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Fitting a biomechanical model of the folds to high-speed
video data through Bayesian estimation
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Abstract

High-speed video recording of the vocal folds during sustained phonation has become a
widespread diagnostic tool, and the development of imaging techniques able to perform
automated tracking and analysis of relevant glottal cues, such as folds edge position or
glottal area, is an active research field. In this paper, a vocal folds vibration analy-
sis method based on the processing of visual data through a biomechanical model of
the layngeal dynamics is proposed. The procedure relies on a Bayesian non-stationary
estimation of the biomechanical model parameters and state, to fit the folds edge posi-
tion extracted from the high-speed video endoscopic data. This finely tuned dynamical
model is then used as a state transition model in a Bayesian setting, and it allows to
obtain a physiologically motivated estimation of upper and lower vocal folds edge posi-
tion. Based on model prediction, an hypothesis on the lower fold position can be made
even in complete fold occlusion conditions occurring during the end of the closed phase
and the beginning of the open phase of the glottal cycle. To demonstrate the suitability
of the procedure, the method is assessed on a set of audiovisual recordings featuring
high-speed video endoscopic data from healthy subjects producing sustained voiced
phonation with different laryngeal settings.
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1. Introduction

In the last decades, visual data recording and analysis techiques have gained a cen-
tral role in the understanding of phonation and in medical applications such as larynx
examination and pathology diagnosis. Among these, laryngeal videostroboscopy, high-
speed videolaringoscopy, and videokymography (i.e., the high-speed line scanning of
vocal fold vibration) are widely used today for clinical investigation.

Laryngeal videostroboscopy is commonly used in clinical examinations as a tool
for visualizing healthy and pathological vocal fold dynamics, although it is known to
perform effectively only in case of periodically vibrating vocal folds (Wendler, [1992),
while high-speed videolaryngoscopy is a more effective means to visualize asymmetric
and nonperiodic vocal fold vibration (Popolo, 2018). In 1996, Svec and Schutte intro-
duced the videokymography (Svec and Schutte, 1996), a low-cost, high-speed imaging
method for the examination of the vocal folds, which provides an effective way of vi-
sualizing regular and irregular vibration patterns, and whose usefulness in phonation
investigation and diagnosis of voice pathologies has been documented in (Schutte et al.|
1998 Svec et al., 2007).

With respect to all the aforementioned data acquisition methods, digital image pro-
cessing algorithms provide the tools for essential preliminary segmentation steps, in-
cluding vocal folds boundary detection and motion tracking (Turkmen et al) [2015;
Osma-Ruiz et al., 2008} |Yan et al.,[2006)), and to subsequently perform the recognition
and analysis of time patterns of the visual cues related to the vocal fold edge oscilla-
tions (Wittenberg et al., |1997; [Tigges et al.,|1999; [Lohscheller et al., 2008; Chen et al.,
2014). Specific video processing issues such as calibration, lighting conditions, image
brightness impact are discussed in (Wurzbacher et al., [2008; [ Kuo et al.,[2014; [Popolol
2018)), and investigations of voice disorders based on vocal folds edge tracking in high-
speed video data are reported in (Lohscheller et al.,|2007; Stiglmayr et al., [2008]). The
importance of image-based methods and their role as surgical guidance and decision
making tools in laryngeal surgery is discussed in (Verikas et al., 2007} |Schoob et al.|
2017; Lin et al.,[2018).

In addition to assessment methods based on the sole visual recordings, the possi-
bility of gathering information from both acoustic and visual data (possibly synchro-
nized) has recently been investigated. In (Larsson et al.,|2000), vocal fold vibrations
were analyzed through high-speed videokymography, allowing the estimation of glot-
tal edge displacement and glottal area variations, and put in relation to acoustic cues
computed on the voice emission. Also, some attention has been dedicated to the use
of biomechanical models, originally developed to represent the acoustic emission dur-
ing phonation, paired to the video analytics related to high-speed endoscopic data. In
(Dollinger et al.l 2002; [Schwarz et al., 2008} [Dollinger et al., 2017 |Murtola et al.|
2018)), the parameters of a lumped-element biomechanical model of the vocal folds are
adapted to replicate the fold vibrations as captured in digital high-speed recordings,
and in (Hadwin et al.}|2019) the fitting process is applied to a 2D finite element model
of the folds; in (Pinheiro et al.| 2012), a two-mass model is used to reproduce the glot-
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tal area evolution estimated from high-speed endoscopic video of the oscillating folds;
in (Drioli and Foresti, |2015a)) and (Drioli and Foresti, 2015b)), we have approached the
vocal fold dynamics modeling and the voice emission at lips through the use of both
videokymographic and acoustic data; in (Schwarz et al., 2006), classification of a spe-
cific voice pathology (i.e., unilateral vocal fold paralysis) is addressed by an inversion
procedure which tunes the parameters of a biomechanical model of the vocal folds to
reproduce the irregular vocal fold oscillations, and in (Diaz-Cadiz et al.,[2019) an im-
pact model fitted to video data by vocal fold edge tracking is used to predict the contact
force during the collision of the folds.

A relevant number of investigations were also dedicated to the estimation of the
model parameters using a probabilistic framework. Bayesian estimation of the param-
eters of a lumped mass model from real and acoustic observations was investigated in
(Cataldo et al.| [2009, 2013), in the hypothesis of parameter stationarity. In (Hadwin
et al.l |2016; [Hadwin and Peterson [2017)), the same Bayesian estimation method was
extended to non-stationary parameter estimation based on particle filtering and on ex-
tended Kalman filtering, in which the observation data was the glottal area waveform
simulated from a dynamical glottal model. Finally, in (Deng et al.,2019) the Bayesian
framework is also investigated with respect to simulated videondoscopic data, focusing
however on the effect that different video measurement parameters such as frame rate,
resolution and viewing angle, have on the model parameter estimation.

It is worth noting that biomechanical models of the vocal folds during sustained
phonation where first designed in the 1970’s with the aim of understanding and rep-
resenting phonation from an acoustical point of view. At that time, such models were
obviously not intended to represent visual patterns from high-speed recordings. A con-
siderable research effort was dedicated to replicate the flow induced vocal folds oscilla-
tion during voiced sound production, and the underlying mechanical and aerodynamic
phenomena have been investigated by accurate numerical modelling of the folds vibra-
tion in (Ishizaka and Flanagan) [1972; |Koizumi et al., 1987; Titze, |1988}; [Lucerol [1993).
The studies on voice source have been topical for the understanding of the principles of
flow-induced oscillatory phenomena, as well as for studying and understanding vocal
fold pathologies (e.g., (Ishizaka and Isshiki, |1976; |Neubauer et al., 2001} |Tao and Jiang|
2008))). Physical models have been employed for speaker recognition and speech syn-
thesis as well, although today their use for these purposes seems to be marginal. On the
other hand, they now appear to be interesting tools for the processing and the automatic
interpretation of laryngeal visual data, since today high-speed digital video recording
facilities with sufficiently high time and image resolution are becoming more and more
accessible.

In this paper, a high-speed endoscopic video analysis method is proposed, which
is based on the fitting of a biomechanical model to real endoscopic visual data. With
respect to other video analysis methods specifically designed for the processing of high-
speed endoscopic data of the folds, the one presented here investigates the possibility
of using a biomechanical model in a Bayesian setting to fit the position of the edge
of the folds during the glottal open phase, and to use in turn tuned model to predict
the observation in the next analysis window. It is argued that the method can be also
used to further infer the position of vocal fold edge position in those intervals of the
glottal cycle in which no observation data is available due to visual occlusion, although



the assessment of this feature will be the object of future investigation. The fitting
algorithm relies on a biomechanical model whose parameters are adapted so that his
time evolution is coherent with the folds edge position estimated from the high-speed
video endoscopic data. The dynamical model is then used for the Bayesian inference
as a state transition model, with a dual role: on one side, it models the folds edge
motion to compute the likelyhood of their position in given portions of the glottal cycle;
on the other side, its parameters are finely tuned to maximize the likelyhood of the
visual observations. The method is assessed on a set of recordings featuring high-speed
video endoscopic data from healthy subjects uttering sustained vowels. It is shown that
the use of a biomechanical model of the folds as a state transition model permits to
accurately fit the upper and lower vocal fold edges during the intervals in which both
are visible, and to infer their position in complete fold occlusion conditions occurring
during the end of the closed phase and the beginning of the open phase of the glottal
cycle.

With respect to previous literature dealing with Bayesian parameter estimation we
highlight the following differences: 1. in (Hadwin et al.,2016)), the model is only as-
sessed on simulated visual data, whereas here the fitting process is designed to deal
with real HSV data. Using real data implies that visual artifacts must be taken into
account that cannot be modelled as additive state and observation gaussian noise, such
as the time-varying glottis-camera alignment offset introduced by small movements of
the endoscope; 2. in (Cataldo et al.l 2009} 2013} [Hadwin et al., [2016; Hadwin and
Peterson, [2017), both the state and the parameters of the model are estimated at sam-
pling rate. In our proposal, instead, the model parameter estimates are updated at each
other glottal cycle, whereas the state estimates are computed at sample rate and used to
compute the likelyhood of the visual observations. This leads to higher computational
efficiency without significantly reducing the parameter estimation effectiveness, as the
physiological parameters taken into consideration do not change considerably within
one cycle; 3. in the model used in this study, each fold is governed by his own state
variables to allow the simulation of L-R asymmetric oscillations, whereas a symmetric
model is used in (Hadwin et al.,2016; Deng et al.| 2019).

2. Proposed method

The video analysis procedure under investigation is aimed at exploiting the motion
of the vocal folds from a high-speed video sequence I(x,y, ) in which the vocal fold
vibration is captured from a top-view position. Fold motion is defined as the time-
varying distance of the vocal folds edge from the glottal axis, taken at the half way
from anterior to posterior glottal endings (the glottis being the opening between the
opposing vocal folds). Figure [I)illustrates the schematic representation of a laryngeal
high-speed videoendoscopy recording, the videokymogram (VKG) corresponding to
the dashed line reported in the upper figure, and the interpretation of the data by means
of a two-mass lumped model of the vocal cord edges.

Figure 2] illustrates the interpretation of the VKG patterns with relation to the upper
and lower edges of the vocal fold displacement. The figure refers to two glottal cycles.
The romboid regions correspond to time intervals in which both the lower and the upper
edge of either folds are deflected, allowing air to pass through the open glottis. Time
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Figure 1: (a) the videokymogram related to the laryngeal high-speed videoendoscopy recording (b) (the two
are not synchronized), and (c) the interpretation of the data by means of a two-mass lumped model of the
vocal cord edges.

intervals between two romboidal-shaped regions corresponds to the closed phase of the
glottal cycle, either because both upper and lower edges are in the closed position, or
because just one edge is closed while the other is opening or closing.

Figure [3 shows the interpretation of a fragment of videokymographic data, corre-
sponding to five glottal cycles, in terms of vocal folds edge analysis. It can be seen
how actual recorded data is characterized by clearly distinguishable romboidal-shaped
regions related to the open phase, but it provide barely visible information concern-
ing the upper folds edge position during the closing interval and no information at all
concerning the lower folds edge position during the opening interval (due to camera oc-
clusion). Moreover, the VKG data is often characterized by asymmetries with respect
to the L/R direction.

2.1. Pitch-synchronous joint parameter and state estimation of the model

We define the objective of fitting the model to the visual observation as the joint
model parameter estimation and model state estimation as follows. Based on the par-
tial visual information on the vocal folds edge available in a glottal cycle and on past
estimations, estimate the new set of model parameters and fold edge position (i.e., the
model state) within the whole glottal cycle. The process is then repeated for each other
glottal cycle. Let us restrict the analysis on a given position along the glottal axis. In
other terms, we interpret the video sequence as a videokymography defined at a given
point along the glottal axis, and we formulate the analysis problem as the fitting of the
model to the fold edge in this restricted region. If z;; is the set of observations up to
time instant k, Xy is the state of the fold edge at time instant k, and 6 is the set of param-
eters at time k, then we are interested in the computation of the posterior probability
P(Xk, 6klz1.1). This probability can be recursively computed as

.6 Ok, Zi4—1) POkl|Z1 -
DX Oulz1) = D@ |Xg, O) p(Xi|O, Z1:4-1) P(OklZ1:5-1) M
P(Zilz15-1)
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Figure 2: Scheme of the VKG patterns interpretation: (a) opening phase; (b,c) closing phase; (d) lower edge
has closed, while upper edge is closing; (e) both lower and upper edges are closed; (f) lower edge is opening
while upper edge is still closed (since video recording is from above, lower edge displacement is occluded
in this interval).

Figure 3: Vocal fold edge classification in a videokymography analysis fragment: (a) left upper edge, opening
phase; (b) left lower edge, closing phase; (c) right upper edge, opening phase; (d) right lower edge, closing
phase.

where p(zx|Xy, 6¢) s the likelyhood probability, p(xx|6k, Z1.4—1) is the state prior, p(6|Z;x-1)
is the parameter set prior, and p(z|z;4-;) is the marginal likelyhood. Since it is
P(Xx|Ok, Z1:5—1) p(Ok|Z1k—1) = p(Xk,0Ok|Zik-1), joint parameter and state estimation can
be achieved through augmentation of the state space by the parameter vector (Sarkkal
2013). Assuming that the posterior pdf is available at time k—1, the prior (or prediction)
pdf can be computed as

DXk, Oplzyx-1) = f PXpe, Ok[Xp—1, Ox—1) P(Xp—1, Op—11Z1:6-1)dXk—1, Ok ()

Note that the temporal prior pdf p(X, 6x|Xi—1, 0k—1) provides an estimate of the update
of the state and parameters at time k, given the state and parameters at time k — 1, in
other words it models the dynamics of the process under observation. In general, there
are various way to model such probability, depending on the type of problem to solve.
A common solution, which only loosely makes use of the knowledge of the underlying
dynamics, is to adopt a possibly low order linear dynamical system with Gaussian noise
(Arulampalam et al., 2002)). Other more specialized choises make use of some amount




of knowledge about the process, e.g. physical Newtonian simulation can be used in
probabilistic motion prediction and tracking of objects or persons in a scene (Vondrak
et al.,|2008)). In the specific case discussed here, we propose to adopt a biomechanical
numerical model of the vocal folds as state transition model, and assume that the state
vector Xy, is the displacement of the vocal fold as predicted by the numerical simulation
of the model. For the update of the parameters, a pitch-synchronous random walk
model is assumed, i.e.

Ork = Ori—1 + O 3)

where ¢, € N(0, Wy) satisfies a Gaussian distribution with zero mean and covariance
matrix Wy. The parameters are thus assumed constant during a glottal cycle. Note that
the optimization process of the parameters can be very sensitive to the initial hypothe-
sis and to the variance of the parameter. An advantage of using a physically informed
model in the process is that often a starting hypothesis can be done on a physiolog-
ical basis (see, e.g. (Drioli, 2005) for a discussion on the empirical tuning of these
parameters.

2.2. Biomechanical numerical model

The biomechanical model of the vocal folds is a lumped-elements representation
in which the lower edge of each fold is modeled by a single mass-spring-damper sys-
tem with stiffness k, damping » and mass m, and the phase difference of the vibration
between the lower and the upper edge, which is essential for the modeling of self-
sustained oscillations, is modeled by a delay of the displacement induced by its propa-
gation along the cover of the fold (Titze} 1988} Drioli, 2005)). The scheme of the model
is illustrated in Fig. [ Let us call x; the displacement of the left fold at the entrance
of the glottis (lower edge), and x,; the displacement at the exit (upper edge). The dis-
placements of the right fold are named accordingly x; , and x; ,. The distortions on the
folds during the mutual impact is represented by an impact model fy, and the offsets
Xo, and x , represent the resting positions of the folds. The driving pressure P,, acting
on the folds is computed from the flow U, and the lower glottal area a; = Lx;; + Lxy,,
using Bernoulli’s law (L is the length of the folds). The total glottal area is then com-
puted as the minimum cross-sectional area between the area a; = Lx;; + Lx; , at lower
vocal fold edge and the area a; = Lx;; + Lx;, at upper vocal fold edge, and the flow
U, is finally assumed proportional to the total glottal area (this flow model is referred
to as fy in the following). The propagation of the displacement x along the thickness
T of the folds is represented by a propagation delay line of length T = TF/cy sam-
ples, where F is the sampling rate and ¢ is the propagation velocity on the cover of
the fold (in what follows we assume that right and left folds have equal thickness T
and length L). The propagation line is an approximation of the fold edge displacement
along its vertical axis (thickness), and models the vibration phase differences between
the lower and the upper edges of the cords, which is an essential cue of the glottal
cycle. Moreover, to also account for the fact that the amplitude of the fold edge dis-
placement might be non-uniform along the vertical axis, we assume, for the left fold,
that x, (k) = &x; (k — 7), where & is a gain factor (in other terms, x; is obtained from
x1,; through a filter with transfer function 5 ;(z) = &z77). Similarly, the gain factor for



the right fold displacement along the vertical axis is called &,. The whole system can
be described by the following set of continuous-time equations.

Mo Xq(t) + raXo (1) + ko Xo(t) = F(2)

Fp() = Pu() S,

_p 1, U@
Pu(®) = P = 3P o, or

xl,a/(t) = fX(xa(t)’ xOl,a)
x(?) + X010 if X(2) + X010 > 0 “)
0 otherwise

x2,(x(t) = Eufx(xo (1) - clfxa(t)’ x02,(x)
Uy (1) = fu(Pr,a1(5), ax(1))

= \/?min{al(t),az(l)}

where p is the air density, and S, and L are respectively the fold surface and length.
We used the index « to distinguish between the left (o = [) and the right (o = r) portion
of the vocal fold.
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Figure 4: The biomechanical model of the vocal folds.

The discretization of the equations in (@) leads to a discrete-time system that can
be numerically solved to obtain an estimate of the glottal flow U,(kT,) and of the
folds displacements x;(kT) and x,(kT) at discrete time k, with Ty = 1/F being the
sampling interval (Driolil, 2005]).

The biomechanical model is able to effectively reproduce the self sustained oscil-
lations of the vocal folds and can be used as a glottal waveform generator. The natural
frequency of a mass-spring system is fy = 1/27 vk/m, thus its parameters k and m can
be tuned accordingly when a given oscillation period of the model is desired. How-
ever, note that the resulting (closed loop) observed vibration frequency may happen to
be different from f;, due to coupling of the vocal folds via the airstream. The dynam-
ical scheme, however, can also serve as a signal predictor at instants &,k + 1, ..., given
that it fits well the data observed at previous instants 1, - - -, k— 1. Thus, to correctly pre-
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Figure 5: Simulations of the vocal folds vibration through the illustrated glottal model, for different values of
the phase delay parameter 7 (in samples): folds edge displacements (upper plots), and glottal source (lower
plots). The output of a left-right symmetric model is shown here (i.e., 7 = 7/ = 7., and € = & = &;). The
plots show how the parameters 7 and & can be put in relation with the closed phase interval of the glottal flow
cycle, i.e. the interval in which x; or x; is in the closed position. The areas depicted in grey correspond to
open phase intervals.

dict the state of the system at time k, the model needs to be previously tuned to behave
coherently with the observed data. We don’t further insist here on the model parame-
ters tuning, since this topic has been extensively discussed in (Drioli, 2005} |Drioli and
Calancal [2014). FigureE] shows the numerical simulation of the vocal folds vibrations
through the model discussed, for different values of the parameters 7 and &.

A closed-form solution of eq. [T|and eq. [2]is in general not feasible, and a numerical
approximation is often sought instead. We propose here the use of a Particle Filtering
scheme (PF), with a Sequential Importance Resampling algorithm (SIR) to represent
the posterior (Arulampalam et al.l 2002; [Vermaak et al., 2002} [Vondrak et al., 2008}
Dore et al.,|2010). The underline principle is to form a weighted particle representation
of the posterior distribution, as p(x;, Olz1.) ~ 3; w(x; — x,(f) ), where {(wg), x,(f) ), i =
1,..., N}is the set of particles and of the corresponding weigths at instant k. A scheme
of the Bayesian tracking algorithm is reported in Algorithm I}

The biomechanical model is involved in the prediction step, where each particle can
be considered as an independent instance of the model simulation. In the following, we
will include in the estimation proces three model parameters for each fold, i.e. the nat-
ural frequency f,, the vertical phase delay 7,, and the upper-to-lower edge amplitude
ratio &,. Hence the parameter vector is 6 = {f;, f;, 7/, Tr, &1, &/}

2.3. Likelyhood

A likelihood function should provide a reliable measure of how well an image
observation /(x,y, k) is explained by a particular hypothesis. If we suppose that a set
of video features f(I(x,y, k)) related to the folds edge can computed from the image
frame, then we can define the likelyhood p(zi|x;) at discrete instant k as

1 f(l ) — x|
P(zlxg) = —— eXp(—M
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The issue then is to compute a set of features that can be related to the observable
state of the folds model, i.e. the lower and upper edge of both left and right vocal folds.
This information is only partially contained in the video endoscopic imaging data, as

) &)
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Algorithm 1 Bayesian estimation algorithm

Initialization: Draw N samples {X(Oi), 69} from the
prior p(Xo, 6p) and set wg) =1/N
while £ < K do

Prediction: Draw N new samples x](ci) from the
temporal prior p(xg) |X8:)k71 R G(T’;H )

Draw new samples G(T';( through the
random walk‘mo'del H(T’i = Q(T'Ll + P

Likelyhood: Compute p(z’|x\”, 6)

Update: Calculate new weights according to

i iy p@ xpe’Ix) )

w,(c) o Wl(cil Pixil)’]xi)’;)kfl’iy(li)i)l

Resample: Generate a new set of N samples

{x®, 4D} by sampling each {x?, #?}

with probability w!”

k—k+1

end while

discussed before. In the next sections we will illustrate how to design an ad-hoc like-
lyhood function that effectively uses the incomplete information available. The use of
such function within the particle filter framework will allow to fit the folds displace-
ment in the regions where features can be computed from the available information,
and to provide an estimation of the position based on the prediction of the model in
those time intervals in which information is missing.

3. Video data processing and folds-specific likelyhood function

The computation of the likelyhood related to the visual data under observation re-
quires to go through a number of subsequent analysis steps, which include a prelimi-
nary video processing stage, the extraction of the visual cues related to the target mo-
tion, and the computation of the likelyhood function of choice. In what follows, these
steps as well as the design of a problem-specific likelyhood function will be described
in detail.

3.1. Preliminary video processing

Each input image I(x,y,f) might contain one or more glottal cycles, in each of
which an open glottis interval can be distinguished as a rhomboid-shaped convex area.
The pixels of the image are thus classified as belonging to either a rhomboid-shaped
convex area, i.e. an open phase, or to the time interval beetween two convex areas, i.e.
a closed phase interval.

The video analysis first aims at detecting all open phase pixels in each frame of
the video temporal sequence by a change detection method based on the fast Euler
number (FEN) (Snidaro and Foresti, [2003)). This procedure returns a binary image
B(x,y,t) in which open phase pixels are set to 1 and background pixels are set to 0.

11



Since noise may still affect the binary image B(x,y, ), a further processing step based
on a morphological focus of attention mechanism is performed (Foresti and Regazzonil,
2000), which operates in two steps: first, a statistical erosion is applied to the binary
image B(x,y,t), B" = Bog, S, with § being a square structuring element and 3, being a
parameter which regulates the statistics of the operators (Foresti and Regazzonil, 2000}
[Maragos et al.| [1996); secondly, a statistical dilation is applied to the set B’, B’ =
B’ @, S’, with S’ being a cross structuring element and 5, > ;. Finally, the contours
cnt; of the open phase regions is detected as the pixels where the vertical gradient
assumes maximum values (upper semi-contour, corresponding to the left cord) and
minimum values (lower semi-contour, corresponding to the right cord). The resulting
denoised video frame and the open phase regions contours are shown in Fig. [6] lower
panel. Finally, glottal opening and closing instants #¢’s and #G¢’s can be estimated as
the leftmost pixel and rightmost pixel of each countour curve, and closed/open phase
durations can be estimated as T.; = tgo+1 — lcc,; and T, ; = tgci — o, respectively.

0.042 0.044 0.046 0.048 0.05 0.052 0.054

r tacin
Ti +; t
rori(t i entivy i ( )\‘ L
|-~ R
0;
L L L L L L L L ]
0.042 0.044 0.046 0.048 0.05 0.052 0.054

time (sec)

Figure 6: Image data preprocessing, glottal cycle segmentation and piecewise linear trend computation.
Upper panel: video frame analysis; lower panel: video frame after thresholding, denoising and open phase
regions contouring. Lower panel also illustrates the picewise linear trend identification,

At the same time, information on DC component, modeled with a piecewice linear
trend function, is also computed. If we call o; and ¢; the leftmost corner and rightmost
corner of each countour curve at opening and closing instants fGo; and fgc; respec-
tively, the linear trend segment r;(¢) is computed pitch-synchronously as

01 — O;

ri() = 0; + “(t =160, (6)

lGo,i+1 ~ IGo,i
for tgo; < t < tgo,+1. The linear trend information is then used to vertically align the
fold displacement prediction provided by the dynamical model, and the visual infor-
mation:

x12),: () = X)) (D) + ri(D), 1 € [1G0,i» 1GO,i+1)
x12),1(1) = 1i(1) = X} ) (D), 1 € [1G0.i 1Go.i+1)

(N

12



where the notation x| (2),0(’)’ a = {l, r}, has been used here to indicate the folds position
estimates provided by the dynamical model, which are originally not affected by any
DC component. The glottal opening and closing instants, closed/open phase duration,
and piecewice linear trend, are shown in Fig. [6] lower panel, for an analysis window
corresponding to approximately 16 msec.

0.071 0.072 0.073 0.074 0.075 0.076 0.077 0.078 0.079 0.08
time (sec)

Figure 7: Computation of the visual cues related to folds displacement during the open phase.

3.2. Feature extraction

Finally, visual cues extraction is required to gather information concerning folds
displacement during the open phase. Figure [7] illustrates how the different contour
sections related to the romboidal-shaped region are related to the left fold opening
lower edge displacement provided by the model (x;,(f)), to the left fold closing upper
edge (x1,(?)), to the right fold opening lower edge (x; ,(f)), and to the right fold closing
upper edge (x; ().

The time support intervals for the four classes are defined respectively as:

Atz,l = {t tlgo <t < tEC,I}
Al‘l,[ = {l tpcg <t < tcc}
Aty ={t:tco <t <tgc,}

{t:tec, <t <tgc)

®)

where tgc; and fgc, (upper-lower “edge crossing”) are defined as the instants at which
the left and light lower edge displacements become smaller than the respective upper
edge displacements, and are computed by estimating the maximum value of the left
and right contour respectively. The following visual data cues are then defined:

X10() = cny(t), t € Aty
Xp0(t) = cnty(t), t € Aty ©
X1, =cnt (1), t € Aty
X, (t) = cnt, (1), t € Aty
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where cnt;(f) and cnt,(¢) are the open phase region contours related to the left and right
fold, respectively.

Image

preprocessing

Particle Filtering

Model tuning

Vocal folds
edge prediction

Folds edge
detrend and
display

Figure 8: Method workflow.

3.3. Edge-based likelyhood

Once that each point of the open phase contour has been assigned to one of the
four classes defined above, the likelyhood function for the particle filter relying on the
glottal model can now be defined as

L = p(zilx;) = Lxl.t + sz.t + Lxl.r + sz,r (10)
where 2
1%1 1(0=x1 101
_ 1 (———2 )
Ly, = Sre fteAtlL exp 22 dt

- 1% 1(D—x3 10

_ _1 =)
sz,l = \/ﬁ tEAl% exXp 20 dt
. ( |i1,,(z>fx1,<r)|2) an
- 1 - o2
L, = Ve Jrear €XP 2 dt
| ( |iz,,<:>—x;,,<z)|2)
— - 5,2
Ly, = 5= _g ek EXP 2 dt

The method workflow, including the image pre-processing stage, the model tuning to
the vocal fold edges, and the final detrending and display stage, is illustrated in Fig. [§]
Figures[9]and [T0]show an example of vocal fold edge fitting obtained through par-
ticle filtering with the glottal model prediction procedure. Figures [0 evidentiates the
evolution of L/R and x; /x, asymmetries relates to four subsequent frames of the onset
region of the phonation, and the adaptation of the model-driven particles to the data.
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Figure 9: VKG video analysis and vocal fold edge fitting: asymmetries L vs R and x; vs x,. The scattered
plots superimposed to the VKG image represent the evolution of particles related to x; , (magenta, upper
portion), x1; (magenta, lower portion), x»,, (wWhite, upper portion), and x; (white, lower portion).

Figure [I0] shows a wider picture of the folds edge fitting, which evidentiates the adap-
tation of the model to the slowly varying trend induced by the relative shifts of the
endoscope with respect to the oscillating folds during the recording. Figure[TT]shows
the Left and Right fold parameter optimization during the fitting process (the maxi-
mum likelyhood parameter values and the credible intervals (CI) are shown). It can be
noticed that the natural frequencies of the folds are approximately constant above 140
Hz, and that the vertical phase delays around 10 samples, which reflects the fact that
the pitch and the ratio between the closed and open phase are rather stable in the anal-
ysis interval. On the other hand, in the Left fold the amplitude ratio reaches a factor of
2 whereas in the Right fold the ratio is around 1 on average, reflecting the asymmetry
of the vocal cord oscillation already noted in this visual data fragment.

4. Experimental results

In this section, the vocal folds displacement reconstruction and model fitting pro-
cedure is assessed on a videokimographic dataset obtained from real high-speed video
endoscopic recordings.

In order to provide a measure of the performance of the automatic fitting process,
we define the error of the edge displacement fitting related to the open phase, as follows.
Let first define the partial edge fitting errors as
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Figure 10: VKG video analysis and vocal fold edge fitting: an analysis windows of approximately 140 msec,
showing the particle filtering fit to the observation (yellow and white scatter plot refer to x| and x, estimates
respectively).

1 ~

Eivge = \/m fzemm %1,0(1) — x1.2(0)dt
1 ~

Eva = 5 fn, F2a() = 220(0Rd1

for @ = {l,r}. Time intervals At;, and At,, are defined as in Eq. |§|, and target edge
displacements %, and X, are defined as in Eq. El The overall root mean squared
error (RMSE) on the edge fitting, normalized to the maximum excursion range M, =
(Xcrg+Xer,r), where x.,; and x,,., are the left and right edge displacements at lower-upper
edge crossing, is then defined as

12)

ETE = (Exl,l + Ex],r + Ex2,l + Ex2,r)/Mx (13)

The normalized errors (NE) made in the estimation of the left and right lower-upper
edge crossing instants can be defined respectively as

ECEY = |igci — tecil/To, (14)
ECEtr = |fEC,r - tEC,rl/Ta
where 7gc; and 7gc, are the left and right crossing instants estimated by the contour
identification procedure on the VKG image, and tgc,; and tgc, are the Left and Right
crossing instants provided as the result of the Bayesian estimation procedure. No cal-
ibration of the the dynamical model is done with respect to the kymogram, thus the
modeling is not calibrated to physical units, and the RMSE values are referred to an
arbitrary normalization operated on the model output.
We also define a set of glottal cycle time parameters to characterize the glottal area
during the closed phase. If T is the glottal cycle period, T, the closed glottis phase
duration, and 7, the open glottis phase duration, we define Rcp = T./T as the closed
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Figure 11: Maximum likelyhood parameters optimized during the fitting process, with related credible inter-
vals. Upper plots: natural frequency, vertical phase delay, and superior-to-inferior edge amplitude ratio, for
the Left cord; lower plots: same parameter for the Right cord.

phase ratio, and Rpp = T, /T as the open phase ratio. We further define Rcpy = At,/ T,
Rcpe = At,|T., and Repy = Atp/T. as a measure of the duration of divergent, parallel
and convergent configuration of the glottis during the closed phase (refer to Fig. [2)).

4.1. High-speed video dataset

The video analysis procedure discussed was tested on a selection of recordings from

the database by Erkki Bianco and IRCAM (Degottex et al., 2008). The recordings,
consisting in sustained phonations by different healthy subjects, are characterized by
a video rate of 6665 frames per second at a resolution of 256x256 pixels per frame.
Acoustic phonatory data is also provided, at a sampling rate of 44100 Hz with 16
bit resolution, which however was not used in this study. For each recording, the
subjects uttered sustained voiced sounds with a different phonatory setting or a different
fundamental frequency (pitch). Pitch was held constant or, in some cases, it was rised
or lowered continuously.
For each fragment of high-speed video recording used in the experimental assessment,
the line scan position for the kymographic data computation was manually selected,
and the kymographic image was derived as the time sequence of video frame pixels
corresponding to that line scan. The image preprocessing and the pitch synchronous
procedure illustrated so far was applied to the resulting kymographic data, consisting
in approximately 200 msec of speech for each fragment. The parameters of the glottal
model where updated at every new speech period.

Table [T reports the estimates of the area function parameters computed from the
video data, based on the glottal area segmentation procedure illustrated in the video
analysis section.
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4.2. Performance analysis and assessment

The experimental results presented in Figs. [I2] and [I3] show, for each recording,
a frame of the high-speed endoscopic video and the videokymograpic data computed
along the scan line highlighted in the frame, the magnification of a two-periods analysis
window with the model fitting to the fold edges, and an estimate of the corresponding
glottal flow U,(?) as predicted by the biomechanical model.

The video data and fitting results illustrated in Figure [T2] are related to two data
excerpts recorded from the same subject (male, healthy) uttering a sustained vowel
with same pitch (113 Hz) and with different phonatory settings (left: tense phonation,
right: breathy phonation). The tense phonation case on the left is characterized by a
long closed phase and a consequently short open phase, resulting in the open phase
ratio Rpp = 0.35. The model-based x; and x; fitting correctly matches the glottal
area evolution (romboidal shape) during the open phase. Moreover, it predicts that
during the closed phase the time durations of segments d, e, and f, normalized to
the total closed phase duration T. = 5 msec, are respectively Rcpy = 0.3, Rep. = 0.5,
Rcpy = 0.2. If compared to the tense phonation case, the breathy phonation on the right
has a much longer open phase and a shorter closed phase, resulting in an estimated
Rop = 0.65. The model-based x; and x; fitting correctly matches the glottal area
evolution during the open phase, and predicts normalized intervals Repy = 0.5, Repe =
0.0, Rcpy = 0.5 for the closed phase with total duration 7, = 2 msec. Apart from
open/closed phase matching, the model-based tracking also evidentiates a more marked
R/L asymmetry for the breathy phonation sample, for which the analysis procedures
provides {&, = 1.12, & = 0.81}, than for the tense phonation, for which it is {£, = 0.91
£ = 0.87}.

The full set of performance measures and glottal parameters resulting from the
fitting, averaged on the whole 200 msec time interval used in the analysis, are reported
in the first two rows (Sla and S1b) of Table[T}

The video data and the fitting results illustrated in Figure[T3]are related to two data
excerpts recorded from a different male subject uttering a sustained vowel with modal
phonation at two different pitches (left: 160 Hz, right: 135 Hz). The sample on the
left is characterized by a marked folds edge L/R asymmetry which is opposite to the
asymetry observed in the previous case. The related parameters for this case are is in
fact {£, = 0.88,¢; = 1.19}. The sample on the right, on the other hand, shows a rather
symmetric L/R oscillatory pattern, as confirmed by the values {£, = 0.93,& = 0.86}.
In terms of open/closed phase ratios, the higher pitched sample on the left has equal
open/closed phase durations (Rpp = 0.5), whereas in the sample on the right the closed
phase is longer (Rpp = 0.42).

The full set of performance measures and glottal parameters resulting from the
fitting, averaged on the whole 200 msec time interval used in the analysis, are reported
in the third and fourth rows (S2a and S2b) of Table[l]

Finally, Table [1|also reports the results for three different modal phonation record-
ings from a female speaker: S3a, with a pitch of 526.3 Hz, S3b, with a pitch of 357.1
Hz, and S3c, with a pitch of 294.1 Hz. It can be seen that the normalized errors re-
lated to the open phase (ECTE;, ECTE,, and the normalized root mean squared error
ETE) are around 0.10 on average (with a maximum of 0, 28 overall edge fitting error
for sample S3a(f)).
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Figure 12: The image processing and fitting results for two recordings from the same subject, uttering
a sustained vowel with different phonatory settings (left: tense phonation, and right: breathy phonation).
Recordings from the database by E. Bianco and G. Degottex, IRCAM.

4.3. Limitations and future work

The model fitting to oberved raw video data was assessed on a small set of record-
ings from healthy subjects, thus the statistical assessment of the method is still lim-
ited, and future work is overseen to include assessment on a larges set of healthy and
pathological voice HSV recordings. Moreover, the model does not have one-to-one
correspondence to the actual values of the vocal fold masses, stiffness, and subglottal
pressure, i.e. no calibration was taken into account. Nonetheless, the inspection of the
modeling and parameter optimization outcome allows for objectively evaluating the
biomechanical interrelationships between these variables.

Once finely tuned on the available visual data, the dynamical model can be used as
a state transition model in a Bayesian motion estimation setting to obtain a physiolog-
ically motivated estimation of upper and lower vocal folds edge position, even where
this information is missing in the observation due to measurement limitations, i.e.,
upper edge indistinguishability during divergent glottis intervals (closing and closed
phases of the glottal cycle) and lower edge occlusion during convergent glottis inter-
vals (beginning of the open phase of the glottal cycle). Based on the model prediction,
an hypothesis on the lower and upper fold position can be made even in complete fold
occlusion conditions occurring during the end of the closed phase and. To asses such
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Table 1: Glottal parameters values for different subjects and phonation settings, calculated over 200 msec
time interval for each fragment. In the open phase cues columns, the values listed in parentheses refer to the
error with respect to the reference cue values related to the open phase.

open phase closed phase
Subj. T (msec) ECTE;(NE) ECTE,(NE) ETE (NRMSE) Rcpa Rcpe  Rcpy
Sla 10.2 0.18 0.04 0.10 0.16 044 0.40
S1b 8.9 0.04 0.19 0.11 030 0.05 0.65
S2a 6.6 0.00 0.16 0.11 0.52 0.00 048
S2b 7.5 0.05 0.00 0.06 034 021 045
S3a(f) 1.9 0.14 0.14 0.28 0.57 0.00 043
S3b(f) 2.8 0.08 0.08 0.19 0.00 0.71 0.29
S3c(f) 34 0.08 0.08 0.08 0.17 025 0.58

perspective, however, the problem arise of obtaining a ground thruth dataset for the
time intervals in which some of the fold edges are not observable.

Finally, we also recall that in this study the proposed scheme was tested with data
from healty phonation, but it is potentially suitable as a tool for pathologic phonation
detection and classification. It is plausible that in this context the model fitting pro-
cedure within the tracking scheme would require further improvements to deal with
irregular oscillatory patterns and severe left-rigth asymmetries. This will be the subject
of future research as well.

5. Conclusions

We discussed the analysis of videokymographic data with a Bayesian estimation
procedure based on the prediction of the folds edges, provided by a nonlinear dynami-
cal model of the vocal folds. The low-dimensional glottal model adopted is asymmet-
rical in the L/R plane and was shown to be able to accurately fit the vocal folds edge
displacement information extracted from the videokymographic high-speed video data.
A video processing analysis procedure was designed, that computes the likelyhood of
the observed video data in terms of the predictive glottal model. A relevant characteris-
tic of this analysis scheme is the possibility to predict the fold lower edge trajectory in
the occluded intervals, where no video data is available. The application on a set of dif-
ferent endoscopic high-speed recordings demonstrated the suitability of the procedure.
A performance analysis and assessment was conducted by computing standard glot-
tal sub-cycle features such as open/closed phase durations and glottal area evolution.
The experimental results conducted on a set of recordings featuring different types of
phonations, show that the Bayesian estimation driven by the numerical glottal model
provides a robust fitting to the fold motion video cues, where available, and a tool to
predict glottal sub-cycle features and fold edge trajectories in those time intervals in
which no useful video data is available due to poorly contrasted or too noisy image, or
due to occlusion conditions. However, if on one hand it was possible to measure the
performance of the procedure in the open phase regions with respect to recorded data,
on the other hand it was not possible to assess, with the data at hand, the accuracy of
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Figure 13: Fitting results for two recordings from the same subject. Left: modal phonation, pitch: 160
Hz; Right: modal phonation, pitch: 135 Hz. Recordings from the database by E. Bianco and G. Degottex,
IRCAM.

the predicted cues in regions were no useful video data can be extracted or in the oc-
cluded regions. In fact, assessment related to occluded regions would only be possible
if the vocal folds oscillation could be recorded not only from above the glottis, but also
from below. Such dataset recording would be possible for example with an in-vitro
experimental setup, and will be the subject of future research.
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