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ABSTRACT
A family of oligopolies that possess a unique equilibrium was identified
in the second authors doctoral dissertation. For such a family, it is
therein specified a class of functions-economically related to the price
function of a Cournot oligopoly – that satisfy a particular type of quasi-
concavity. The first part of the present article (i) conceptualizes that
type of quasi-concavity by introducing the notion of demi-concavity,
(ii) considers two possible variants and (iii) provides some calculus
properties. The second part, by relying on the results on demi-concavity,
proves a Cournot equilibrium uniqueness theorem which is new for the
journal literature and subsumes various results thereof. A third part shows
an example that illustrates the novelty of the result.
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1. Introduction

Quasi-concavity is an important property in optimization theory and is often conveniently employed
in game theory and economics. In the present article we introduce a special type of quasi-concavity
which we refer to as demi-concavity. As far as we know, demi-concavity has not been systematically
analyzed in the literature. The only exception – or perhaps the most important exception by far – is
[1], where the closely related notion of semi-convexity is investigated.

Even though it might not be evident at a first glance, the structure of the problem of the necessity
and sufficiency of the conditions for the existence of a unique Cournot equilibrium propounded in
[2] is intrinsically related to the definition of semi-convexity enunciated in [1] and hence – by virtue
of the characterization Theorem 1.6.2 in [1] – to our definition of demi-concavity. A relatively simple
proof of equilibrium semi-uniqueness (i.e. of the existence of at most one equilibrium) in Cournot
oligopolies with convex cost functions had been developed in the mentioned doctoral thesis. The
method of that proof makes a crucial – but tacit – use of the properties of demi-concave functions.
The subsequent articles [3,4] showed that in presence of convex cost functions such a method can be
conveniently applied in the proof of equilibrium semi-uniqueness in Cournot oligopolies when either
the ‘integrated price flexibility’ function or the ‘industry revenue’ function is concave; however, none
of the two articles gives evidence of the role of demi-concavity in that method. The main purpose
of this work is to clarify such a role with an equilibrium semi-uniqueness result (our Theorem 3.3)
which is new for the journal literature and subsumes various results thereof. As we shall explain in
the body of this work, the mere problem of the existence of at least one equilibrium is not in fact a
real issue because of standard equilibrium existence results like that in [5].
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2 P. VON MOUCHE AND F. QUARTIERI

The paper consists of three parts: Section 2 on the notion of demi-concavity, Section 3 on the
new equilibrium semi-uniqueness result and Section 4 on the novelty of that result. In Section 2
we conceptualize quasi-concavity introducing the qualitative definition of a (continuous) demi-
concave function and of its variants; as ourmain results on equilibrium semi-uniqueness are generally
valid only under certain assumptions on the differentiability of the price functions, most of our
examination of the properties of demi-concave functions restricts attention to the differentiable case.
(The necessity of this condition is investigated in [2] and various examples of the literature show
that such a condition cannot be dispensed with.) In Section 3 we fix the oligopolistic setting and we
present the new equilibrium semi-uniqueness result: Theorem 3.3. In Section 4 we first seek a specific
class of price functions that satisfy the conditions imposed in Theorem 3.3 and then, by means of a
numerical example, we show the novelty of that theorem in regard to that class. Appendix 1, with its
Lemmas A.1-A.3 recalls some results of convex analysis for price functions.

Our examination of demi-concavity is restricted to some properties that apply to the main results
of this work on equilibrium semi-uniqueness in Cournot oligopolies. Nevertheless, we maintain that
a more independent and systematic analysis of demi-concavity is called for. Indeed, we maintain
that such a notion of quasi-concavity can be frequently used in economics because of the very
basic ‘counting’ structure of many problems in which a (possibly parametrized) objective function
controlled by an agent is a real continuous quasi-concave function f on a real interval that satisfies the
equality f = g−h, where g is usually interpreted as an ‘income’ function and h as a cost function. As it
is clear from Section 2.2 below, if we assume that costs are increasing and convex –which is a standard
assumption in many economic applications and which embodies the idea of decreasing returns to
scale – and income is continuous, one of the weakest assumptions we can impose to guarantee the
quasi-concavity of f is, in some loose sense, the demi-concavity of g : the stronger assumption of
concavity of g is unnecessary and the weaker assumption of quasi-concavity of g does not generally
guarantee the desired result. With the present article we hope also to contribute to the development
of a strand of literature on this type of quasi-concavity.

2. Demi-concavity

2.1. Notions

Henceforth the letter I will denote a real interval and we shall use Euler’s notation for derivatives (and
hence, for instance, Dg will denote the derivative of a differentiable real-valued function g defined
on a proper real interval). The interval I will be tacitly assumed to be proper when it will be the
domain of a differentiable function. As usual, Int(I) will denote the topological interior of I , inf

(
I
)

the infimum of I in the extended reals and sup
(
I
)
the supremum of I in the extended reals. When the

interval I will be proper, the interval I\ {
inf

(
I
)}

will be denoted by I⊕ and the interval I\ {
sup

(
I
)}

by I�. By a sequential partition (into two parts) of I we mean an ordered pair
(
I1, I2

)
of possibly

empty real intervals I1 ⊆ I and I2 ⊆ I such that I1 ∪ I2 = I and I1 < I2 (i.e. such that x < y for all(
x, y

) ∈ I1 × I2).
Definition 1: Let g : I → R be a continuous function.

(1) g is demi-concave if there exists a sequential partition (I1, I2) of I such that g�I1 is concave
and g�I2 is decreasing.

(2) g is semi-strictly demi-concave if there exists a sequential partition (I1, I2) of I such that g�I1
is strictly concave and g�I2 is decreasing.

(3) g is strongly demi-concave if g is differentiable and there exists a sequential partition (I1, I2)
of I such that g�I1 is strictly concave and Dg < 0 on I2.

Remark 1: In Definition 1 (1), (2) the preliminary continuity condition is simply inessential.
Nonetheless, in the results of this Section 2 such a condition is always present – mostly for the
sake of expositional convenience – and hence we have preliminarily assumed it in Definition 1.
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OPTIMIZATION 3

2.2. Some general properties

Proposition 2.1 relates the three notions of demi-concavity introduced so far with that of quasi-
concavity.
Proposition 2.1: Let g : I → R be a continuous function. The following sequence of implications
is true: g is strongly demi-concave ⇒ g is semi-strictly demi-concave ⇒ g is demi-concave ⇒ g is
quasi-concave.

Proof: Only the last implication may not be evident. Its proof is as follows. Fix a sequential partition
(I1, I2) of I such that g�I1 is concave and g�I2 is decreasing. As g�I1 is concave, g�I1 is quasi-concave
and hence there exists a sequential partition (I11, I12) of I1 such that g�I11 is increasing and g�I12 is
decreasing. Thus (I11, I12 ∪ I2) is a sequential partition of I and g is decreasing on I12 ∪ I2 by the
continuity of g . As g is increasing on I11, we can conclude that the upper level sets of g are convex, or
equivalently that g is quasi-concave.

Definition 1 implies the following simple important result.
Theorem 2.2: Let g : I → R be a continuous function and let h : I → R be continuous, decreasing
and concave. If g is demi-concave (semi-strictly-demi-concave), then g + h is demi-concave (semi-
strictly-demi-concave).

2.3. Some calculus properties

Lemma 2.3: Suppose g : I → R is differentiable. Besides suppose

x1, x2 ∈ I , x1 < x2 and Dg
(
x1

)
> 0 ⇒ Dg

(
x1

) (
>
) ≥ Dg

(
x2

)
.

Put H> := {
x ∈ I | Dg (

x
)
> 0

}
and H≤ := {

x ∈ I | Dg (
x
) ≤ 0

}
.

(1) The pair
(
H>,H≤

)
is a sequential partition of I.

(2) The function g is decreasing on H≤, strictly increasing on H> and (strictly) concave on H>.

Proof:

(1) As H> ∩ H≤ = ∅ and H> ∪ H≤ = I , we are done if we show that
(
x1, x2

) ∈ H> × H≤
implies x1 ≤ x2. By contradiction, suppose x1 ∈ H>, x2 ∈ H≤ and x2 < x1. As Dg has
the Darboux property, there exists x∗

1 ∈]x2, x1[ such that Dg
(
x∗
1
) = Dg

(
x1

)
/2. But then

Dg
(
x1

)
> Dg

(
x∗
1
)
> 0 and x∗

1 < x1, in contradiction with the implication in the statement of
this lemma both in the case between parentheses and in that without.

(2) By part 1,H≤ andH> are intervals. Thus g is decreasing onH≤, strictly increasing onH> and
the implication in the statement of this lemma entails the (strict) decreasingness of Dg onH>
and hence the (strict) concavity of g on H>. �

The statements after the double implications in Theorem 2.4 are meant to hold for every x1, x2 ∈ I
such that x1 < x2.
Theorem 2.4: Suppose g : I → R is differentiable.

(1) g is demi-concave ⇔ [
Dg

(
x2

)
> 0 ⇒ Dg

(
x1

) ≥ Dg
(
x2

)]
.

(2) g is semi-strictly demi-concave ⇔ [
Dg

(
x2

)
> 0 ⇒ Dg

(
x1

)
> Dg

(
x2

)]
.

(3) g is strongly demi-concave ⇔ [
Dg

(
x2

) ≥ 0 ⇒ Dg
(
x1

)
> Dg

(
x2

)]
.

Proof:

(1) ‘⇒’. Suppose g is demi-concave. Besides suppose x1, x2 ∈ I , x1 < x2 and Dg
(
x2

)
> 0. Let(

I1, I2
)
be a sequential partition of I such that g is concave on I1 and decreasing on I2. If I2 is

not proper, then g is concave on I and hence Dg
(
x1

) ≥ Dg
(
x2

)
. Suppose I2 is proper. Then

Dg is non-positive on I2. Thus x1, x2 ∈ I1 and Dg
(
x1

) ≥ Dg
(
x2

)
by the concavity of g on I1.
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4 P. VON MOUCHE AND F. QUARTIERI

‘⇐’. Suppose the right-hand side of the double implication is true. Then, a fortiori, the part
without parentheses of the implication in the statement of Lemma 2.3 is true and hence g is
demi-concave by that lemma.

(2) ‘⇒’. Suppose g is semi-strictly demi-concave. Besides suppose x1, x2 ∈ I , x1 < x2 and
Dg

(
x2

)
> 0. Let

(
I1, I2

)
be a sequential partition of I such that g is strictly concave on I1 and

decreasing on I2. If I2 is not proper, then g is strictly concave on I and henceDg
(
x1

)
> Dg

(
x2

)
.

Suppose I2 is proper. Then Dg is non-positive on I2. Thus x1, x2 ∈ I1 and Dg
(
x1

)
> Dg

(
x2

)
by the strict concavity of g on I1.
‘⇐’. Suppose the right-hand side of the double implication is true. Then, a fortiori, the part
with parentheses of the implication in the statement of Lemma 2.3 is true and hence g is
semi-strictly demi-concave by that lemma.

(3) ‘⇒’. Suppose g is strongly demi-concave. Besides suppose x1, x2 ∈ I , x1 < x2 andDg
(
x2

) ≥ 0.
Let

(
I1, I2

)
be a sequential partition of I such that g is strictly concave on I1 andDg is negative

on I2. Therefore x2 ∈ I1. Thus x1 ∈ I1 and Dg
(
x1

)
> Dg

(
x2

)
by the strict concavity of g on

I1.
‘⇐’. Suppose the right-hand side of the double implication is true. A fortiori, the right-hand
side of the double implication of part 2 is true and by part 2 there exists a sequential partition(
I1, I2

)
of I such that g is strictly concave on I1 and decreasing on I2. If I2 is not proper,

then the differentiable function g is strictly concave (and hence strongly demi-concave) on I .
Suppose I2 is proper. ThenDg is non-positive on I2. The functionDg is even negative on I⊕2 : if
Dg vanished at some x ∈ I⊕2 , then the right-hand side of the double implication would entail
the positivity of Dg on the non-empty subset ] inf I2, x[ of I⊕2 and this would contradict the
non-positivity ofDg on I⊕2 . If I2 = I⊕2 , then

(
I1, I2

)
is a sequential partition characterizing the

strong demi-concavity of g . If I2 �= I⊕2 , then inf I2 ∈ I2 and
(
I1 ∪ {inf I2} , I⊕2

)
is a sequential

partition characterizing the strong demi-concavity of g . �
Corollary 2.5 clarifies the relation between the implication used in the main results in [2] and the

characterizing implication of Theorem 2.4 (2).

Corollary 2.5: Suppose g : I → R is a differentiable function. Then g is semi-strictly demi-concave
if and only if

x1, x2 ∈ I , x1 < x2 and Dg
(
x1

)
> 0 ⇒ Dg

(
x1

)
> Dg

(
x2

)
.

Proof: The ‘if’ part follows from Lemma 2.3 with parentheses. The ‘only if’ part follows from
Theorem 2.4 (2): the validity of the right-hand side of the double implication of Theorem 2.4 (2)
implies, a fortiori, the validity of the implication in the statement of this corollary.

We provide a final result used in a proof in Section 4.

Proposition 2.6: A differentiable function g : I → R is strongly demi-concave if and only if it is
strongly demi-concave on I⊕.

Proof: The ‘only if’ part is evident. Now we prove the ‘if’ part. Suppose g is strongly demi-concave
on I⊕. We may suppose that I �= I⊕. Let a ∈ I be such that I = I⊕ ∪ {a}. Let (I1, I2) be a sequential
partition of I⊕ such that g�I1 is strictly concave and Dg < 0 on I2. Now (I1 ∪ {a}, I2) is a sequential
partition of I such that g�I1 is strictly concave andDg < 0 on I2. Thus g is strongly demi-concave.

Remark 2: Proposition 2.6 is false if one replaces I⊕ with Int(I). For instance, cos �[0,π ] is strongly
demi-concave on ]0,π [ but not on ]0,π ].
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OPTIMIZATION 5

3. Cournot oligopolies

3.1. Setting

A (homogeneous) Cournot oligopoly is a game in strategic form with a player set N := {1, . . . , n}
whose elements are called firms. We assume that each firm i has a strategy set Xi which is a (possible
right-open and possibly unbounded) proper interval of R+ containing 0. The elements of Xi, that
is the strategies, are also called production levels and those of the Minkowski-sum Y := ∑

l∈N Xl
industry production levels. PuttingX := Xn

i=1Xi, each firm i’s payoff function ui : X → R is defined
by

ui
(
x
) := p(

∑
l∈N

xl)xi − ci(xi)

and is called firm i’s profit function. Henceforth p : Y → R is called price function (also known as
inverse demand function) and ci : Xi → R is called firm i’s (net) cost function. A Nash equilibrium
of a Cournot oligopoly is called a (Cournot) equilibrium. When either Xi = [0,mi] or Xi = [0,mi[,
firm i is said to have a capacity constraint mi. When Xi = [0,mi] the capacity constraint will be
called a binding capacity constraint. Needless to say, Y is a proper interval of R with 0 ∈ Y ⊆ R+
and Y is compact if and only if Xi = [0,mi] for each player i; in such a case Y = [0,∑l∈N ml]. The
profit functions – as well as the set of equilibria – of these oligopolies do not depend on the value of
p at 0. Thus only the proper price function

p̃ := p�Y⊕

matters (recall that Y⊕ = Y \ {0}).
Before proceeding we introduce some useful notation for a function g : J → R whose domain is

a proper real interval J ⊆ R+. For k ∈ R+, let

Jk := (J − {k}) ∩ R+.

Clearly J0 = J and Jk is an interval. For each k ∈ J� the interval Jk is proper.When k ∈ R+, we define
the function g (k) : Jk → R by

g (k)(x) := g(x + k).

We define the function rg : J → R by
rg := g · Id

and hence rg (x) = g(x)x. When g vanishes nowhere, we define ηg : J → R by

ηg := Dg
Id
g

and hence ηg (x) = Dg(x) x
g(x) . When g is positive and continuous and given q ∈ J , we define the

function Lg : J → R by

Lg (y) := y ln g(y) −
∫ y

q
ln g(ξ) dξ. (1)

This function depends on q, but several of its properties (such as its concavity, its strict concavity and
its decreasingness) do not depend on q. Clearly, when g is differentiable, then

DLg = ηg . (2)

When g is interpreted as a price function, we refer to rg as the industry revenue associated to g ,
to Lg as the integrated price flexibility of g (with respect to q) and to ηg as the price flexibility of
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6 P. VON MOUCHE AND F. QUARTIERI

g . We say that g has a concave (resp. strictly concave, decreasing, strictly decreasing) integrated
price flexibility – and write that Lg is concave (resp. strictly concave, decreasing, strictly decreasing)
– if there exists q such that Lg is concave (resp. strictly concave, decreasing, strictly decreasing).

The functions p̃(k) : (Y⊕)k → R (where k ∈ R+) will play an important role in our analysis of
oligopolies. It is worth to remark that (Y⊕)k = (Y \ {0} − {k}) ∩ R+, that 0 ∈ (Y⊕)k when k ∈ Y⊕
and that (Y⊕)k is proper when k ∈ Y�.

3.2. The equilibrium (semi-)uniqueness result

In this subsection we consider the equilibrium uniqueness problem for Cournot oligopolies with
convex cost functions. Proposition 3.1 shows a preliminary equilibrium existence result. The proof
of Proposition 3.1 tacitly relies on the following variant for oligopolies of Theorem 1 in [6]1: An
oligopoly has an equilibrium if p̃ is decreasing and for each firm i: ui is continuous; ui is quasi-concave
in its i-th argument; there exists xi ∈ Xi such that p(xi)ci(xi) < ci(0) for every xi ∈ Xi with xi > xi.
Note that the last condition holds if each firm has a binding capacity constraint.
Proposition 3.1: Consider a Cournot oligopoly where for each firm i there exists xi ∈ Xi such that
rp(xi) − ci(xi) ≤ −ci(0) for every xi ∈ Xi with xi > xi. Further suppose that each cost function ci is
continuous, increasing and convex, the industry revenue function rp is continuous and p̃ is decreasing.
Then a sufficient condition for the existence of an equilibrium is that for every k ∈ Y the function rp(k)

is demi-concave.

Proof: Fix a player i. The continuity of rp entails that of p̃. This implies that ui is continuous at all
x �= 0 as ci is continuous. Also, ui is continuous at 0 as

|ui(x) − ui(0)| = |rp(
∑
l

xl)
xi∑
l xl

− ci(xi) + ci(0)| ≤ |rp(
∑
l

xl) − rp(0)| + |ci(0) − ci(xi)|

for all x �= 0. Suppose rp
(
k
) is demi-concave for every k ∈ Y . Fix the production level xl of each

firm l �= i and consider ui as a function of its i-th argument. Putting k := ∑
l �=i xl , this function

equals rp(k)�Xi − ci and is demi-concave by Theorem 2.2. Thus, by Proposition 2.1, it is also quasi-
concave.

Thus, for Cournot oligopolies like those in the previous proposition, equilibrium existence is not a
real issue. However, this proposition does not guarantee equilibrium semi-uniqueness. Theorem 3.3
below provides sufficient additional conditions for such an oligopoly to have atmost one equilibrium.
The proof of that theorem will make use of the following lemma.
Lemma 3.2: Suppose p̃ is positive and differentiable.

(1) If rp̃(k) is demi-concave for every k ∈ Int(Y), then Dp̃ ≤ 0.
(2) If rp̃(k) is semi-strictly demi-concave for every k ∈ Int(Y), then Dp̃ < 0.

Proof:

(1) Suppose rp̃
(
k
) is demi-concave for every k ∈ Int(Y). By contradiction, suppose Dp̃

(
y
)
> 0

for some y ∈ Y⊕. As Dp̃ has the Darboux property we can assume w.l.o.g. that y belongs
to Int(Y). Put υ := y/2 and note that also υ belongs to Int(Y) and hence υ is positive. As
p̃
(
y
) = p̃

(
υ
) (

υ
)
and Dp̃

(
y
)
> 0, we have

Dp̃
(
υ
) (

υ
)
> 0; (3)

so Drp̃
(
υ
) (

υ
) = Dp̃

(
υ
) (

υ
) · υ + p̃

(
υ
) (

υ
)
> 0 by the positivity of p̃

(
υ
)
at υ. Theorem 2.4 (1)

and the previous inequality imply the decreasingness ofDrp̃
(
υ
) on ]0,υ]; so rp̃(

υ
) is concave on

]0,υ]. But then, by LemmaA.2 (3), we get a contradiction with (3): to verify this claim identify
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OPTIMIZATION 7

the restrictions of the functions p̃
(
υ
)
and rp̃

(
υ
) to ]0,υ] of this Lemma 3.2 with the functions p̃

and rp̃ in the statement of Lemma A.2.
(2) Suppose rp̃

(
k
) is semi-strictly demi-concave for every k ∈ Int(Y). By contradiction, suppose

Dp̃
(
y
) ≥ 0 for some y ∈ Y⊕. Part 1 ensures that Dp̃

(
y
) ≤ 0. Thus Dp̃

(
y
) = 0 and Drp̃

(
y
) =

p̃
(
y
)
> 0.As rp̃ is semi-strictly demi-concave, Theorem2.4 (2) implies that rp̃ is strictly concave

on ]0, y]. Lemma A.2 (3) applies and guarantees that Dp̃ < 0 on ]0, y]: a contradiction. �
Henceforth N

∗ will denote the set of positive integers. When p̃ is differentiable, we fix an
antiderivative Pk of p̃

(
k
)
for every k ∈ Y� and we put

Rk,s := rp̃
(
k
) + (

s − 1
)
Pk (4)

for every k ∈ Y� and s ∈ N
∗.

Theorem 3.3: Consider a Cournot oligopoly and suppose each cost function ci is convex. Suppose
the proper price function p̃ is positive and differentiable. Besides suppose at least one of the following
conditions holds.

(Ia) Every Rk,s is strictly concave.
(Ib) Every Rk,s is strongly demi-concave and every ci is increasing.
(IIa) Every Rk,s is concave and every ci is strictly convex.
(IIb) Every Rk,s is demi-concave and every ci is strictly convex and increasing.
(III) Every Rk,s is semi-strictly demi-concave and every ci is strictly increasing.

Then there exists at most one equilibrium.

Proof: For x = (x1, . . . , xn) ∈ R
n andM ⊆ N we write xM := ∑

l∈M xl .
Suppose a, b are distinct equilibria and w.l.o.g. suppose

aN ≤ bN .

Let J := {l ∈ N | al < bl} and s := #J . Note that b �= 0, bN > 0, 1 ≤ s ≤ n, aJ ≤ aN , bJ ≤
bN , aJ < bJ , bJ − aJ ≥ bN − aN and bN − bJ ∈ Y�.

As rp̃(k) = Rk,1, Lemma 3.2 implies

Dp̃
{≤ 0,
< 0 in cases Ia, Ib and III. (5)

We next prove by contradiction that
aN > 0.

Suppose aN = 0. Then a = 0. As J �= ∅, we can fix j ∈ J . So bj > aj = 0. As p̃ is decreasing,
p(0) := limy↓0 p̃(y) exists in R ∪ {+∞} As cj is convex, D+cj(0) �= +∞. This implies that the
right partial derivative with respect to the j-th variable of ui at 0 exists in R ∪ {+∞} and equals
p(0) − D+cj(0). As a, b are equilibria, first order conditions imply that

Dp(bN )bj + p(bN ) − D−cj(bj) ≥ 0 ≥ p(0) − D+cj(0).

But Dp(bN )bj + p(bN ) − D−cj(bj) ≤ p(bN ) − D−cj(bj) < p(0) − D+cj(0), in contradiction with the
previous centered inequalities. (The strict inequality holds as either cj is strictly convex or p̃ is strictly
decreasing.)

As a and b are equilibria and aN �= 0, we have that D+
i ui(a) ≤ 0 ≤ D−

i ui(b) for all i ∈ J . That is

Dp(aN )ai + p(aN ) − D+ci(ai) ≤ 0 ≤ Dp(bN )bi + p(bN ) − D−ci(bi) (6)
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8 P. VON MOUCHE AND F. QUARTIERI

for all i ∈ J . This implies Dp(bN )bJ + sp(bN ) ≥ ∑
l∈J D−cl(bl). As cost functions are convex

and increasing in case Ib, strictly convex and strictly increasing in case IIb and convex and strictly
increasing in case III, we obtain

Dp(bN )bJ + sp(bN )

{≥ 0 in case Ib,
> 0 in cases IIb and III. (7)

Next we prove that

Dp(aN )aJ + sp(aN )

{
> Dp(bN )bJ + sp(bN ) in cases Ia, Ib and III,
≥ Dp(bN )bJ + sp(bN ) in cases IIa and IIb. (8)

Clearly, the previous inequalities are immediately implied by (5) when aN = bN because aJ < bJ .
Hence suppose aN < bN . As for each strategy profile x and subset J of N such that xN > 0 and
xN − xJ ∈ Y� the equality DRxN−xJ ,s(xJ ) = Dp(xN )xJ + sp(xN ) is true, (7) gives

Dp(bN )bJ + sp(bN ) = DRbN−bJ ,s(bJ )
{≥ 0 in case Ib,
> 0 in cases IIb and III.

As aN > 0,we see that aN−(bN−bJ )belongs to the domain (Y⊕)bN−bJ ofR
bN−bJ ,s. As aN−(bN−bJ ) <

bJ , from Theorem 2.4 we obtain that

DRbN−bJ ,s(aN − (bN − bJ ))
{
> DRbN−bJ ,s(bJ ) in cases Ia, Ib and III,
≥ DRbN−bJ ,s(bJ ) in case IIa and IIb.

As Dp(aN ) ≤ 0 and aN − (bN − bJ ) ≥ aJ , we have

DRbN−bJ ,s(aN − (bN − bJ )) = Dp(aN )(aN − (bN − bJ )) + sp(aN ) ≤ Dp(aN )aJ + sp(aN )

and hence (8) is true.
As cost functions are convex and in cases IIa and IIb even strictly convex,

−
∑
l∈J

D+cl(al)
{≥ −∑

l∈J D−cl(bl) in cases Ia, Ib and III,
> −∑

l∈J D−cl(bl) in cases IIa and IIb

and hence, by (8), we have that

Dp(aN )aJ + sp(aN ) −
∑
l∈J

D+cl(al) > Dp(bN )bJ + sp(bN ) −
∑
l∈J

D−cl(bl)

or equivalently that
∑

i∈J (Dp(aN )ai + p(aN ) − D+ci(ai)) >
∑

i∈J (Dp(bN )bi + p(bN ) − D−ci(bi)),
which is in contradiction with the inequalities in (6).

Remark 3: In Theorem 3.3 nomonotonicity property of the price function is mentioned. However,
Lemma 3.2 shows that in all five cases a monotonicity condition is implicitly imposed on the proper
price function.
Remark 4: In Theorem 3.3 the price function p may be discontinuous at 0. This possibility is
important not only for games of Cournot competition but also for rent-seeking games – see for
instance [7,8] – which are structurally analogous.

D
ow

nl
oa

de
d 

by
 [

R
M

IT
 U

ni
ve

rs
ity

 L
ib

ra
ry

] 
at

 2
1:

51
 2

2 
D

ec
em

be
r 

20
17

 



OPTIMIZATION 9

4. Examples

4.1. Concave industry revenue and concave integrated price flexibility

In Section 4.2 we shall prove that Theorems 4.1 and 4.2 below are consequences of Theorem 3.3, the
main result of this work. Such a consequentiality is worth to be remarked in that Theorems 4.1 and 4.2
essentially subsume some results of the literature like Theorem 3 in [3] and Theorem 2 in [4] (which,
in turn, respectively, improve upon some results in [9] for log-concave price functions and in [10] for
price functions with an associated concave industry revenue). We have written essentially because
some structural conditions on price functions (i.e. the possible non-positivity of the price function
in Theorem 2 in [4] and the possible non-differentiability of the price function at the maximum of
its domain in the case of binding capacity constraints in Theorem 2 in [4] and in Theorem 3 in [3])
are ruled out by the assumptions of Theorem 3.3. We remark, however, that at the cost of a more
technical presentation even such minor generalisations could have been handled without difficulty.
Theorem 4.1: Consider a Cournot oligopoly. Suppose each cost function ci is convex, the proper price
function p̃ is positive, differentiable and decreasing and its associated industry revenue function rp̃ is
concave. Any of the following three additional conditions is sufficient for the existence of at most one
equilibrium.

(I) rp̃ is strictly concave.
(II) Each ci is strictly convex.
(III) Each ci is strictly increasing and rp̃ is decreasing.

Theorem 4.2: Consider a Cournot oligopoly. Suppose each cost function ci is convex, the proper price
function p̃ is positive, differentiable and decreasing and its integrated price flexibility Lp̃ is concave. If
each cost function is increasing, then any of the following three additional conditions is sufficient for
the existence of at most one equilibrium.

(I) Lp̃ is strictly concave.
(II) Each ci is strictly convex.
(III) Each ci is strictly increasing and Lp̃ is strictly decreasing.

Note the similarity of the previous two theorems. In order to obtain such a similarity we have
reformulated the above-mentioned results in [3,4] in terms of the proper price function p̃.

4.2. Proofs of Theorems 4.1 and 4.2

We shall prove Theorem 4.1 and Theorem 4.2 showing that they follow, respectively, from Theo-
rem 3.3 (Ia), (IIa), (III) and Theorem 3.3 (Ib), (IIb), (III).
Proposition 4.3: Suppose the proper price function p̃ is positive and differentiable and rp̃ is concave.

(1) If rp̃ is strictly concave, then each function Rk,s is strictly concave.
(2) Each function Rk,s is concave.
(3) If rp̃ is decreasing, then each function Rk,s is semi-strictly demi-concave.

Proof: We preliminarily remark some facts. For all parts of Proposition 4.3, Lemma A.2 guarantees
the decreasingness of p̃; thus every antiderivative Pk is concave and hence every derivative DPk is
decreasing. Consequently, every

(
s − 1

)
Pk is concave and every

(
s − 1

)
DPk is decreasing. Note that

each Rk,s is differentiable and recall that

Rk,s = rp̃
(
k
) + (

s − 1
)
Pk.

(1) Suppose rp̃ is strictly concave. Lemma A.3 (2) guarantees the strict concavity of each rp̃
(
k
) .

Therefore each Rk,s is strictly concave as it is the sum of the strictly concave function rp̃
(
k
) and

of the concave function
(
s − 1

)
Pk.
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10 P. VON MOUCHE AND F. QUARTIERI

(2) Lemma A.3 (2) guarantees the concavity of each rp̃
(
k
) . Thus each Rk,s is concave as it is the

sum of the concave functions rp̃
(
k
) and (

s − 1
)
Pk.

(3) Suppose rp̃ is decreasing. We distinguish two cases.

Case s + k = 1. Then s = 1 and k = 0 and hence Rk,s = rp̃. Thus Rk,s is decreasing (and hence
semi-strictly demi-concave) as Rk,s = rp̃ and rp̃ is decreasing.

Case s + k > 1. Then either s > 1 or k > 0. Lemma A.2 (4) guarantees the strict decreasingness of
each p

(
k
)
; so each

(
s − 1

)
p
(
k
)
is decreasing and even strictly decreasing when s > 1. Lemma A.3 (2)

guarantees the decreasingness of each derivative Drp̃
(
k
) ; Lemmas A.2 (4) and A.3 (3) guarantee the

strict decreasingness of each derivative Drp̃
(
k
) when k > 0. Hence every Rk,s is strictly concave (and

hence semi-strictly demi-concave) as DRk,s = Drp̃
(
k
) + (

s − 1
)
p
(
k
)
is strictly decreasing.

Lemma 4.4: Let K ⊆ R++ be a proper interval. Suppose F1 : K → R is a differentiable function
such that Id · DF1

(≤) ≤ [<] 1. Pick λ ∈ R and suppose the implication

x2DF1
(
x2

) + λ
(≥) ≥ [>]0 ⇒ x1DF1

(
x1

) + λ
(
>
) ≥ [≥]x2DF1

(
x2

) + λ

is true for every x1, x2 ∈ K such that x1 < x2. Fix an antiderivative F2 of the avarage function eF1/Id
of eF1 . Then eF1 + λF2 is (strongly demi-concave) demi-concave [semi-strictly demi-concave].

Proof: Fix x1, x2 ∈ K such that x1 < x2. By Theorem 2.4, we are done if we prove

D(eF1 + λF2)(x2)( ≥ ) ≥ [>]0 ⇒ D(eF1 + λF2)(x2)( > ) ≥ [>]D(eF1 + λF2)(x1). (9)

Its proof is as follows. Denote eF1/Id by eF1 . As DeF1 = eF1DF1 and DF2 = eF1 , we have to prove the
validity of the implication

eF1(x2)(x2DF1(x2) + λ) ( ≥ ) ≥ [>] 0
⇒ eF1(x1)(x1DF1(x1) + λ) ( > ) ≥ [>] eF1(x2)(x2DF1(x2) + λ).

Suppose eF1(x2)(x2DF1(x2) + λ) ( ≥ ) ≥ [>] 0. Then x2DF1(x2) + λ( ≥ ) ≥ [>] 0 and

x1DF1(x1) + λ( > ) ≥ [≥] x2DF1(x2) + λ ( ≥ ) ≥ [>] 0. (10)

As Id · DF1 ( ≤ ) ≤ [<] 1, it follows that DeF1 = eF1 Id·DF1−1
Id2

= ( ≤ ) ≤ [<] 0 and therefore the
function eF1 is (decreasing) decreasing [strictly decreasing]. Thus

eF1(x1)( ≥ ) ≥ [>] eF1(x2) > 0. (11)

Inequality (9) follows from inequalities (10) and (11).

Proposition 4.5: Suppose the proper price function p̃ is positive, differentiable and decreasing and Lp̃
is concave.

(1) If Lp̃ is strictly concave, then each function Rk,s is strongly demi-concave.
(2) Each function Rk,s is demi-concave.
(3) If Dp̃ < 0, then each function Rk,s is semi-strictly demi-concave.

Proof: We use parentheses for part 1 and brackets for part 3. As Dp̃ ( ≤ ) ≤ [<] 0, we have
Dp̃(k) ( ≤ ) ≤ [<] 0 and hence ηp̃(k) + 1 ( ≤ ) ≤ [<] 1 on (Y⊕)k \ {0}. We apply Lemma 4.4 defining
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OPTIMIZATION 11

F1 : (Y⊕)k \ {0} → R by F1(x) := ln (p̃(k)(x)) + ln (x). The following equalities

Id · DF1 = ηp̃(k) + 1, eF1 = rp̃(k) , eF1( = eF1

Id
) = p̃(k)

are true on (Y⊕)k \ {0}. Thus can fix F2 as the restriction of Pk to (Y⊕)k \ {0}.
Case k = 0. Note that (Y⊕)0 \ {0} = Y⊕ and recall that DLp̃ = ηp̃. As ηp̃ : Y⊕ → R is (strictly

decreasing) decreasing [decreasing], also Id ·DF1+s−1 : Y⊕ → R is (strictly decreasing) decreasing
[decreasing]. Lemma 4.4 guarantees that eF1 + (s − 1)F2 is (strongly demi-concave) demi-concave
[semi-strictly demi-concave]. Thus, as desired, also the functionR0,s = Id·p̃(0)+(s−1)P0 : (Y⊕)0 →
R has this property.

Case k ∈ Int(Y). As ηp̃ is (strictly decreasing) decreasing [decreasing], Lemma A.3 (1) guarantees
that also ηp̃(k) + 1 : (Y⊕)k → R is (strictly decreasing) decreasing [decreasing]. Therefore also
Id · DF1 + s − 1 : (Y⊕)k \ {0} → R is (strictly decreasing) decreasing [decreasing]. Lemma 4.4
guarantees that eF1+(s−1)F2 is (strongly demi-concave) demi-concave [semi-strictly demi-concave].
Thus the function Rk,s = rp̃(k) + (s − 1)Pk is (strongly demi-concave) demi-concave [semi-strictly
demi-concave] on (Y⊕)k \ {0}. By Proposition 2.6, also Rk,s has this property.

Proof of Theorem 4.1: By Lemma A.2 (3), (4) we have thatDp̃ < 0 in cases I and III. Proposition 4.3
guarantees that everyRk,s is strictly concave in case I, concave in case II and semi-strictly demi-concave
in case III. Now apply Theorem 3.3 (Ia) in case I, Theorem 3.3 (IIa) in case II and Theorem 3.3 (III)
in case III. �
Proof of Theorem 4.2: By Lemma A.2 (1), (2), Dp̃ < 0 in cases I and III. Proposition 4.5 guarantees
that every Rk,s is strongly demi-concave in case I, demi-concave in case II and semi-strictly demi-
concave in case III. Now apply Theorem3.3 (Ib) in case I, Theorem3.3(IIb) in case II andTheorem3.3
(III) in case III. �

4.3. A new class

Proposition 4.6 illustrates some of the novelties of Theorem 3.3.
Proposition 4.6: Consider price functions p• and p◦ with domain R+. Assume that p• and p◦ are
positive, continuously differentiable and that their derivatives are negative. Additionally assume that
there is a point in R++, say y, such that

p• (
y
) = p◦ (

y
)
and Dp• (

y
) = Dp◦ (

y
)
.

Let p be the price function with domain R+ such that

p�[0, y] = p•�[0, y] and p�[y,+∞[ = p◦�[y,+∞[.

Then the function p is positive and continuously differentiable and its derivative is negative. Assume that
p̃• has either a strictly concave integrated price flexibility Lp̃• or a strictly concave associated revenue
function rp̃• ; additionally assume that also p̃◦ has either a strictly concave integrated price flexibility
Lp̃◦ or a strictly concave associated revenue function rp̃◦ . Then

(1) the function Rk,s associated to p, defined like in (4) above, is strongly demi-concave for every
pair

(
k, s

) ∈ R+ × N
∗;

(2) however, the function p can possess neither a concave integrated price flexibility Lp̃ nor a concave
associated revenue function rp̃.

Proof: The fact that p is positive and continuously differentiable and that its derivative is negative
is immediate. Now we shall prove (1) and (2).
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12 P. VON MOUCHE AND F. QUARTIERI

(1) Choose an arbitrary pair
(
k, s

)
in R+ × N

∗. We denote by Rk,s• and Rk,s◦ the two functions
– defined like in (4) above – respectively associated to p• and p◦ that satisfy the equalities
Rk,s• (0) = Rk,s(0) and Rk,s◦ (y) = Rk,s(y): clearly, given Rk,s, such two functions uniquely exist.
(Recall that Rk,s• and Rk,s◦ are unique up to a real constant when s > 1.)
Case k ≥ y. Propositions 4.5 (1) and 4.3 (1) imply thatRk,s◦ is strongly demi-concave. As k ≥ y,
we have that Rk,s = Rk,s◦ . Thus Rk,s is strongly demi-concave.
Case k < y. Propositions 4.5 (1) and 4.3 (1) imply that Rk,s• and Rk,s◦ are strongly demi-
concave. Clearly, also Rk,s• �[0, y − k] and Rk,s◦ �[y − k,+∞[ are strongly demi-concave. As
Rk,s�[0, y − k] = Rk,s• �[0, y − k] and Rk,s�[y − k,+∞[ = Rk,s◦ �[y − k,+∞[, we have that even
Rk,s�[0, y − k] and Rk,s�[y − k,+∞[ are strongly demi-concave. Now we further distinguish
two subcases.
SubcaseDRk,s (y − k

)
< 0. As Rk,s�[y − k,+∞[ is strongly demi-concave,DRk,s�[y − k,+∞[

(and hence DRk,s) is negative on [y − k,+∞[ by an immediate logical consequence of
Theorem 2.4 (3). As Rk,s�[0, y − k] is strongly demi-concave, there exists an interval C ⊆
[0, y − k] (with minimum 0 when non-empty) such that Rk,s�[0, y − k] (and hence Rk,s) is
strictly concave on C and has negative derivative on [0, y− k]\C. Thus, Rk,s is strictly concave
on the interval C (with minimum 0 when non-empty) and has negative derivative on R+\C.
We can conclude that the differentiable function Rk,s is strongly demi-concave.
Subcase DRk,s (y − k

) ≥ 0. As Rk,s�[0, y − k] is strongly demi-concave, Rk,s�[0, y − k] (and
hence Rk,s) is strictly concave on [0, y − k]. As Rk,s�[y − k,+∞[ is strongly demi-concave,
there exists an interval C ⊆ [y − k,+∞[ (with minimum y − k when non-empty) such that
Rk,s�[y − k,+∞[ (and hence Rk,s) is strictly concave on C and has negative derivative on
[y − k,+∞[\C. Thus Rk,s is strictly concave on the interval [0, y − k] ∪ C and has negative
derivative on R+\ ([0, y − k] ∪ C

)
. We can conclude that the differentiable function Rk,s is

strongly demi-concave.
(2) See the next example. �

Example 4.7: Pick an arbitrary γ in [0, 1] and consider the two price functions p• : R+ → R and
p◦ : R+ → R respectively defined by

p• (
x
) =

{
1

1+x + 4
5 − 9γ

1250
(
x − 4

)2 if x ≤ 4
1

1+x + 4
5 if x ≥ 4

and p◦(x) = e
4−x
25 .

Both p• and p◦ are positive, are continuously differentiable on R+ (and so, in particular, Drp̃• is
continuous) and have negative derivatives. It can be readily checked that

p• (
4
) = p◦ (

4
) = 1 and Dp• (

4
) = Dp◦ (

4
) = − 1

25
.

Note that rp̃• is strictly concave because the continuous function Drp̃• is strictly decreasing as2

D2rp̃•
(
x
) =

⎧⎨
⎩

γ 72−27x
625 − 2(

x+1
)3 < 0 if x < 4

− 2(
x+1

)3 < 0 if x > 4.

Note that Lp̃◦ has a strictly concave integrated price flexibility because

Dηp̃◦
(
x
) = − 1

25
< 0 for all x ∈ R++.

D
ow

nl
oa

de
d 

by
 [

R
M

IT
 U

ni
ve

rs
ity

 L
ib

ra
ry

] 
at

 2
1:

51
 2

2 
D

ec
em

be
r 

20
17

 



OPTIMIZATION 13

Consider now the function p : R+ → R++ defined by

p
(
x
) =

{
p• (

x
) = 1

1+x + 4
5 − 9γ

1250
(
x − 4

)2 if x ≤ 4
p◦ (

x
) = e

4−x
25 if x ≥ 4.

By Proposition 4.6 (1), the continuously differentiable decreasing function p has an associated
function Rk,s – defined like in (4) above – which is (continuously differentiable and) strongly demi-
concave for every

(
k, s

)
in R+ × N

∗. However, p has neither a concave integrated price flexibility nor
an associated concave revenue function because

D2Lp̃
(
2
) = Dηp̃

(
2
) = Dηp̃•

(
2
) = 546875 + 54γ

(
6875 − 972γ

)
9
(
54γ − 2125

)2 > 0

for all γ ∈ [0, 1] and
D2rp̃

(
54

) = D2rp̃◦
(
54

) = 4
625

e−2 > 0.

Finally, it is worth to note that – by the definition of Rk,s and by Proposition 2.6 – the strong demi-
concavity of Rk,s for every

(
k, s

)
in R+ × N

∗ implies the strong demi-concavity of rp
(
k
) for every

k ∈ R+.
Theorem 4.2 in [11] does not imply the equilibrium uniqueness results of the present article as the

assumptions of that theorem entail that a positive price function is twice continuously differentiable
at all positive points of its domain. However, even if we restrict our attention to twice continuously
differentiable price functions, Theorem 4.2 in [11] does not imply the equilibrium uniqueness results
of this article.3 The following Remark clarifies.
Remark 5: Let γ ∈ [0, 1] and consider an oligopoly with N = {1, 2} where X1 = X2 = [0, 1000],
c1

(
x1

) = x1 and c2
(
x2

) = x2 and p is defined by

p
(
x
) =

{
1

1+x + 4
5 − 9γ

1250
(
x − 4

)2 if x ≤ 4
e
(
4−x

)
/25 if x ≥ 4.

As it is clear from Example 4.7, the continuously differentiable decreasing function p has associated
functions

Rk,s and rp
(
k
)

that are strongly demi-concave for, respectively, every
(
k, s

)
inR+ ×N

∗ and every k ∈ R+. So, by our
Theorem 3.3 and our Proposition 3.1, there exists a unique Cournot equilibrium for this oligopoly.
Theorem 4.2 in [11] does not guarantee the existence of a unique equilibrium when γ ∈ [0, 1[ since
p is not twice differentiable. However, also when γ = 1 and the price function

p
(
x
) =

{
1

1+x + 4
5 − 9

1250
(
x − 4

)2 if x ≤ 4
e
4−x
25 if x ≥ 4

is twice continuously differentiable we have that Theorem 4.2 in [11] does not guarantee the existence
of a unique equilibrium for this oligopoly because that theorem can apply only if – using the notation
in [11] – there exists a solution

(
α,β

)
in R × R to the system4

⎧⎪⎨
⎪⎩
0 ≤ α + β

0 ≥ 

p
α,β

(
2
) = 428 738

31 640 625α + 958 873
10 546 875β + 865 637

31 640 625
0 ≥ 


p
α,β

(
120

) = 1
125e

− 232
25

(
24α + 5β − 5

)
,
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which indeed has no solution in R × R. (Note that the equality



p
α,β

(
x
) = (

α − 1
) · x · Dp (

x
) · Dp (

x
) + x · p (

x
) · D2p

(
x
) + (

1 − β
) · p (

x
) · Dp (

x
)

is defined by (2) in [11] and in particular note that – because of the linearity of cost functions and
the negativity of Dp – the first inequality of the system is a consequence of inequality (7) assumed in
Theorem 4.2 in [11] and that – by Lemma 1.3 in [11] – the last two inequalities of the system follow
from the assumption of Theorem 4.2 in [11] that p is

(
α,β

)
-biconcave at all positive points of its

domain – and hence in particular at 2 and at 120 – for some fixed pair
(
α,β

)
).

Notes

1. Such a Theorem 1 is in turn a variant of the Nikaido–Isoda theorem [5].
2. To check that D2rp̃• is negative on [0, 4[ notice that 72 − 27x ≤ 0 if x ∈]8/3, 4[ and that D2rp̃• is majorized on

[0, 8/3] by the strictly concave real-valued map on [0, 8/3] defined at x by (
72 − 27x

)
/625− 2

(
x + 1

)−3 (that
is negative at its unique maximizer 5 4√2/

√
3 − 1).

3. Analogously, Theorem 4.2 in [11] does not imply the equilibrium uniqueness results in [2].
4. In fact the conditions are actually stronger.
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Appendix 1. Some results of convex analysis for price functions
Various results of this Appendix can be found in [3] and in [4]: they are presented in this Appendix in order for this
article to be more self-contained.
Lemma A.1: Suppose p̃ is non-negative and rp̃ is (strictly) concave. Then rp is (strictly) concave.

Proof: The function rp is lower semi-continuous at 0 as rp ≥ 0 = rp
(
0
)
. Thus rp is lower semi-continuous and rp̃ is

(strictly) concave. The lower semi-continuous function rp is (strictly) concave as rp̃ is (strictly) concave.

D
ow

nl
oa

de
d 

by
 [

R
M

IT
 U

ni
ve

rs
ity

 L
ib

ra
ry

] 
at

 2
1:

51
 2

2 
D

ec
em

be
r 

20
17

 



OPTIMIZATION 15

Lemma A.2: Suppose p̃ is positive and differentiable.

(1) If Lp̃ is strictly concave and p̃ is decreasing, then Dp̃ < 0.
(2) If Lp̃ is concave and strictly decreasing, then Dp̃ < 0.
(3) If rp̃ is (strictly) concave, then Dp̃ ( < ) ≤ 0.
(4) If rp̃ is concave and decreasing, then Dp̃ < 0.

Proof:

(1) Suppose Lp̃ is strictly concave and p̃ is decreasing. Clearly ηp̃ ≤ 0 as Dp̃ ≤ 0 by the decreasingness of the
positive function p̃. If Dp̃

(
y
) = 0 then ηp̃

(
y
) = 0 and y > 0. But this is impossible as the strict concavity of Lp̃

implies the strict decreasingness of ηp̃ and hence that ηp̃
(
y/2

)
> 0.

(2) Suppose Lp̃ is concave and p̃ is strictly decreasing. The derivative ηp̃ of the strictly decreasing concave function
Lp̃ defined on the left open interval Y⊕ must be negative. Thus Dp̃ < 0 as p̃ > 0.

(3) Suppose rp̃ is (strictly) concave. By Lemma A.1 also rp is (strictly) concave. Thus, for each y ∈ Y⊕, we
have that Drp

(
y
) ≤ ( < )

(
rp

(
y
) − rp

(
0
))

/
(
y − 0

)
and hence that Dp

(
y
) ≤ ( < ) 0 as the equalities

Drp
(
y
) = Dp

(
y
)
y + p

(
y
)
and

(
rp

(
y
) − rp

(
0
))

/
(
y − 0

) = p
(
y
)
hold true.

(4) Suppose rp̃ is concave and decreasing. Hence Drp̃ ≤ 0. Thus Dp̃
(
y
)
y + p̃

(
y
) ≤ 0 for all y ∈ Y⊕ and hence

Dp̃ < 0 by the positivity of p̃. �
Lemma A.3: Consider a price function p and pick k ∈ Int(Y).

(1) Suppose p̃ is positive and differentiable. If Lp̃ is (strictly) concave and decreasing, then Lp̃(k) is (strictly) concave.
(2) If rp̃ is (strictly) concave, then rp̃(k) is (strictly) concave.
(3) If rp̃ is concave and p̃ is strictly decreasing, then rp̃(k) is strictly concave.

Proof:

(1) Suppose Lp̃ is (strictly) concave and decreasing. Then ηp̃ is (strictly) decreasing. Besides ηp̃ ≤ 0 asDp̃ ≤ 0 and
p̃ is positive. We are done if we prove that ηp̃

(
k
) is (strictly) decreasing. The proof of such fact is as follows. Let

x1, x2 ∈ (Y⊕)k with x1 < x2. We know that ηp̃ ≤ 0 and hence ηp̃ < 0 when ηp̃ is strictly decreasing because
the domain of ηp̃ is left open. Thus 0 ( > ) ≥ ηp̃(x1 + k)( > ) ≥ ηp̃(x2 + k). As k > 0, we have x1

x1+k < x2
x2+k .

We obtain, as desired, ηp̃(k) (x1) = ηp̃(x1 + k) x1
x1+k ≥ ηp̃(x2 + k) x1

x1+k ( > ) ≥ ηp̃(x2 + k) x2
x2+k = ηp̃(k) (x2).

(2) We prove, by contradiction, only the case of strict concavity of rp̃. The proof of the other case is analogous.
Suppose rp̃ is strictly concave and rp̃(k) is not strictly concave. Then there exist x, y ∈ (Y⊕)k with x < y and
t ∈ ]0, 1 [ such that the inequality rp̃(k) (z) ≤ trp̃(k) (x) + (1 − t)rp̃(k) (y) holds true for z = tx + (1 − t)y. By
Lemma A.2 (3) the function p̃ is strictly decreasing; thus also p̃(k) is strictly decreasing. As z + k ≥ 0, the
inequality

rp̃(k) (z)(z + k) ≤ (trp̃(k) (x) + (1 − t)rp̃(k) (y))(z + k)

is true. As x + k, y + k ∈ Y⊕ and t ∈ ]0, 1 [, also z + k = t(x + k) + (1 − t)(y + k) ∈ Y⊕. As rp̃ is strictly
concave and z > 0, the strict inequality

rp̃(z + k)z > (trp̃(x + k) + (1 − t)rp̃(y + k))z

holds true. The two previous centered inequalities together with the equality rp̃(z+k)z = rp̃(k) (z)(z+k) imply

(trp̃(k) (x) + (1 − t)rp̃(k) (y))(z + k) > (trp̃(x + k) + (1 − t)rp̃(y + k))z

and hence, by the definition of rp̃ and rp̃(k) , we obtain

tx(z + k)p̃(x + k) + (1 − t)y(z + k)p̃(y + k) > t(x + k)zp̃(x + k) + (1 − t)(y + k)zp̃(y + k).

Therefore kt
(
1 − t

)
p̃
(
y + k

) (
y − x

)
> kt

(
1 − t

)
p̃
(
x + k

) (
y − x

)
as y − z = t

(
y − x

)
and z − x =(

1 − t
) (
y − x

)
. As k > 0, we can conclude that

p̃
(
y + k

)
> p̃

(
x + k

)
.

But the previous inequality contradicts the strict decreasingness of p̃
(
k
)
.

(3) Analogous to the proof of part 2. �
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