection of linked data structures ACM Comput�

Surv�� �
�
��
���
�������

�



Ingolfsdottir and Pugliese

�FKW��� W Fokkink� J Kamperman� P Walters Within ARMS�s reach�
Compilation of left�linear rewrite systems via minimal rewrite systems
To appear in ACM Transaction on Programming Languages and Systems�
����

�GHT��� H Glaser� C Hankin� D Till Principles of Functional Programming

Prentice Hall� London� ����

�Ing��� A Ing�olfsd�ottir A Semantic theory for value�passing processes� late
approach To appear in Information and Computation

�IP��� A Ing�olfsd�ottir and R Pugliese Towards veri�ed
lazy implementation of concurrent value�passing languages �Available
at http���www�cs�auc�dk��annai��

�Jef��� A Je�rey A fully abstract semantics for concurrent graph reduction
Proc of LICS� ����

�Lan��� P J Landin The next ��� programming languages Communications of

the ACM� Vol �� pp �������� ����

�Lau�
� J Launchbury A natural semantics for lazy evaluation ��th Symposium

of Principles of Programming Languages ACM� New York� ��������
���


�KW��� J F Th Kamperman and H R Walter Simulating TRSs by minimal
TRSs� a simple� e�cient� and correct compilation technique Tech Rep
CS�R����� CWI� Amsterdam Available at http���www�cwi�nl�epic

�McC�
� J McCarthy Towards a mathematical science of computation
Proceedings Information Processing ��� North�Holland� Amsterdam� 	��
	�� ���	

�Mil��� R Milner A Calculus of Communicating Systems� volume �	 of Lecture
Notes in Computer Science Springer�Verlag� ����

�Mor�
� F L Morris Advice on structuring compilers and proving them correct
�st Symposium of Principles of Programming Languages ACM� New
York� ������	

�Pra��� T Pratt Programming languages� design and implementation Prentice�
Hall International� ����

�WF��� S C Wray and J Fairbain Non�strict languages�programming and
implementation The Computer Journal� 
	�	����	���������

�


