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Abstract: Distributed multiple shooting is a modification of the standard multiple shooting
method which takes into account the structure of certain large-scale systems in order to obtain
a better controller design flexibility and high parallelizability. The aim of this paper is to
extend the framework where distributed multiple shooting can be deployed and to propose
a new solution method based on adjoint-based sequential quadratic programming. A numerical
experiment shows that this can lead to considerable savings in computational time for the
sensitivity generation.
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1. INTRODUCTION

The control of networked systems has captured a lot of
attention in the scientific literature in the past decades
(see the books (Mesarovic et al., 1970; Findeisen et al.,
1980)). More recently, many results have been devised in
the field of hierarchical and distributed model predictive
control ((Camponogara et al., 2002; Magni and Scattolini,
2006; Venkat, 2006; Richards and How, 2007; Rawlings
and Stewart, 2008; Scattolini, 2009)). An element that is
shared by most of these works is that they make use of local
controllers. The main motivations behind this choice are
that the large optimization problems to be solved in order
to find a controller are hard to solve in a centralized way
and that local controllers are easier to maintain. In (Laird
and Biegler, 2008; Zhu et al., 2009) it has been shown that
by exploiting the problem structure large optimization
problems can be solved efficiently by modified standard
numerical methods.

In (Savorgnan et al., 2011) distributed multiple shoot-
ing (DMS) has been introduced for a class of large sys-
tems composed by several interconnected subsystems. This
method is a generalization of standard multiple shooting
(MS) (Bock and Plitt, 1984). MS divides the control hori-
zon into intervals on which the inputs are parametrized
and simulations are performed. This leads to a finite di-
mensional nonlinear programming problem (NLP) which
is usually solved employing sequential quadratic program-
ming (SQP). A careful profiling of a software implementa-
tion of MS shows that a large amount of the computational
time is spent in function evaluations and generation of
sensitivities. DMS tries to overcome this problem by repre-
senting the quantities that couple the subsystem dynamics
in a finite functional basis. This discretization allows to
obtain an algorithm where function evaluation and gen-
eration of sensitivities are highly parallelizable. The main

drawback of DMS is that one needs to choose carefully
the dimension of the basis used to represent the functional
space. A large number of basis functions leads to a high
accuracy of the solution while a small number reduces the
size of the NLP.

Contribution. In this paper we extend the DMS frame-
work to deal with problems with coupling cost and con-
straints. Furthermore we propose a numerical method to
overcome the main shortcoming of DMS. We show that
using an adjoint-based SQP method (see (Griewank and
Walther, 2002; Bock et al., 2007; Diehl et al., 2010)) one
can use a large number of basis functions while keeping
the computational burden per SQP iteration low.

The paper is organized as follows. In Section 2 the prob-
lem class considered is presented. Section 3 illustrates
distributed multiple shooting, while Section 4 explains
how adjoint-based SQP methods can be applied to DMS.
Section 5 show some numerical experiments to validate the
numerical method proposed.

We use the following notation. R represents the set of
real numbers. Superscript i indicates the subsystem the
variable or function belongs to. When v is a vector in Rn,
vk indicates the k-th component of v. The superscript T

indicates transposition. When f(·) is a function depending
on x, fx represents the Jacobian. gxx represents the
Hessian of the scalar function g(x).

2. PROBLEM FORMULATION

In this paper we consider systems which can be decom-
posed into M coupled subsystems whose behavior is char-
acterized by the following equations{

ẋi(t) = f i(xi(t), ui(t), zi(t))
yi(t) = gi(xi(t), ui(t), zi(t))

i = 1, . . . ,M (1)
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The vectors xi(t) ∈ Rni
x , ui(t) ∈ Rni

u , zi(t) ∈ Rni
z and

yi(t) ∈ Rn
i
y represent the state, the control input, the

coupling input and the output of subsystem i, respectively.
We discriminate between control and coupling inputs
because they have a different role in our setting. The
former can be used to control the system, while the
latter takes into account dynamic couplings between the
subsystems.

We assume the couplings between the subsystems can be
expressed in the following form

zi(t) =

M∑
j=1

Aijy
j(t) (2)

where the matrices Aij are used to express the connections.
We assume that Ajj = 0 and that the couplings between
the systems are sparse. This results in many zero matrices
Aij and the presence of many zeros in the non-zero
matrices Aij . An example of an interconnected system
which is included in our framework is depicted in Figure
1.
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Fig. 1. A system composed by M = 3 subsystems. The
coupling between the subsystems are given by z31(t) =
y11(t), z32(t) = y21(t) and z21(t) = y12(t) + y31(t).

In this paper we consider the solution of optimal control
problems of the form

min
x,u,z,
y,e

∫ T

0

`(e(t))dt+

M∑
i=1

∫ T

0

`i(xi(t), ui(t), zi(t))dt

s.t. ẋi(t) = f i(xi(t), ui(t), zi(t))

yi(t) = gi(xi(t), ui(t), zi(t))

xi(0) = x̄i0

zi(t) =

M∑
j=1

Aijy
j(t)

e(t) = r(t) +

M∑
i=1

Biyi(t)

pi(xi(t), ui(t)) ≥ 0, q(e(t)) ≥ 0 t ∈ [0, T ]

(3)

where the terminal time T and the initial condition x̄i0 for
the subsystems are fixed. The vector e(t) ∈ Rne is used
as an auxiliary variable to formulate a coupling objective
and coupling constraints which were not considered in
(Savorgnan et al., 2011). The vector r(t) ∈ Rne is a
reference signal. The functions pi and q define local and
coupling constraints.

We assume that (3) is well defined and has an optimal
solution.

Remark 1. Although the functions `, f , g, p, and q do not
depend explicitly on time, the technique we present can
be trivially extended to this case by introducing dummy
states.

3. THE DISTRIBUTED MULTIPLE SHOOTING
METHOD

In this section we show how distributed multiple shoot-
ing (DMS) can be adapted to solve Problem (3). The
numerical solution of this infinite dimensional problem is
addressed in two steps: in the first steps the problem is
discretized in order to obtain a finite dimensional nonlinear
programming problem (NLP) that is then solved using
sequential quadratic programming (SQP).

3.1 Control input discretization

Define the time points

0 = t0 < t1 < · · · < tN = T. (4)

which divide the interval [0, T ] into N sub-intervals. The
inputs are discretized using a finite parametrization on the
time sub-intervals. For simplicity, in this paper we will use
a piece-wise constant parametrization:

ui(t) = uin ∀t ∈ [tn, tn+1) , n = 0, . . . , N − 1 (5)

and
ui(tN ) = uiN . (6)

3.2 Coupling discretization

To be able to integrate the dynamics of the subsystems
independently, the vectors zi(t), e(t), r(t) and yi(t) are
represented as a linear combination of a function basis.
Although other choices are possible, we will restrict our
attention to a basis composed by normalized Legendre
polynomials γq(t), which are defined by the relation∫ 1

−1
γq(t)γm(t)dt =

{
0 if q 6= m
1 otherwise

. (7)

Define the vector of normalized Legendre polynomials up
to degree S

Γ(t) = [γ0(t) γ1(t) γ2(t) . . . γS(t)]
T
. (8)

For t ∈ [tn, tn+1) we introduce the following approximation

zip(t) = Γn(t)T zin,p (9)

where zin,p ∈ RS+1 is a coefficient vector and

Γn(t) = Γ

(
2

t− tn
tn+1 − tn

− 1

)
. (10)

Notice that in order to avoid using new letters in our
notation, we use the a boldface font (zin,p) to represent the
coefficient vector corresponding to time varying quantities
(zi(t)). We will use this convention in the remainder of the
paper.

For notational convenience we define the matrix

zin =
[
zin,1 . . . zin,ni

z

]
(11)

such that zi(t) =
(
zin
)T

Γn(t). Using the same approxima-

tion used for zi(t), we represent e(t) and r(t) as a linear
combination of the basis Γn(t). Therefore, for t ∈ [tn, tn+1)

e(t) = eTnΓn(t) and r(t) = rTnΓn(t). (12)

To find the coefficient matrix yin used to represent yi(t),
we have to solve the following unconstrained quadratic
optimization problem

yin,q = arg min
y∈RS+1

∫ tn+1

tn

(
Γn(t)Ty − yiq(t)

)2
dt. (13)
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Due to the orthogonality of Γn(t), (13) can be solved
performing the following integration

yin =
2

tn+1 − tn

∫ tn+1

tn

Γn(t)
(
yi(t)

)T
dt. (14)

3.3 State discretization by distributed multiple shooting

Denote by xin the value of xi(tn) 1 . Given xin, uin, zin we
can simulate the i-th subsystem on the n-th interval. Using
the corresponding solution xin(t), t ∈ [tn, tn+1], define the
functions F in, Lin and Gin as

F in(xin, u
i
n, z

i
n) := xin (tn+1) , (15)

Lin(xin, u
i
n, z

i
n) :=

∫ tn+1

tn

`i(xin(t), uin(t),Γ(t)T zin)dt (16)

and

Gin(xin, u
i
n, z

i
n) :=

2

tn+1 − tn

∫ tn+1

tn

Γn(t)
(
yin(t)

)T
dt.

(17)
It should be understood that F in, Lin and Gin are defined
up to the approximation error introduced by the coupling
input discretization.

3.4 NLP formulation

Distributed multiple shooting solves the following NLP

min
ui
n,x

i
n,z

i
n,

yi
n,en

N−1∑
n=0

(
Ln(en) +

M∑
i=1

Lin(xin, u
i
n, z

i
n)

)
s.t. xin+1 = F in(xin, u

i
n, z

i
n) n = 0, . . . , N − 1

yin = Gin(xin, u
i
n, z

i
n) n = 0, . . . , N − 1

xi0 = x̄i0

zin =

M∑
j=1

Aijy
j
n

en = rn +

M∑
j=1

Bijy
j
n

pi(xin, u
i
n) ≥ 0, Qn(en) ≥ 0

(18)

where the functions Qn and Ln are defined as

Qn(en) = q(eTnΓn(tn)).

and

Ln(en) =

∫ tn+1

tn

`(eTnΓn(t))dt.

As in standard multiple shooting, Problem (18) can
be solved using sequential quadratic programming. This
method iteratively solves a local quadratic approximation
of the the original NLP. To employ SQP one needs to eval-
uate several times the functions which define the system
and compute first and possibly second order sensitivities.
Since they require the integration of ordinary differential
equations, the evaluation of the functions Lin, F in and Gin
together with the generation of the corresponding sensi-
tivities can be very time consuming (see (Bauer et al.,

1 To keep the notation and the exposition as simple as possible we
use the same intervals for the discretization of the states and the
inputs.

2000; Petzold et al., 2006; Albersmeyer and Bock, 2008)
for a description of the techniques which can be used to
generate sensitivities).

When solving Problem (18) by standard SQP, one has to
decide the value of S, i.e. the maximum degree of the
basis Γ(t). If S is high, the representation of z(t), y(t),
e(t) and r(t), and consequently the solution of the optimal
control problem, will be more accurate. However, increas-
ing S, also increases the number of decision variables and
therefore the number of sensitivities evaluated at every
SQP iteration, which could make the computational time
considerably larger.

4. THE ADJOINT SCHEME FOR THE NLP
SOLUTION

In this section we propose a method which allows to use
a large value of S while keeping the computational load
due to sensitivity generation low. Therefore, the method
is able to find an accurate optimal solution to the control
problem. The only drawback, as we will see later, is that
the local convergence to a solution is only linear. This
method is based on the following assumption.

Assumption 1. The high order components of zi(t) have a
small influence on the system dynamics and output.

This assumption is reasonable when the output can be
well approximated by a polynomial decomposition of order
smaller than S.

Divide the vector Γ in two parts

Γ̃(t) = [γ0(t) . . . γT (t)]
T

(19)

Γ̂(t) = [γT+1(t) . . . γS(t)]
T

(20)
and define the coefficient matrices z̃n and ẑn such that

(zn)
T

Γn(t) = (z̃n)
T

Γ̃n(t) + (ẑn)
T

Γ̂n(t). (21)

When Assumption 1 is satisfied, the values of F in and Gin
are weakly influenced by ẑin. Equivalently, Assumption 1
implies that

∂F in(xin, u
i
n, z

i
n)

∂ẑin
≈ 0 and

∂Gin(xin, u
i
n, z

i
n)

∂ẑin
≈ 0. (22)

In order to reduce the computation related to sensitivity
generation, we propose to neglect most of the derivatives
with respect to ẑin since they are anyway close to zero.
Instead we will only evaluate one exact adjoint gradient
of the Lagrangian. The algorithm we propose is based on
adjoint-based SQP ((Bock et al., 2007; Diehl et al., 2010)).

To avoid an overcomplicated notation we will continue
our explanation using only the vectors ẑ and x which are
defined as follows: the former contains all the variables in
ẑin for all i and n, while the latter contains all the other
decision variables appearing in Problem (18) (i.e. uin, xin,
z̃in, yin, en).

Problem (18) can be rearranged in the following form

min
x,ẑ

l(x, ẑ)

ẑ −Ax = 0
g(x, ẑ) = 0
p(x) ≥ 0

(23)

where l can be derived from the functions Lin and the
matrix A is defined using the coefficients in Aij . The
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functions g and p are used to express all the remaining
equality and inequality constraints. Assumption 1 implies
that the Jacobian of g w.r.t. ẑ is close to zero, i.e. gẑ ≈ 0.

To introduce adjoint-based SQP we first consider a sim-
plified setting where the inequality constraint p(x) ≥ 0
is neglected. Associate to the first equality constraint the
vector of multipliers µ and to the second constraint the
vector λ. The Lagrangian and KKT system for the simpli-
fied problem read

L(x, ẑ, λ, µ) = l(x, ẑ)− µT (ẑ −Ax)− λT g(x, ẑ) (24)

and L
T
x (x, ẑ, µ, λ)
LTẑ (x, ẑ, µ, λ)

ẑ −Ax
g(x, ẑ)

 = 0, (25)

respectively. The system of equalities (25) can be solved
by the Newton method defined by the iterationLxx Lxẑ A

T −gTx
Lẑx Lẑẑ −I −gTẑ
−A I 0 0
gx gẑ 0 0


xk+1 − xk
ẑk+1 − ẑk
µk+1 − µk
λk+1 − λk

=

 −Lx
−Lẑ

−ẑk+Axk
−g(xk, ẑk)

 (26)

where the Jacobians and Hessians are evaluated in
(xk, ẑk, µk, λk).

Newton’s method is known to have local quadratic con-
vergence to a solution when the so called KKT matrix
on the l.h.s. and the vector on the r.h.s. of (26) are
evaluated exactly. When the computation of the matrix on
the l.h.s. is too expensive, we can use an approximation.
If the approximation is good enough the iteration will still
converge to an optimal solution, but with a linear rate
(Deuflhard, 2006).

To solve Problem (23) (and therefore (18)) we propose to
use the following approximation of the KKT matrix where
gẑ is set to zero, i.e. many derivatives do not need to be
computedLxx Lxẑ A

T −gTx
Lẑx Lẑẑ −I −gTẑ
−A I 0 0
gx gẑ 0 0

 ≈
Lxx Lxẑ A

T −gTx
Lẑx Lẑẑ −I 0
−A I 0 0
gx 0 0 0

 . (27)

The matrices L are a suitably chosen approximation of
the Hessian term (depending on the problem at hand the
approximation can be obtained with the BFGS method,
Gauss-Newton, or other techniques).

To obtain convergence to an exact solution, the r.h.s. of
equation (26) must be evaluated exactly. This requires the
evaluation of

Lẑ = lẑ − Iµ− gTẑ λ. (28)

Notice that to evaluate the term gTẑ λ we don’t need to
evaluate the full Jacobian gẑ. Instead gTẑ λ can be cheaply
evaluated using adjoint derivatives. The usage of adjoint
derivatives gives the name to the method.

Define the following quantities

δxk = xk+1 − xk, δẑk = ẑk+1 − ẑk,
δµk = µk+1 − µk, δλ̂k = λ̂k+1 − λ̂k.

(29)

The solution of the iterations of (26) with the approxi-
mation (27) can be also interpreted as the solution of the
following quadratic problem

min
δxk,δẑk

1

2

[
δxk
δẑk

]T [
Lxx Lxẑ
Lẑx Lẑẑ

] [
δxk
δẑk

]
+ [LxLẑ]

[
δxk
δẑk

]
δẑk + ẑk −A(δxk + xk) = 0
gTx δxk + g(xk, ẑk) = 0

(30)

where the values of δµk and δλk are the Lagrange mul-
tipliers corresponding to the first and second constraint,
respectively. This fact can be used when we want to intro-
duce the inequality constraint p(x) ≥ 0. In this case the
modified QP problem we have to solve is just

min
δxk,δẑk

1

2

[
δxk
δẑk

]T [
Lxx Lxẑ
Lẑx Lẑẑ

] [
δxk
δẑk

]
+ [Lx Lẑ]

[
δx
δẑ

]
δẑk + ẑk −A(δxk + xk) = 0
gTx δxk + g(xk, ẑk) = 0
pTx δxk + p(xk) ≥ 0

. (31)

It can be shown that when the optimal active set has
been found during the SQP iteration the method converges
linearly to the solution (Diehl et al., 2010).

Remark 2. The size of Problem (31) can be reduced by
eliminating the variable δẑ exploiting the equation

δẑk = −ẑk +A(δxk + xk). (32)

5. NUMERICAL EXPERIMENTS

In this section we show some timing tests for sensitivity
generation applied to the benchmark control problem
which is described in detail in (Savorgnan and Diehl,
2010). The system under consideration is a hydro power
plant composed by a river and 3 lakes. Figure 2 gives an
overview of the system. The river is divided into 6 reaches

L1

L2

L3

qin

R1
D1

R2
D2R3

D3

R4
D4

R5
D5

R6
D6

C1

T1

C2

T2

U1

qtributary

Fig. 2. Overview of the hydro power plant.

which terminate with dams equipped with turbines for
power production. We regard every reach together with the
following dam as a separate subsystem (R1 +D1, R2 +D2,
R3+D3, R4+D4, R5+D5, R6+D6). Lakes L1 and L2 are
connected by a duct (U1) and lake L1 is connected to the
river by duct with a turbine (T1) and a duct with a turbine
and a pump (C1). Lakes L1 and L2 form together with
U1, C1 and T1 another subsystem. Lake L3 is connected
to the river by a duct with a turbine (T2) and a duct with
a turbine and a pump (C2). L3, C2 and T2 compose the
last subsytem. The hydro power plant is composed of 8
subsystems, and it has in total 249 states, 14 inputs, 18
coupling inputs and 18 coupling outputs.

All the tests have been performed using the CVODES
integrator by (Serban and Hindmarsh, 2005) from the
SUNDIALS suite (Hindmarsh et al., 2005).
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Fig. 3. Time required to integrate and linearize a subsys-
tem dynamics for a time interval of 30 minutes using
S = 10.

5.1 Generation of sensitivities for standard MS

To have a reference timing to compare our method we im-
plemented a full model for the hydro power plant (i.e. not
divided into subsystems) and computed the sensitivities
needed to linearize the system dynamics containing 249
states.

The control specifications are such that the control horizon
is 24 hours and the control inputs can be updated every
30 minutes. The time needed to integrate the dynamics
and generate the sensitivities corresponding to one time
interval of 30 minutes is 33.96 seconds 2 . This corresponds
to a total sensitivity computation time of 33.96 × 48 =
1630.1 seconds.

5.2 Generation of sensitivities for DMS

To have an upper bound on the time needed for the
linearization of F in and Gin we performed some tests
considering only the subsystem composed by the reach R2

and the dam D2 because it is the system with the highest
number of states (41), coupling inputs (3) and ouputs (3).
To implement efficiently the integration required in (17)
we used error controlled quadrature states as provided by
CVODES. In Figures 3 and 4 we can observe the time
required to integrate and linearize the dynamics of this
subsystem for an interval of 30 minutes. The first figure
shows the time spent when S = 10 and the number of
significant coefficients T varies from 0 to 10. The second
figure shows the same kind of experiment with S = 15 and
T varying from 0 to 15. The number of quadrature states
needed is 33 for S = 10 and 48 for S = 15. From the
figure we can observe two important facts:

• Considerable time savings can be achieved chosing
T < S to apply the adjoint based SQP method.
• The maximum time needed for integrating and lin-

earizing the dynamics for one subsystem (1.92 s for
S = 10 and 2.69 s for S = 15) is much lower than
the time required in the standard MS divided by the
number of subsystems 33.96/8 = 4.25. This means

2 The sensitivities have been generated in forward mode. An itera-
tive linear solver has been used.
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Fig. 4. Time required to integrate and linearize a subsys-
tem dynamics for an time interval of 30 minutes using
S = 15.

that using DMS can give advantages w.r.t. using MS
also without a parallel implementation. E.g., choosing
S = 15 and T = 5 the total sensitivity computation
time would be lower than 1.84× 8× 48 = 706.56 sec-
onds and therefore less than half of the time required
by MS. Furthermore this computation can be paral-
lelized into 8× 48 = 384 task while the computation
required by MS can be parallelized only into 48 tasks.

6. CONCLUSIONS

In this paper we presented an extended version of the
distributed multiple shooting method introduced in (Sa-
vorgnan et al., 2011) which uses an adjoint based SQP
framework. Adjoint-based distributed multiple shooting
shows many benefits which are important when controlling
large-scale systems:

• The algorithm is scalable because the subsystem dy-
namics can be integrated separatly. This makes it pos-
sible to use different integrators for the subsystems,
which can be particularly useful when this method is
applied to multiphysics systems.

• When integrators with step size control are used,
the step is adapted for each subsystem individually,
avoiding unnecessarily short steps for the other sub-
systems.

• Distributed multiple shooting considers each subsys-
tem’s dynamics independently. Due to this fact it is
easier to validate and update the subsystem model
independently, so that the maintenance effort can be
carried out by different people.

• For a numerical example we have shown that consid-
erable savings can be achieved for the generation of
sensitivities.

Future work will include testing of the algorithm for
systems with several thousands of states.
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