
December 4, 2014 15:26 WSPC/CRC 9.75 x 6.5 1460423

e+e− Collisions from Phi to Psi 2013 (PHIPSI2013)
International Journal of Modern Physics: Conference Series
Vol. 35 (2014) 1460423 (8 pages)
c© The Authors
DOI: 10.1142/S2010194514604232

THEORETICAL AND EXPERIMENTAL REVIEW
ON PROTON FORM FACTORS

RINALDO BALDINI FERROLI

Laboratori Nazionali di Frascati dell’INFN,
Via E. Fermi 40, Frascati, 00044, Italy

rinaldo.baldini@centrofermi.it

SIMONE PACETTI

Dipartimento di Fisica e Geologia dell’Università degli Studi di Perugia,
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During the last three lustra nucleon form factors experiments have lived a golden age,
full of interesting results, that likely will continue and culminate when new data will
come from BESIII, SND, CMD3 and PANDA, in the time-like region and, Jefferson

Lab and A1 in the space-like region. On the other hand, from theoretical point of view,
mainly concerning the possibility of descriptions in all kinematical regions, no great
breakthrough has been made.
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1. Definitions and fundamental properties

Electromagnetic (EM) form factors (FFs) of a hadron h parametrize the non-
pointlike nature of the vertex hγ∗h. Assuming gauge and Lorentz invariance, the EM
current of a hadron of spin S contains 2S + 1 independent FFs; they are unknown
Lorentz scalar functions of the squared momentum of the virtual photon. In case of
nucleons, S = 1/2, the EM current is written in terms of two FFs as

J µ = u(p2)
[
γµF1(q2) +

iσµνqν

2M
F2(q2)

]
u(p1) , σµν =

i

2
[γµ, γν ] , (1)
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N(p2)
N(p1)

γ∗(q = p2 − p1)

Fig. 1. Nucleon electromagnetic vertex, 4-momenta are reported in parentheses. The gray oval
depicts the non-pointlike nature of the interaction and hence the FFs.

where 4-momenta follow the labelling of Fig. 1, M is the nucleon mass and, F1 and
F2 are the Dirac and Pauli FFs. These FFs are not unique; each pair of linear inde-
pendent combinations of F1 and F2 is equivalent, because defines unambiguously
the structure of the vertex Nγ∗N (N stands for nucleon). Of particular interest are
the so-called Sachs electric, GE , and magnetic, GM , FFs

GE(q2) = F1(q2) + τ F2(q2) , GM (q2) = F1(q2) + F2(q2) , τ = q2/(4M2) . (2)

In fact in the reference system, called Breit frame, where there is no energy exchange,
i.e.: q = (0, �q) and p1,2 = (E,∓�q/2), they acquire a clear physical meaning, being
Fourier transforms of charge and magnetization distributions of the nucleon.
In light of this, at q2 = 0, Sachs FFs are normalized to the electric charge, QN , and
magnetic moment, µN of the nucleon, i.e.: GE(0) = QN , GM (0) = µN .

Physical FFs are assumed to be limit values, for real q2, of more general func-
tions analytic in the whole q2-complex plane a. Moreover, unitarity reduces the
analyticity domain by introducing the cut (4m2

π,∞) on the positive real axis, due
to all the allowed hadronic intermediate states that couple to the virtual pho-
ton. The threshold qth = 2mπ is to the mass of the lightest intermediate state.
Hermiticity of the current operator implies real FFs for q2 < q2

th, hence, for the
Schwarz reflection principle, they have non-vanishing imaginary parts, on the edges
of the time-like (TL) cut. Perturbative QCD 2 constraints the space-like (SL) high-
q2 behavior of FFs to follow well established power laws. Using the Phragmén-
Lindelöf theorem ,3 the same behavior can be extended also in the TL region and
thus GE,M (q2) ∝

|q2|→∞
(q2)−2.

2. Space-like proton data

Nucleon FFs are extracted from differential and total cross section data for scatter-
ing, annihilation and, more recently, from polarization observables, in polarization
transfer experiments. The differential cross section for the scattering e−N → e−N ,
in Born approximation and in the laboratory frame (nucleon at rest), reads

dσ

dΩe
=

α2

q2

(
ε2
ε1

)2 cos2
(
θe

2

)
sin2

(
θe

2

)
[
2τ G2

M (q2) tan2

(
θe

2

)
− G2

E(q2) − τ G2
M (q2)

1 − τ

]
, (3)

aEven though analyticity of FFs can be proved at any order of perturbation theory, still there is
no a rigorous general demonstration.1
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Fig. 2. World data 5 on Gp
M /(µp GD) (a). World data on µp Gp

E/Gp
M from unpolarized ep elastic

scattering (b) 5 and from polarization observables (c) 6.

ε1(2) and θe are the initial (final) energy and the scattering angle of the electron.
The expression (3), known as Rosenbluth formula ,4 allows to extract SL (q2 < 0)
values of FFs at a given q2, by comparing cross section measurements at different
scattering angles. This procedure is called Rosenbluth separation technique. World
collections of proton FF data, obtained using the Rosenbluth technique, are reported
in Figs. 2a and 2b. In particular, Fig. 2a shows the magnetic proton SL FF normal-
ized to its magnetic moment, µp, and to the dipole GD =

[
1 − (0.71 GeV2/q2)

]−2
;

while in Fig. 2b is reported the ratio electric-to-normalized magnetic proton FF.
These data suggest that, apart from the normalization at q2 = 0, electric and
magnetic proton FFs are both well described by the dipole behavior. From 1999,
measurements of the ratio Gp

E/Gp
M were performed with a new technique based

on an idea due to A. I. Akhiezer and M. P. Rekalo ,7 which consists in detecting
the polarization transferred by polarized electrons on initially unpolarized proton
targets. This procedure has the advantages of improving the accuracy and strongly
reducing the dependence of the data on the radiative corrections.

3. Time-like proton data

Time-like FFs can be measured through the annihilation processes e+e− ↔ pp.
The cross section, for pp production (annihilation), in Born approximation and in
the center of mass frame is

dσ

dΩ
=

α2β(−1)

4q2
C

[(
1 + cos2 θ

) ∣∣Gp
M (q2)

∣∣2 +
sin2 θ

τ

∣∣Gp
E(q2)

∣∣2] , β =

√
1 − 1

τ
,

where θ is the scattering angle, C is the Coulomb correction 8 for the pp final (initial)
state interaction and β is the proton velocity. For q2 ≥ 4M2, FFs are complex and
only their moduli are measurableb. However, the statistics available in the majority
of the experiments is too low to perform precise studies of the angular distributions

bConsidering polarization also the phase of GE/GM would be measurable.
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Fig. 3. World collection of data 9 on effective proton FF, in the low (a) and high (b) momentum
transfer regions. Vertical dashed lines indicate the physical threshold q2 = 4M2. Ratio |GE |/|GM |
in the TL region. The data are from: Ref. [10] (empty squares) and Ref. [11] (empty circles).

needed to extract separate values of |Gp
M | and |Gp

E |. Indeed, the quantity usually
measured is an effective FF Geff , corresponding to the common value of |Gp

E | and
|Gp

M | if assumed equal each other. Figure 3 shows all the available data on Geff .
Only two experiments, PS170 10 and BaBar ,11 have tried to extract TL moduli of
proton electric and magnetic FFs separately. In both cases the measured quantity
was |Gp

E |/|G
p
M |, even though PS170 10 and BaBar 11 used two different processes:

pp → e+e− and e+e− → ppγ, with initial state radiation technique. The two sets
of data, shown in Fig. 3c, are incompatible. The PS170 measurement, that covers a
small q2-region close to threshold, agrees with: |Gp

E | = |Gp
M |, that holds only at the

thresholdc q2 = 4M2, see Eq. (2). BaBar data, which cover a wider energy range,
verify, for the first time, the inequality |Gp

E | > |Gp
M |, up to q2 � 5 GeV2.

4. Nucleon form factors in theory and phenomenology

Form factors represent the unknown elements of hadronic currents, being not com-
putable in the framework of QED. Nevertheless some of their properties are strongly
constrained by arguments based on first principles. In particular, FFs are required
to be analytic functions of q2 and hence we emphasize only those models which, by
construction, can give descriptions valid in TL and SL regions.

4.1. Vector meson dominance

The earlier and most successful models used to parametrize nucleon FFs are based
on the concept of vector meson dominance (VMD), i.e. the idea that the nucleon-
photon interaction can be described in terms of intermediate vector mesons, with
quantum numbers of the photon. Using VMD data can be well described in terms
of few ”physical” parameters as masses, widths and coupling constants. Massam
and Zichichi were the first to conceive a VMD model to parametrize proton FFs in

cElectric and magnetic FFs can be different at threshold if F1(4M2) and F2(4M2) are singular.
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both, SL and TL regions .12 In such a model, as in all the others, based on VMD,
that followed, isospin components of the FFs were considered to well disentangle
iso-scalar and iso-vector contributions. In 1972 Iachello, Jackson and Landé ,13 and
in 1984 Gari and Krümpelmann 14 proposed improved versions of the original model
due to Massam and Zichichi. In particular, intrinsic FFs were introduced to repro-
duce the asymptotic behavior of pQCD. All these models provide good descriptions
of available data of all nucleon FFs.

4.2. Dispersion relation approaches

Dispersion relations (DR) represent a powerful mathematical tool not only to handle
FFs, but also to investigate their properties. Two kinds of DR approaches can
be considered. The first uses VMD 15 to construct TL imaginary parts of FFs,
i.e. the spectral functions. Once such functions are known, usually in terms of
vector meson masses, widths and coupling constants, DR are exploited to perform
analytic continuations also in SL region. The second procedure defines quasi model-
independent analyses of data .16 In this case DR are used both to check consistency
of the data with theoretical constraints and to predict values of FFs at energies not
experimentally accessible. The stability of these results depends on the accuracy of
data, hence new precise measurements make this approach more and more reliable.

4.3. Chiral perturbation theory

Chiral perturbation theory (χPT) is a low-|q2| effective filed theory of strong inter-
action. Below a typical energy scale Λ � 1 GeV (with two flavors, Nf = 2), the QCD
Lagrangian is equivalent to that of χPT, which depends on observable hadronic
fields, only pions and nucleons in case of a leading-order description of nucleon FFs.
Expressions of F1,2, for instance, can be obtained considering tree and loop contri-
butions, always in terms of pion and nucleon interactions. The free parameters of
this model, which are constants accounting for the non-included heavier hadronic
fields, are fitted to data. The low-|q2| limitation (q2 ≤ 0.4 GeV2 in Ref. [17]) does
not allow to predict directly TL FFs, experimentally known only for q2 > 4M2.
Nevertheless, once the spectral functions are known, FFs can be reconstructed at
any q2, by means of DR. Using the optical theorem, spectral functions of nucleon
FFs can be computed in χPT and moreover, the inclusion of vector meson contribu-
tions ,17 as well as the use of subtracted DR, helps in overcoming the problem of the
low-|q2| restriction. However, so far, no analyses of such kind have been performed.

4.4. Soliton models

In soliton models, nucleons are represented by stationary topological solutions of
a non-linear field theory, with only mesonic degrees of freedom, that approximates
QCD in the limit of large number of colors .18 In order to stabilize the solutions,
further terms have to be added to the starting Lagrangian, which is that of the
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so-called non-linear σ model. These terms describe vector mesons, that, with the
peculiar repulsive nature of spin-1 particles, contrast the collapsing tendency of
solitons .19 The resulting Lagrangian is that of the so-called Skyrme model 20 and its
quantized soliton solutions are defined by radial functions, which represent the gauge
fields. Space-like nucleon FFs are obtained as Fourier transforms of combinations
of radial functions and their derivatives. The analytic continuation of these FF
parametrizations can be obtained following the procedure of Ref. [21], that allows
to well reproduce all the expected properties.

4.5. Relativistic constituent quark models

Hadrons and hence their FFs can be also microscopically described in terms of quark
and gluon degrees of freedom, using constituent quark models. In case of nucleons,
relativistic effects are important, and can be included in covariant way using the
so-called light-front form .22 A method to go beyond the ”valence” approximation
and then to include also non-valence components has been defined in Ref. [23] and it
allows to extend the FF description from SL to TL region. The non-valence quark-
antiquark-photon vertex is parametrized in terms of VMD. Even though a large
number of resonances has to be considered to have a good description of data, the
model has only few free parameters, because masses, widths, and coupling constants
are either taken from data or computed following Ref. [24].

4.6. Gauge-gravity correspondence

The correspondence between gravity and string theory 25 represents a promising
possibility of finding analytic solutions of non-perturbative QCD. Such a correspon-
dence is also called ”holographic”, since it connects spaces of different dimensions, a
5-dimensional anti-de Sitter (AdS5) and a N = 4 supersymmetric Yang-Mills gauge
theory, which is a conformal field theories (CFT) in the typical 3 + 1 Minkowskian
space-time. In light of that, it could possible to compute observables of a strongly-
coupled gauge theory in the framework of classical gravity. In general QCD is not
conformal, however, in certain energy domains where quark masses are negligible,
it can be approximated as a conformal theory, so that it corresponds to an AdS5.
The fifth ”holographic” coordinate z can be interpreted as z = 1/q, the inverse
of the probing momentum. Confinement is introduced geometrically by requiring
z ≤ 1/ΛQCD .26 Hadronic FFs can be defined in terms of Fourier transforms of AdS5

normalizable modes and external EM fields .27 In case of nucleons, under suitable
assumptions about the potential ,27 the obtained SL FF expressions not only follow
the power-law scaling predicted by perturbative QCD, but they have also a multi-
pole structure, similar to that of VMD models. Such FF expressions have simple
analytic forms and thus are well suitable to be continued also in the TL region,
however, so far, no attempts have been done.
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