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A short-term forecast of energy consumption is affected by different factors related to the demand in residential, commercial,
thermoelectric, and industrial sectors. )is demand can be strongly constrained by weather variables, especially temperatures,
whose forecast may be very useful to predict the balances between supply and demand, minimizing the risk of price volatility.
Energy companies use the relationship between meteorological forecast output and energy request to provide an effective
scheduling of national gas and power grids and reduce operational costs in critical periods. )is work reports a comparison
analysis for short- andmedium-term daily temperature forecasts during the period 2013-2014 by using the weather model e-kmf™
(eni-kassandra meteo forecast), currently adopted in gas and power applications where meteorological output has a key role. )is
weather forecast system uses differentmodels and initial data to develop probabilistic predictions from a perspective of eleven days
ahead. In particular, a set of model runs with horizontal grid spacing of 5.5, 8, 13, and 18 km with the same domain size are
undertaken to assess the sensitivity of temperature to horizontal resolutions. A nonlinear Kalman filter has been also applied to
postprocess forecasted data in eight European cities (Milano, Roma, Torino, Napoli, Munich, Paris, Brussels, and London).
Filtered forecasts over these cities have been compared to local observations taken from SYNOP (surface synoptic observations)
and METAR (meteorological Aerodrome Report) stations. Skill scores of performance have been used to generally assess the
forecast reliability up to day +11. In order to understand the sensitivity to the horizontal resolution, investigations have been
carried out even during four specific periods of two weeks with stable and unstable weather conditions.

1. Introduction

Energy consumption is strictly correlated to seasonal
weather and climatic trends, in particular, for surface
temperature and precipitation [1, 2]. By knowing the tem-
perature on a specific geographical area and giving attention
to anomalous phenomena, it is possible to improve the
planning of storage, sale, and supply of energy reserves [3].

Efficient operation of modern energy distribution sys-
tems often requires forecasting of future energy demand
[4, 5]. Energy companies use the link between temperature
variability and energy demand for supply, planning to guard
against shortages during the most critical times. For this

reason, they are the most active users of weather forecasts
and they continue to use these products in their weekly
scheduling. Hence, the benefit on short- and medium-term
forecasts for energy services lies, first of all, in advance
warning for better energy distribution andmanagement.)e
present study, provided by Eni S.p.A to obtain an accurate
and high reliability forecast tool for improving the man-
agement on energy market for national and European
countries, has been made by using the patented e-kmf™
weather forecast system (eni-Kassandra Meteo Forecast). By
providing short- and medium-term temperature forecast
over different European areas of interest and using different
horizontal grid resolutions to assess their impacts on the
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quality of prediction, an hourly weather forecast application
for gas turbine power generation in Italy has been also
carried out [6].

A former preliminary analysis over a short period in the
year 2013 has shown how the change of the e-kmf™ model
spatial resolution in the forecast from day + 1 to day + 5
might reduce the MAE of 2–4°C and improve the perfor-
mance. In this study, several simulations across 2013 to 2014
have been performedwith the e-kmf™model by changing its
horizontal resolution and quantifying its impact in terms of
computational cost and time to run the e-kmf™ model with
different spatial grids. )e benefits in energy market even in
many European cities with a different climate compared to
the Mediterranean one in Italy have been evaluated.

To assess the impacts of horizontal grid on the forecast
results in the selected areas, vertical resolution and physics
have been maintained the same for all simulations (as the
daily operative 5.5 km model), with a forecast horizon up to
day + 11. Temperature forecasts scaled on selected cities in
Italy (Milano, Torino, Roma, and Napoli), Germany
(Munich), Belgium (Brussels), France (Paris), and UK
(London) have been compared against observations coming
from SYNOP (surface synoptic observations) and METAR
(meteorological aerodrome report) stations for a dataset of
two years (2013-2014) and, then, for particular periods of
two weeks with stable and unstable situations. After the
description of the data analysis method in Section 2 and the
e-kmf™ forecast system in Section 3, we analyse and discuss
the weather benchmark dataset used in this paper. Finally,
conclusions of this paper are reported in Section 5.

2. Observed and Forecasted Temperature Data

)e area of study includes four Italian cities (Milano, Torino,
Roma, and Napoli) and four European cities (London,
Brussels, Paris, and Munich). Figure 1 shows the domain of
the e-kmf™ weather forecast model for the selected Euro-
pean cities (green dots).

)e e-kmf™model forecasts for each urban centre of the
eight selected cities at different spatial resolutions are
compared with observed data taken from SYNOP and
METAR stations in order to calculate the performance of
forecasts at different lead times and for different spatial
resolutions. )e procedure to spatially and temporally av-
erage daily temperature forecasts from raw GRIB (Gridded
Binary) files at a given lead time for each analysed city is
afterwards described:

(i) Hourly temperatures of the four closest grid points
(Tinw

, Tine
, Tisw

, and Tise
) of the meteorological model

for each i-th analysed city are selected (Figure 2),
where Tinw

, Tine
, Tisw

, and Tise
are the hourly tem-

peratures of the north-west, north-east, south-west,
south-east, respectively, grid point closest to the city.

(ii) )ese four hourly temperatures of the four grid
points closest to the selected city are averaged out
with a simple inverse distance weighting (IDW)
method (equation 1) to calculate a hourly mean
temperature forecast over the city (Th):
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Tinw

/d2
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/d2
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/d2
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/d2
se

1/d2
nw + 1/d2
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where d2
nw, d2

ne, d2
sw, and d2

se are the square values of
the distance (in km) between the north-west, north-
east, south-west, south-east, respectively, grid
points closest to the city and the city itself.

(iii) )e final step computes the daily temperature
forecast (Tdaily forecast) of the analysed city averaging
out the hourly mean temperatures (Th) as shown in
the following equation:

forecast of the dailymean temperature

Tdaily forecast􏼐 􏼑 �
1
n

􏽘

n

h�1
Th, (2)

where n is equal to 24 for the e-kmf™ model since
the model forecast output (Th) is every 1 hour.

)is aforementioned procedure is repeated for all the 8
cities at all lead times (eleven) of the model forecast (day + 0,
day + 1, day + 2, etc.).

3. e-kmf™Meteorological Model

In this study a multimodel approach based on regional and
limited area models has been used [6, 7]. )is local ensemble
prediction system has been developed in the framework of
the e-kmf™ weather forecast system where the forecast is
produced bymultiple modeling sources with varying physics
and perturbed initial conditions. Ensemble forecasting
provides a useful way of addressing variability in the initial
conditions, uncertainties in model physics, and the inherent
uncertainty in atmospheric forecast [3]. )is system rep-
resents an effective attempt to simulate the atmospheric
evolution and may provide insights into the range of un-
certainties which can be found in both the initial conditions
and models. Multimodel approaches, which use a single
analysis, attempt to overcome modeling system deficiencies,
while multiple analyses with a single modeling system may
diagnose sensitivity to the initial conditions. )e combi-
nation of these two approaches can maximize the benefits of
each one by compensating for deficiencies in both the initial
conditions and the modeling systems. )e e-kmf™ consists
of multicomponent ensembles: the global ensemble provides
lateral boundary conditions to a regional ensemble which
provides the boundary conditions to a limited area. In this
setup, the regional ensemble provides the downscaling of the
global ensemble; the local ensemble, in turn, provides the
dynamical downscaling of the regional ensemble. Each
higher resolution model provides the opportunity for small-
scale features to grow in the ensemble. )e local ensemble
used in this study is applied on a domain covering the area in
Figure 1, using 14 members (the same number of the re-
gional ensemble), a spatial grid resolution varying from
5.5 km to 18 km with 42 vertical levels in all simulations, and
the same number of levels of the global and the regional
models. Dynamical cores are based on the WRF-ARW
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(Weather Research and Forecasting-Advanced Research),
the WRF NMM (nonhydrostatic mesoscale model), and the
latest version of Eta model [8]. For each simulation, the
multimodel approach uses different physical and dynamic
schemes for microphysics [9, 10], planetary boundary layer
and surface layer [11–16], cumulus parameterization
[17, 18], radiation [19–21], and land surface physics [22–25].

Each run is then postprocessed through a Kalman filter
to obtain local temperature predictions; the operative
forecast output is the median temperature computed on
these local filtered runs [6]. )is e-kmf™ forecast system is
suitable for several applications where forecast of meteo-
rological variables is relevant (e.g., renewable energy, risk
analysis, and planning), and it can be applied to any area
worldwide.

3.1. Importance of the Horizontal Grid Resolution. )e
horizontal resolution of a NWP (numerical weather

prediction) model is related to the spacing between grid
points for grid point models or the number of waves that can
be resolved for spectral models. Since the smallest features
that can be accurately represented by a model are several
times larger than the grid resolution, phenomena with di-
mensions on the same scale as the grid spacing are unlikely
to be depicted or predicted within a model.Whether a model
is considered at high or low resolution depends upon the size
of the domain and the scale of weather phenomena that the
model is trying to predict. A resolution on the order of 10 to
20 kmmay be considered high for a global model, while for a
storm-scale model, a resolution of 500mmay be necessary in
order to resolve the internal processes. Horizontal resolution
has a direct impact on several characteristics such as vertical
motions, downward fluxes, precipitation location and
strengths, down-slope and valley winds, and mountain
waves, among others.

Quite large grid meshes cannot resolve some charac-
teristics of the circulations and, particularly, in complex
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Figure 2: Procedure to calculate the hourly spatial mean temperature forecast (Th).
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Figure 1: e-kmf™ European domain with the eight cities, where the analysis for short- and medium-term temperature forecasts has been
carried out.
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areas, the vertical wind velocities, which do not affect only
dynamics, but the thermal and moisture distribution, which
has an influence on the wind characteristics and the oc-
currence and strength of precipitation. High-resolution
mesoscale simulations can get better results to describe
the circulation patterns, the surface parameters, and the
precipitation amounts. Several years ago, in the framework
of an integrated modeling approach at regional and local
scales, simulations were performed in the Alpine area [26]
and results about precipitations fairly well agreed with
observations when horizontal resolutions fell below 10 km.
Hence, higher resolutions were crucial to improve the lo-
cation and the values of the precipitations.)e simultaneous
use of mesoscale models gave a further improvement in the
description of weather dynamics and thermodynamics [27].
Many of the deficiencies found in the current global- and
synoptic-scale models can therefore be mitigated in meso-
scale and local models. )e use of vertical coordinates and
the vertical resolution also strongly impact the nature of
terrain effects.

Many other studies showed the importance of higher
resolution in improving the forecast skill [28], in different
research fields as convective precipitation [29], fire danger
[30], weather prediction, or climate simulations [31, 32].
Furthermore, horizontal resolution has a direct impact on
the convection schemes, and convection-permitting
models may be required when it is below 3 km. )en, an
increased resolution will generally yield more accurate
simulations due to the reduction in the dispersion of
subgrid-scale phenomena and increasing coverage of
wavenumber space, particularly in regions that are topo-
graphically complex and exhibit heterogeneous land use.
However, increased resolutions are not necessarily asso-
ciated with an increased model skill or a reduction in model
biases [33], and it also comes at substantial computational
cost [34].

Finally, even simulations with an identical model run-
ning at different resolutions may lead to different behaviours
due to nonlinearities in the parameterizations; any change in
model behaviour and performance might be parameter
specific. For example, some studies have shown that in-
creasing horizontal resolution leads to an increase of
quantitative precipitation forecast (QPF) especially over
complex topography, which can be dependent to convection,
and the impact of model domain size and horizontal res-
olution on QPF may be quite large comparing with the
perturbed physics and initial condition uncertainty [29].)e
model skill at small scales is found to be better for stable
orographic precipitation than in the presence of embedded
convective cells because the latter induces a stochastic
component in the precipitation field.)e impact of the cloud
microphysics scheme increases with increasing model res-
olution, and in the complex topography areas, the impact of
enhancing the model resolution turns out to be small and
not necessarily beneficial [35]. On the other side, a near-
surface parameter like temperature might show a different
behaviour depending on the model’s ability in forecasting
the structures in the lower-atmospheric boundary layer, the
PBL schemes used in the model, and the flow-dependent

features in complex terrain [36], as it is also described in
[37], where the overall accuracy of temperature forecasts for
the highest resolution grid domain did not fully capture the
nocturnal and persistent cold pools within mountain valleys
and lowlands.

In this paper, the objective is to evaluate the model
performance at different spatial grid resolutions (Figure 3)
for the 2m air temperature over selected European cities
which belong to different climatic conditions.

4. Results and Discussion

4.1. Benchmark Analysis. Mean daily temperature forecasts
for each of the eight European cities of the e-kmf™ model at
different spatial resolutions are compared with observed
data to calculate the performance evaluation at different lead
times. Observed temperature data are available for the years
2013 and 2014, when particular weather periods are also
selected to be analysed over the selected cities.

)is fortnight is referred to stable and unstable time,
where stable means that the meteorological pattern may be
generally referred to a presence of a high pressure at synoptic
scale with limited temperature changes between the fol-
lowing days, while unstable is referred to a relatively oc-
currence of low pressure or changeable weather due to the
passage of fronts and instabilities with significant variations
in temperatures among consecutive days.

Some statistical indexes, commonly known in literature,
are used to set up the analysis. Among skill scores, the mean
absolute error (MAE) is the one which efficiently represents
the magnitude of forecast error in a given verification data
set, and it is also daily used by Eni operators for energy and
gas planning models. Only the ensemble mean will be used
in this paper since this analysis is related to the operational
application of the energy consumptionmodel, which can use
a single value of temperature. However, the mean of the
ensemble scenarios is generally the most accurate forecast
[38], and it is more performing than a high-resolution
deterministic model prediction.

4.2. Role of Grid Spatial Resolution. To only evaluate impacts
of the horizontal grid on the results in the selected areas,
vertical resolution (48 levels) and physics have been
maintained the same for all simulations. Forecasts scaled on
designated cities in Italy, Germany, Belgium, France, and
UK are compared at all lead times (11 days in advance)
against observations coming from the SYNOP and METAR
stations. Statistics describing performances obtained in the
various simulations are shown in Tables 1–4.

In terms of MAE, higher resolutions appear more im-
portant for cities in Italy (Table 1) than for cities in Europe
(Table 2).)is is reasonable due to the presence of a complex
topography all around Italian cities (mainly Milano and
Torino which are in the Po Valley close to mountains and
less for Napoli and Roma, where the maritime climate
mitigates the daily variations of temperatures), while for
European cities of London, Paris, and Brussels, there are no
relevant orographic characteristics around; a partial
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exception is Munich, in Germany, due to the presence of
Alps, southerly to this place.

It appears that the transition from 18 to 5.5 km grid
spacing allows a better de�nition of the main mesoscale
features; in fact, di�erences in the horizontal grid resolution
mean di�erences in mean model orography. In addition,
local �uxes may also depend on the subgrid representation
of topography. However, the representation of the mean
orography appears to play an important role for the

prediction of near-surface temperatures. �is is not sur-
prising, since the low-level atmospheric spectra closely
follow the mean orography spectra [39]. �e degradation in
forecast skill resulting from using a smoother mean orog-
raphy can only partially be alleviated by using more vari-
ability in the subgrid orography, and the parameterized drag
does not a�ect the �ow in the same way as the resolved drag.
2m temperatures of the cities near relevant mountains
(Milano, Torino, but also Munich) are, then, in�uenced by
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Figure 3: Example of the four grid domains: 5.5 km (a), 8 km (b), 13 km (c), and 18 km (d) of the e-kmf™model; the green dot shows the city
centre of Milano in the north of Italy.
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the nearby topography, especially, when the interaction
between synoptic and mesoscale fluxes with the mountains
gives an important contribution to the variability of the
near-surface variables.

Forecasts of near-surface variables in flat terrain depend
on the predictability of the lower-atmospheric boundary
layer. In complex terrain, forecasts not only suffer from the
model’s inability to reproduce accurate atmospheric con-
ditions in the lower atmosphere but also struggle with
representative issues due to mismatches between the model
and the actual terrain. In addition, surface forecasts at finer
resolutions do not always outperform those at coarser
resolutions (see, for instance, the MAE at 5.5 and 8 km, for
Torino).

An improvement in the MAE of predicted daily mean
temperatures has been obtained with errors generally below
2°C (italicized numbers in Tables 1 and 2) in the overall
forecasted period. )is MAE threshold may be reasonably

considered a focal target for the temperature prediction by a
meteorological model. In contrast, there are only small
improvements in verification statistics as grid spacing de-
creased from 8 to 5.5 km. Reducing grid spacing provides
more detail and structure (e.g., defining steeper orographic
slopes), but it has only a limited impact on traditional
objective verification scores in the points analysed here.
However, in this application, the verification is also nec-
essarily dependent on the needs of the end user; the e-kmf™
model, with 18 km grid resolution, might be suitable for the
prediction of near-surface temperatures by the energy
consumption application over cities mainly dominated by
Atlantic patterns over a week ahead from the initialization
date. )e same model resolution depicts an analogous
performance only until the fourth day over areas where
terrain and surface contrasts may have a significant in-
teraction with mesoscale features. At the end, the 8 km
horizontal resolution may result as the best compromise in

Table 1: MAE of the e-kmf™ temperature forecasts at different spatial resolutions and lead times over the Italian cities; values in italics
depict a forecast below the 2°C error threshold.

MAE (°C) d + 0 d + 1 d + 2 d + 3 d + 4 d+ 5 d + 6 d+ 7 d + 8 d+ 9 d + 10 d + 11
Milano (5.5 km) 0.45 0.56 0.59 0.75 0.79 1.29 1.76 2.03 2.21 2.16 2.43 2.72
Milano (8 km) 0.46 0.58 0.58 0.76 0.83 1.30 1.79 2.06 2.25 2.24 2.47 2.76
Milano (13 km) 0.63 0.76 0.77 1.01 1.07 1.66 2.27 2.58 2.80 2.77 3.04 3.38
Milano (18 km) 1.12 1.25 1.26 1.55 1.63 2.43 3.21 3.46 3.69 3.57 3.88 4.24
Torino (5.5 km) 0.59 0.74 0.85 0.80 0.83 1.19 1.78 2.28 2.28 2.42 2.39 2.61
Torino (8 km) 0.40 0.62 0.69 0.87 0.89 1.27 1.92 2.48 2.65 2.84 2.80 3.06
Torino (13 km) 0.55 0.84 0.94 1.16 1.19 1.65 2.46 3.14 3.31 3.55 3.51 3.78
Torino (18 km) 0.96 1.37 1.52 1.77 1.79 2.37 3.41 4.17 4.29 4.48 4.44 4.66
Roma (5.5 km) 0.33 0.45 0.55 0.54 0.59 1.15 1.55 1.93 1.98 1.90 2.24 2.37
Roma (8 km) 0.34 0.46 0.54 0.55 0.61 1.16 1.57 1.96 2.00 1.98 2.27 2.40
Roma (13 km) 0.47 0.63 0.73 0.76 0.81 1.55 2.05 2.52 2.55 2.49 2.87 3.03
Roma (18 km) 0.78 1.02 1.19 1.15 1.19 2.23 2.79 3.30 3.26 3.11 3.55 3.74
Napoli (5.5 km) 0.22 0.39 0.47 0.47 0.59 0.98 1.41 1.68 1.87 1.93 2.11 2.21
Napoli (8 km) 0.24 0.40 0.47 0.49 0.63 1.01 1.43 1.73 1.96 2.07 2.18 2.27
Napoli (13 km) 0.33 0.56 0.67 0.68 0.86 1.39 1.96 2.31 2.58 2.69 2.87 2.92
Napoli (18 km) 0.51 0.85 1.01 0.97 1.19 1.90 2.57 2.88 3.11 3.16 3.36 3.44

Table 2: MAE of the e-kmf™ temperature forecasts at different spatial resolutions and lead times over the European cities; values in italics
depict a forecast below the 2°C error threshold.

MAE (°C) d + 0 d + 1 d + 2 d + 3 d + 4 d + 5 d + 6 d + 7 d + 8 d + 9 d+ 10 d + 11
Brussels (5.5 km) 0.83 0.87 0.91 1.07 1.25 1.52 1.48 1.34 1.33 1.51 1.76 1.88
Brussels (8 km) 0.88 0.94 0.94 1.12 1.29 1.58 1.54 1.38 1.38 1.58 1.84 1.95
Brussels (13 km) 0.94 0.98 0.96 1.17 1.36 1.67 1.62 1.46 1.48 1.69 1.96 2.09
Brussels (18 km) 0.97 1.01 1.01 1.21 1.40 1.73 1.66 1.50 1.49 1.71 1.96 2.09
London (5.5 km) 0.51 0.57 0.66 0.92 1.09 1.32 1.43 1.04 1.14 1.38 1.56 1.64
London (8 km) 0.57 0.62 0.69 0.97 1.15 1.38 1.49 1.08 1.19 1.44 1.62 1.71
London (13 km) 0.61 0.64 0.70 0.99 1.18 1.43 1.55 1.13 1.25 1.52 1.69 1.78
London (18 km) 0.62 0.65 0.71 1.01 1.21 1.48 1.59 1.15 1.28 1.54 1.71 1.81
Paris (5.5 km) 0.77 0.86 0.79 1.08 1.27 1.56 1.61 1.26 1.48 1.63 1.83 2.00
Paris (8 km) 0.86 0.95 0.84 1.12 1.33 1.63 1.67 1.30 1.55 1.71 1.92 2.09
Paris (13 km) 0.93 0.99 0.86 1.17 1.38 1.72 1.74 1.37 1.65 1.82 2.02 2.20
Paris (18 km) 0.95 1.01 0.88 1.20 1.43 1.79 1.79 1.40 1.67 1.85 2.04 2.23
Munich (5.5 km) 0.79 1.06 1.16 1.17 1.17 1.48 1.35 1.56 1.67 1.89 2.17 2.38
Munich (8 km) 0.88 1.16 1.24 1.22 1.23 1.55 1.39 1.63 1.73 1.98 2.25 2.49
Munich (13 km) 0.95 1.22 1.28 1.30 1.30 1.66 1.50 1.74 1.87 2.14 2.41 2.66
Munich (18 km) 1.00 1.30 1.36 1.36 1.37 1.75 1.55 1.80 1.91 2.19 2.47 2.72
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terms of both computational time and relatively low error
scores (<2°C) and in terms of the application to energy
consumption models.

In addition to the MAE, which gives an idea of the
average magnitude of the forecast errors, the RMSE (root
mean square error) puts in evidence the biggest temperature
errors at the different lead times. )is may be a useful
performance analysis parameter, although it does not give
information about deviations as the ME (mean error).
Concerning theME analysis (not presented here, for the sake
of brevity), it exhibits a general underestimation over Italian
cities, while an opposite behaviour is found over European
ones. )is outcome needs to be further investigated. Af-
terwards, the RMSE performance over Italian (Table 3) and
European cities is shown (Table 4).

Results presented in the Tables 1–4 faithfully follow the
MAE behaviour, particularly for Italian cities. It clearly
appears, as above described, how large errors are enhanced
from day + 7 onwards at all grid resolutions and from day + 5

for coarser ones (13 and 18 km). Particularly, it is interesting
to note the performance at 18 km grid resolution for Torino,
where the presence of the surrounding Alps likely induces
errors beyond the 2°C threshold from day + 2. For European
cities, instead, a better performance is overall confirmed
although some flaws are even found from day + 5 for the
lower grid resolutions. Again, the 8 km grid resolution
represents the optimal choice for all the analysed cities in
terms of performance and computational costs, considering
the model runs several times a day.

4.3. Stable and Unstable Weather Condition Periods. )e
abovementioned study highlights general results over a
period of two years. A subsequent deeper investigation is
carried out using the 2m temperature variable over par-
ticular periods characterized by opposite weather pattern
configurations in order to evaluate if the e-kmf™ perfor-
mance is enhanced or smoothed at different grid resolutions.

Table 3: RMSE of the e-kmf™ temperature forecasts at different spatial resolutions and lead times over the Italian cities; values in italics
depict a good forecast below the 2°C error threshold.

RMSE (°C) d + 0 d + 1 d + 2 d + 3 d + 4 d + 5 d + 6 d + 7 d + 8 d + 9 d + 10 d + 11
Milano (5.5 km) 0.58 0.75 0.81 0.96 0.96 1.58 2.19 2.45 2.73 2.77 2.89 3.16
Milano (8 km) 0.60 0.77 0.79 0.97 0.99 1.61 2.23 2.50 2.77 2.86 2.94 3.21
Milano (13 km) 0.82 0.98 1.03 1.28 1.28 2.05 2.83 3.12 3.46 3.53 3.63 3.93
Milano (18 km) 1.46 1.59 1.69 1.98 1.95 3.00 4.00 4.19 4.55 4.53 4.61 4.90
Torino (5.5 km) 0.83 0.99 1.19 1.11 1.14 1.49 2.26 2.84 2.86 2.96 2.87 3.15
Torino (8 km) 0.54 0.86 0.96 1.14 1.12 1.52 2.35 2.98 3.14 3.32 3.24 3.52
Torino (13 km) 0.75 1.16 1.30 1.50 1.49 1.98 3.01 3.76 3.94 4.14 4.05 4.35
Torino (18 km) 1.31 1.91 2.11 2.30 2.26 2.86 4.18 5.00 5.11 5.22 5.10 5.35
Roma (5.5 km) 0.46 0.56 0.67 0.71 0.79 1.42 1.90 2.36 2.49 2.62 2.79 2.79
Roma (8 km) 0.48 0.58 0.66 0.72 0.81 1.44 1.93 2.40 2.53 2.71 2.83 2.83
Roma (13 km) 0.63 0.79 0.89 0.97 1.05 1.91 2.52 3.07 3.22 3.43 3.57 3.56
Roma (18 km) 1.03 1.28 1.45 1.47 1.55 2.73 3.45 4.04 4.12 4.28 4.41 4.42
Napoli (5.5 km) 0.32 0.51 0.57 0.60 0.73 1.27 1.80 2.11 2.39 2.57 2.78 2.66
Napoli (8 km) 0.33 0.52 0.58 0.61 0.77 1.31 1.82 2.19 2.51 2.74 2.87 2.74
Napoli (13 km) 0.42 0.71 0.82 0.86 1.04 1.80 2.50 2.92 3.32 3.57 3.76 3.53
Napoli (18 km) 0.64 1.07 1.23 1.22 1.44 2.47 3.27 3.64 3.99 4.21 4.42 4.18

Table 4: RMSE of the e-kmf™ temperature forecasts at different spatial resolutions and lead times over the European cities; values in italics
depict a good forecast below the 2°C error threshold.

RMSE (°C) d + 0 d + 1 d + 2 d + 3 d + 4 d + 5 d + 6 d + 7 d + 8 d + 9 d+ 10 d + 11
Brussels (5.5 km) 1.10 1.12 1.18 1.38 1.55 1.90 1.81 1.61 1.64 1.89 2.19 2.34
Brussels (8 km) 1.15 1.19 1.22 1.42 1.60 1.98 1.88 1.66 1.70 1.98 2.28 2.43
Brussels (13 km) 1.20 1.23 1.25 1.47 1.68 2.09 1.99 1.76 1.84 2.13 2.43 2.60
Brussels (18 km) 1.23 1.25 1.29 1.52 1.72 2.15 2.04 1.80 1.86 2.15 2.43 2.60
London (5.5 km) 0.64 0.68 0.79 1.17 1.40 1.80 1.79 1.33 1.52 1.83 1.98 2.02
London (8 km) 0.71 0.74 0.84 1.23 1.47 1.88 1.87 1.38 1.58 1.90 2.05 2.10
London (13 km) 0.75 0.76 0.84 1.25 1.50 1.97 1.94 1.45 1.66 2.01 2.14 2.18
London (18 km) 0.77 0.77 0.85 1.28 1.55 2.01 1.99 1.48 1.69 2.03 2.16 2.21
Paris (5.5 km) 0.95 1.04 1.00 1.32 1.55 1.89 1.94 1.54 1.80 1.96 2.17 2.37
Paris (8 km) 1.07 1.14 1.06 1.36 1.63 1.97 2.02 1.60 1.88 2.05 2.27 2.47
Paris (13 km) 1.15 1.19 1.09 1.42 1.69 2.09 2.12 1.68 2.01 2.18 2.38 2.60
Paris (18 km) 1.18 1.22 1.12 1.45 1.75 2.17 2.18 1.72 2.03 2.22 2.41 2.63
Munich (5.5 km) 0.98 1.26 1.39 1.38 1.36 1.84 1.66 1.80 1.98 2.14 2.49 2.76
Munich (8 km) 1.08 1.38 1.48 1.44 1.42 1.93 1.72 1.88 2.05 2.24 2.59 2.88
Munich (13 km) 1.16 1.46 1.54 1.53 1.51 2.06 1.84 2.00 2.19 2.44 2.76 3.07
Munich (18 km) 1.22 1.54 1.63 1.60 1.58 2.16 1.90 2.08 2.24 2.49 2.84 3.15
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�e following steps describe the adopted methodology
chosen for selecting stable and unstable periods through
temperature data only. First of all, we calculated the daily
mean temperature (Tdaily mean) from observed hourly tem-
perature data (original dataset), then the daily temperature
di�erences between day + 0 and day – 1 (Tdeviations); then,
we calculated the weighted mean of T deviations on a
moving window of 14 days (T-weighted mean), and �nally,
the highest value of T-weighted mean has been associated to
an unstable period, while the lowest value to a stable period
for each city, as shown in Figure 4 for the example of Milano
city.

Two stable periods in winter and summer and two
unstable periods in spring and autumn were selected ac-
cordingly to a similar synoptic pattern found over the eight
cities at the same time and in accordance with the calcu-
lations of the weighted temperature mean.

(i) 1st unstable period: 14–27 April 2013
(ii) 2nd unstable period: 28 October–10 November 2013
(iii) 3rd stable period: 23 January–5 February 2014
(iv) 4th stable period: 23 June–7 July, 2015, where the

presence of the massive high pressure in the sum-
mer 2015 over the greatest part of Europe let to
choose a period (out of the original dataset) which
was mutually stable over all the eight Italian and
European cities.

For the sake of brevity, in the following pictures, we show
the comparison for the 1st (unstable) and the 4th (stable)
periods for the eight cities and for all lead times at di�erent
grid model resolutions.

It clearly appears how the spread between the MAE for
Italian and European cities is con�rmed here, and, even

wider, worsening the grid resolution model (Figure 5).
Forecast errors are between 2 and 4°C from the sixth day
onwards during the unstable period and they can reach even
5°C as temperature deviation with a coarser resolution
model.

On the contrary, during the presence of the July 2015
anticyclone which embraced the whole of Europe, the
performances of the e-kmf™ are higher, as logically one can
expect. �e MAE remains below the 2°C error threshold
event at lower model resolution (Figure 6), expect for Torino
and Milano where local topography plays a crucial role, and
the temperature forecast errors reach 4°C and 5°C as dif-
ferences with local observations with the 13 km and 18 km
grid resolution.

Considering these selected periods, the presence of
synoptic-scale high pressure generally increases the forecast
horizon reducing the impact of grid resolution. On the other
side, in unstable weather conditions, generally responsible of
abrupt changes in observed temperatures, the MAE in-
creases as grid resolution decreases, especially for places
where in�uences of the terrain may become relevant.

5. Conclusions

�e analysis about temperature forecast errors has been
carried out over eight cities among Italian and European
cities during the years 2013 and 2014 and, afterwards, for
four periods of two weeks with di�erent synoptic conditions.
�e MAE and RMSE are used to calculate the performance
analysis between observed data andmeteorological output of
the e-kmf™ weather forecast model at di�erent spatial
resolutions (5.5, 8, 13, and 18 km).

�e aim of the study is to analyse the role of spatial
resolution on temperature forecasts of the e-kmf™model for
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Figure 5: Comparison of the MAE for the 14–27 April 2013 episode between the e-kmf™ model at di�erent grid resolutions over all the
analysed cities from day + 0 to day + 11 as lead time of forecast.
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Figure 6: Continued.
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those sites characterized by di�erent climate and terrain
conditions as tested by the four European cities (London,
Paris, Brussels, and Munich) and the four Italian cities
(Milano, Torino, Roma, and Napoli). Results on the e-kmf™
spatial resolution analysis show the role of grid size onmodel
performances at any lead time (up to day + 11). In particular,
the spatial resolution change from 18 to 5.5 km is more
relevant over the Italian (Mediterranean) cities than the
European (continental) ones, since these are a�ected by
Atlantic climate conditions. A temperature score lower than
2°C (MAE and RMSE), which can be considered an ac-
ceptable threshold for an e�ective temperature forecast in
energy consumption applications, is achieved using the
forecast model with 5.5 km grid resolution up to day + 5 in
Milano and Torino, up to day + 6 in Napoli and Roma, and
up to day + 9 in Brussels, Paris, and London. RMSE analysis
for Torino (close to the Alpine region) exhibits the lowest
performance score at the coarsest resolution model (18 km)
already since the day + 2 forecast, showing the importance of
the surrounding terrain characteristics. For an operative
application over both Italian and European cities by mini-
mizing the computational costs, a proper grid size might be
8 km. Finally, considering that it is used as a single daily
value in the energy consumption operational prediction
model, this benchmark analysis has only looked at the
ensemble mean value of temperatures. A future develop-
ment will account for each forecast ensemble member in-
dividually in order to generate a probability distribution for
energy consumption predictions.

Abbreviations

e-kmf™: eni-kassandra meteo forecast
IDW: Inverse distance weighting
MAE: Mean absolute error
METAR: Meteorological aerodrome report
NWP model: Numerical weather prediction model
SYNOP: Surface Synoptic observations.
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