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Abstract
We have recently shown that the very low mechanical energy achieved and
measured in the main vibration mode of gravitational wave bar detectors can set
an upper limit to possible modifications of the Heisenberg uncertainty principle
that are expected as an effect of gravity. Here we give more details on the data
analysis procedure that allows one to deduce the energy of the bar mode (i.e., the
meaningful parameter for our purpose). Furthermore, we extend the analysis of
our results, discussing their implication for physical models that face quantum
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gravity from different points of view, e.g., proposing modified commutation
relations or exploring spacetime discreteness.

Keywords: Planck scale, generalized uncertainty principle, gravitational bar
detector

1. Introduction

General relativity and quantum physics are expected to merge at the Planck scale, defined by

distances of the order of = = × −L G c/ 1.6 10p
3 35 m and/or extremely high energies of the

order of ∼ = = ×E c L/ 1.2 10p p
19 GeV. At this scale, gravity is supposed to have a strength

close to the electro-weak and strong forces, and quantum gravitational effects can no longer be
neglected. Since the study of particles collisions around the Planck energy is well beyond the
possibilities of current and foreseeable accelerators, high-energy astronomical events (e.g., γ-ray
bursts) have been considered as the privileged natural system to unveil quantum gravitational
effects [1–4]. This common view has been enriched in recent years thanks to a number of
studies proposing that signatures of the Planck-scale physics could also manifest at low
energies. It is indeed widely accepted that, when gravity is taken into account, deviations from
standard quantum mechanics are expected.

A paradigmatic example, provided by Wigner in 1957 [5, 6], illustrates the consequences
produced by the combination of quantum mechanics and some basic features of gravity in the
possibility of determining the position of an object. His starting idea is the measurement of
space-like distances by using the time of flight of light beams, thus exploiting clocks (i.e.,
possible quantum objects) instead of macroscopic standard rods. A typical measurement
scheme consists in positioning a clock in the first reference frame with an accuracy Δxclock;
sending a light pulse from the clock to the second reference frame, where it is reflected back;
and detecting the arrival time on the clock =T D c2 / , from which we deduce the distance D.
Due to Heisenbergʼs principle, the velocity of the clock whose mass is m, is known with a
minimal uncertainty Δ = Δ

v
m x2 clock

; therefore, during the time T, it moves a step whose length has
an uncertainty ΔT v. As a consequence, we have a spread ΔD in the measured distance between
the two reference frames, given by:

Δ Δ
Δ

= +
⎛
⎝⎜

⎞
⎠⎟

( )D x
D

mc x
( ) (1)clock

clock

2 2
2

and actually a minimal uncertainty Δ = D D

mcmin
2 . More refined speculations can be developed

on this conceptual scheme. For instance, the same procedure of sending and detecting a light
pulse imposes quantum-mechanical constraints, and the original work by Salecker and Wigner
discusses in detail the properties of a possible quantum clock. However, we remark that the
obtained relation (1) is quite close to the expression of the standard quantum limit in
consecutive position measurements, a concept later developed in the framework of the studies
of gravitational wave detectors [7, 8]. Any Wigner-like measurement scheme can likely be
traced back to a series of position measurements. If we now consider the complete quantum-
mechanical uncertainty ΔDmin, we notice that it can be arbitrarily reduced by increasing the
mass m. Therefore, in quantum mechanics there are no limits to the accuracy of distance
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measurements. However, taking into account gravity, m is limited by the requirement that the

clock should not turn into a black hole, expressed by <m Dc

G

2

. This implies a lower bound on

the uncertainty in D, given by Δ ⩾ =D L2G

c
pmin

2
3

.
Although these simple considerations cannot be considered as a rigorous demonstration,

the existence of a minimal measurable length of the order of the Planck length is a common
feature of different approaches to quantum gravity [9, 10], such as string theory [11, 12] and
loop quantum gravity, as well as of doubly special relativity [13] and gedanken experiments in
black hole physics [14–16].

As just mentioned, in the framework of the Heisenberg relation, the minimal position
uncertainty could be made arbitrarily small toward zero at the cost of our knowledge about the
momentum. However, the above arguments show that when gravity is taken into account, a
minimal observable length appears naturally. This consideration has motivated the introduction
of generalized Heisenberg uncertainty principles (GUPs), in which the existence of a minimum
length scale is encoded:

Δ Δ β
Δ

⩾ +
⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟


x p

L p

2
1 , (2)

p

0

2

where β0 is a positive dimensionless parameter. Equation (2) implies the existence of a nonzero
minimal uncertainty in position measurements Δ β=x Lpmin 0 , which defines a new
fundamental length scale where some new physics should come into play [17]. Although the
GUP (2) was originally proposed in the context of string theory [11, 12], different
considerations combining quantum mechanics and general relativity suggest that this formula
might have a more general validity in quantum gravity, and it is not necessarily related to strings
[14–16]. For instance, considering again the Wigner measurement scheme, we remark that,
according to equation (1), its accuracy is limited by the total uncertainty in the clock position:

Δ Δ
Δ

Δ
Δ

≈ + ⩾ +
x x

D

mc x
x

L

x
, (3)

p
2

Q
Q

Q
Q

where we have used the relation ⩽m Dc G/2 . Then, Δx consists of the sum of two contributions,
ΔxQ and Δ Δ=x L x/p

2
G Q. The first one is the measurement precision while the second one,

proportional to the gravitational constant G, is due to the combination of the Heisenberg
uncertainty principle and gravitational effects. Using Δ ∼ Δ

xQ p2
, equation (3) reduces to

equation (2) with a deformation parameter β = 40 . In this framework, the quantum uncertainty
in the position of a particle implies an uncertainty in its momentum. Therefore, due to the mass-
energy equivalence, it also implies an uncertainty in the geometry which in turn introduces an
additional uncertainty in the position of the particle.

To a GUP it is possible to associate a modified canonical commutator between position
and momentum [18], which implies changes in the energy spectrum and in the time evolution of
quantum systems and suggests that space is quantized in units of a fundamental length [19]. As
a consequence, an alternative way to check quantum gravitational effects would be to perform
high-sensitivity measurements of the uncertainty relation in order to reveal any possible
deviation from predictions of standard quantum mechanics [17, 20].

To this end, two optical experiments have been recently proposed for observing Planck-
scale effects on the center-of-mass coordinates of some macroscopic bodies [21, 22]. [21] aims
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at measuring quantum gravitational modifications of the canonical commutator for the variables
associated to the center of mass of a macroscopic oscillator. With a different approach, [22]
proposes to study the motion of a macroscopic dielectric block crossed by a single photon as a
probe to test the Wheelerʼs concept of quantum foam [23], i.e., the non-smooth texture of
spacetime on length scales of the Planck order.

As recently remarked [24], the heuristic arguments used to introduce GUPs, as well as
those concerning the spacetime quantization, do not apply to these proposals since they do not
involve Planckian energies concentrated in a Planck-length-sized region. More specifically, it is
the high energy used to probe small distances that significantly disturbs the spacetime structure
and thus increases the position quantum uncertainty. On the other hand, one can consider the
quantum spacetime fluctuations responsible for Δ ⩾x Lpmin to be related to the creation and
annihilation of particles (which may in principle have arbitrarily high energies) and virtual
black holes [25]. Given an underlying discrete spacetime, fundamental questions are how
ordinary matter propagates in such a background and whether signatures of discreteness can
appear on macroscopic scales. Some indications might be provided, e.g, by causal set theory, a
Lorentz invariant approach to quantum gravity [26]. In this framework, propagating particles
are subject to small, stochastic fluctuations due to the uncertainty in spacetime structure at the
Planck scale [27]. Although the definition of a quantum measurement in discrete spacetime is
still an open problem, we remark that the emergence of extended uncertainty relations for
discrete coordinate and momentum operators, which can be formulated in the form of a GUP,
have been investigated in finite-dimensional discrete phase spaces [28]. In this spirit, the
nonzero minimum uncertainty in position measurements could be the manifestation of an
inherent spacetime feature, i.e., the existence of a fundamental scale at which the very concept
of distance becomes physically meaningless. As such, it would also affect the low-energy
motion of the center of mass of a macroscopic body. This is the key assumption of proposals
based on precise metrological systems, such as those described in [21, 22], and on correlated
Michelson interferometers [29].

The aim of this paper is to review and extend the results of our analysis described in [30],
where we have exploited the sub-millikelvin cooling of the normal modes of the ton-scale
gravitational wave detector AURIGA to place an upper limit for possible Planck-scale
modifications on the ground-state energy of an oscillator. We discuss some possible
interpretations of our results, including possible consequences on deformed commutators,
and an upper limit on the length scale at which quantum fluctuations of the spacetime geometry
should come into play.

2. GUP and ground state energy of harmonic oscillators

The ground state energy of a quantum harmonic oscillator is a direct consequence of the
Heisenberg uncertainty relation. If the uncertainty principle is modified by quantum gravity,
then the zero-point energy would also be changed. We then consider the generalized uncertainty
relation (2), re-written in the form:
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Δ Δ β Δ⩾ +
⎛

⎝
⎜⎜

⎛
⎝
⎜

⎞
⎠
⎟

⎞

⎠
⎟⎟


x p

p

M c2
1 , (4)

p
0

2

where Mp is the Planck mass μ= ≃M E c g/ 22p p
2 . The Hamiltonian operator for a harmonic

oscillator with mass m and angular frequency ω0 is:

ω
= +H

m
x

m
p

2
1

2
, (5)0

2
2 2

and its minimal energy is found for < > = < > =x p 0 using the equality in equation (4).
Extracting Δx from this last equality, inserting it into (5), and minimizing with respect to Δp, we
find the minimal energy:

ω β β= + +
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥


E

2
1

4 2
, (6)min

0
2

where β β= ωm
M c0

p

0

2 2 is a dimensionless deformation parameter that includes the properties of the

specific mechanical oscillator.
The modified ground state energy is larger with respect to the standard quantum

mechanical value ω /20 . Therefore, an experiment to measure a low energy level Eexp for a
mechanical oscillator puts a straightforward upper limit to the corresponding Emin:

<E E . (7)min exp

Equation (7) expresses the key idea of our analysis.
Comparing equation (6) with the measured Eexp, according to equation (7), we derive for β

the limit:

β
ω

ω
< −


E

E

2

2
. (8)

exp

0

0

exp

The energy of a ‘standard’ quantum oscillator in a thermal state is usually given in the form:

ω= + ( )E n1 2 , (9)T0

where nT is the average occupation number. In quantum gravity theory, the complete energy
spectrum is likely to be modified according to the specific assumptions of the theory (an
example is described in [31]). However, for high temperatures (well above the ground state) the
‘standard’ theory is likely to remain a good approximation and, in any case, equation (9) can
always be used for defining nT. equation (8) can thus be written as β < + +n n n4 (1 )/(1 2 )T T T .
In the limit ≫n 1T , valid for the experiment on the AURIGA detector analyzed in [30] and this
work, the inequality can be simplified to β < n2 T . In the opposite case of a mechanical
oscillator cooled down quite close to its ‘standard’ ground state (i.e., with energy close to
ω /20 ), the experimental limit to β is given by the accuracy ΔE in the measurement of the
energy in the form β Δ ω< E4 / 0.

If we call βmax the experimental upper limit to β, the corresponding limit to the
deformation parameter β0 can be written in the meaningful form:
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β β
ω

<


M

m

M c
. (10)

p p

0 max

2

0

The two factors multiplying βmax suggest that more stringent limits are obtained from oscillators
with large mass (compared to Mp) and large ‘standard’ ground state energy (compared to Ep) .

It is useful noticing that the product mω0 appears in the expression of the ground state
wavepacket size, i.e., of the zero-point fluctuations ω= x m/2zpf

2
0. Using this characteristic

parameter of the oscillator, the limit on β0 can be written as:

β β<
x

L2
. (11)

zpf

p

2

20 max

In summary, the best oscillator for testing quantum gravity effects is the one with the smallest
zero-point fluctuations. Of course, it must be cooled to the lowest occupation number or, when

<n 1T , its energy should be measured with the best accuracy. This point of view suggests
further considerations that will be developed in section 5.

3. Huge and cold mechanical oscillators: the bar detectors of gravitational waves

Experimental systems particularly suitable for exploiting the relations (10) and (11) are the
cryogenic Weber bars, originally conceived and still working as detectors for gravitational
waves [32, 33]. They consist of large metallic bars weighing several tons and having a main
longitudinal mechanical mode oscillating around ω π ≃/2 10 kHz. For our purpose, their
favorable characteristics are their very large mass (around ∼1013 times the Planck mass), the
very small zero-point fluctuations associated to their main modes (where, e.g., with respect to
micro-oscillators, the relatively low frequency is compensated by the large effective mass Meff),
and the low level of thermal energy that is reached experimentally (also due to their high
mechanical quality factor).

Some Weber bars have been operated at an ultra-cryogenic temperature [34], and we will
show in section 5 that this regime is particularly interesting. For the moment, as in [30], we
focus on the AURIGA detector that, in its present configuration, is working at the background
temperature of 4.2K. The peculiarity of AURIGA is that its main longitudinal mode has been
further cooled down to the mK [44], exploiting a cold damping technique.

Modal cooling techniques have been recently exploited to bring mechanical modes of
micro-oscillators in their quantum ground state, and these experiments have proven that
quantum behavior of macroscopic coordinates can be obtained in this way [35–38]. Therefore
cold damping is a valid technique for our purpose of reaching and measuring the lowest
oscillator modal energy, even if such modal cooling cannot be exploited to increase the
sensitivity of the oscillating system as a detector of external excitation [39].

3.1. Signal extraction and calibration

The problem of the readout of the bar motion, including its calibration, is well studied in the
literature. However, the aim is typically to extract the signal of an impulsive force acting on the
bar (i.e., a possible effect of a gravitational wave). In our case, we instead have to deduce the
bar modal energy from the measured spectra at the output of the readout chain. Here we briefly
discuss this problem, which had not been detailed in our previous publication [30].

6
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The AURIGA readout is composed of a resonant mechanical amplifier. Its motion is read
by a capacitive transducer [40] coupled through a superconducting matching transformer to a
double stage SQUID amplifier [41, 42]. The overall system can be seen as a set of three coupled
oscillators (the bar first longitudinal mode, the mechanical amplifier, and the electrical resonant
circuit formed by the transducer capacitance and by the inductance of the primary coil of the
matching transformer) forming therefore three normal modes [43]. The first problem is
determining the effective temperature (i.e., the energy) associated to each mode. To this
purpose, we will now describe a model-independent procedure. Figure 1 shows a block diagram
of the whole system. Few auxiliary lines are integrated in the readout, and one of them is used

a) c
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c)

Al 5056
Bar

lcal

Mcal

Lp

I 
Mtr

Ls Lln

Isq
p

SQUID

C
ur

re
nt

 N
oi

se
 S

I (
A

2 /
H

z)

C
ur

re
nt

 N
oi

se
 S

I (
A

2 /
H

z)

10-21

10-22

10-23

10-24

10-21

10-22

10-23

10-24

860 865 870

860 865 870

900 920 940 960 980 1000

Frequency (Hz)

Frequency (Hz)

19.4

Mode 1

Mode 1

Mode 2 Mode 3

2.152.49

19.4

2.0

Figure 1. Left: photo of the AURIGA bar detector in its vacuum tank. The suspension
system, composed of a central copper wire hanging from a horizontal beam and
suspending with four multi-stage mechanical isolators, is clearly visible. On the bar
face: the resonant mechanical amplifier and (in the copper box) the readout electronics.
(a) Block diagram of the electro-mechanical system. The main line is drawn in black,
while the auxiliary line used for the detector calibration is drawn in blue. A more
realistic and complete scheme can be found in [55]. (b) Power spectrum of the output
current in the regime of moderate damping. The resonances corresponding to the three
modes are visible, with labels showing the respective effective temperatures. (c)
Enlarged view of the first mode, with moderate (black dots with red fitting curve) and
strong (blue dots with green fitting curve) damping.
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for the detector calibration. Through this line, the thermal energy contents of each mode are
estimated in two steps.

First, a known current ωI ( )cal is injected into the calibration port. The induced
electromotive force ω ω ω=V i M I( ) ( )cal cal cal produces a current ωI ( )sq in the readout circuit,
which is detected by the SQUID amplifier. The overall readout impedance at the SQUID input

ωZ ( )read is thus estimated as:

ω
ω
ω

=Z
V

I
( )

( )

( )
. (12)read

cal

sq

ωZ ( )read contains all the information about the detector electromechanical parameters and
topology, and it is experimentally estimated without any a priori assumption on them. Around
each resonance, ω−Z ( )read

1 may be described by an equivalent RLC resonator, according to:

ω ω
ω

ω ω ω ω≈
≈

− +Z

i

L i Q

1
( )

1
, (13)

j
2

read j j j j
2

where ωj, Qj, and Lj are, respectively, the resonant pulsation, the quality factor, and the effective
inductance of the mode j. They are estimated by fitting the experimental data with the function
(13). Note that Qj includes all the regenerative effects due to the dynamic SQUID input
impedance [45] and the effects of the cold damping loop.

The second calibration step consists in measuring the SQUID input current power spectral
density ωS ( )I Isq sq

. According to the fluctuation dissipation theorem, and using equation (13)
around each mode, it should be equal to:

Rω ω ω
ω ω ω ω

≈ =
− +⎪ ⎪

⎪ ⎪⎧
⎨
⎩

⎫
⎬
⎭

S
k T

L
e

i

i Q
( )

4
, (14)

j
2I I k

B j

j j j
2sq sq

where kB is the Boltzmann constant and Tj the ‘j’-mode equivalent temperature, which in the
absence of cold damping and neglecting the back action contribution should be equal to the
thermodynamic temperature TTh. In the presence of cold damping, = ·T T Q Q/ j

int
j Th j , where Qint

is the intrinsic mode quality factor. The relation (14) allows us to to estimate the mode
equivalent temperature and then ultimately the thermal energy Ej stored on each mode as:

= =−E L I k T
1
2

1
2

, (15)sq j
2

j j B j

where the last equality follows from:

∫π
ω ω ω= ≈−

−∞

+∞
I S d

1
2

( ) . (16)sq j
2

I I jsq sq

As a check of the calibration procedure, we also calculated the bar expected temperature
( ·T Q Q/j

int
j j) that within the experimental errors ( ÷5 10%) turns out to be equal to the

temperature measured using thermometers. All of the three modes have been cooled down by
cold damping to roughly the same temperature [44], with an overall thermal energy of about

· −3.3 10 26 J.
For the purpose of this work, we have now to establish the fraction of this total modal

energy that is actually stored in the bar resonator. This can be performed using a lumped model
for the detector. With reference to figure (1), the equations describing the motion of the system
are:
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ω ω

ω

¨ + + − = +

¨ − − = − +
¨ + + ¨ = − +

−

−

−

⎧
⎨
⎪⎪

⎩
⎪⎪

m x m x m x x F E Q

m x m x x E Q F

L Q Q C M Q E x x F

( )

( )

( )

, (17)

a t

t

2 2

2

a a a a t a t Th bias p

t t t a t bias p Th

p p tr sq bias a t Th

1

2

eff 3

where we have for the moment neglected the dissipative terms. −FTh i is the Langevin thermal
noise generator associated to the ith oscillator = − +L L M L L L(1 /( ( )))Tr

2
p p s ineff . The different

system parameters are described and quantified in table 1. Hereafter, the bar end face
displacement xa, the mechanical transducer displacement xt, and the primary coil charge Qp will
be defined with the symbol xi, with i ranging from 1 to 3 respectively. The SQUID input current
Isq is related to the primary coil current Ip as:

= −
+( )

I
M

L L
I . (18)sq

Tr

in s
p

The Hamiltonian associated to the system (17) can be diagonalized, giving the set of
coordinates of the normal modes Xj, linked to the original xi by the linear relation:

∑=
=

x a X , (19)i

j

ij j

1

3

where the coefficients aij are completely determined by the known system parameters. In the
new coordinate system the equations of the motion read:

ω¨ + = X X , (20)j
2

j j j

where  j (with spectral density  S
j j
) is a linear combination of the stochastic forces −FTh i, and

ω π/2j is the mode frequency. After reintroducing phenomenologically the modal quality factor
Qj, the power spectral density of the original oscillator coordinates is written as:

∑
ω ω ω ω

=
− +=

 

( )
S a

S

Q
. (21)ij

j j

2

2 2
x x

j j1

3

2 2 2 2
i i

j j

In particular, the x3 coordinate can be related through equation (18) to the measured SQUID
input current noise and therefore, as we have previously discussed, the three modal

Table 1. The readout parameters of the AURIGA detector.

Symbol Meaning Value

ma Bar equivalent mass 1150 Kg
mt Transducer equivalent mass 5.92 Kg
ω π/2a Bar resonant frequency 898.85 Hz
ω π/2t Transducer resonant frequency 900.40 Hz
Lp Transformer primary inductance 3.78 H
Ls Transformer secondary inductance μ3.48 H
MTr Transformer mutual inductance 4.51 mH
LIn SQUID input inductance μ1.46 H
C Transducer capacitance 7.57 nF
Ebias Transducer bias field ×7.5 106 V/m
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contributions ∫ ω ω ω π= ≈A S d( ) /2j x x j3 3
to the variance are directly measured. Finally, the

variance of the bar coordinate x1 is calculated using the known matrix aij according to:

∑=
=

x
a

a
A . (22)

j

j
1
2 1

2

3
2

j

j

1

3

The lowest achieved AURIGA mean bar displacement noise, in the strong cold damping
regime, corresponds to an energy of about ± × −(1.0 0.3) 10 26 J. Here the error comes from the
detector parameter uncertainty, and a deeper analysis brought us to slightly correct the value of

± × −(1.3 0.1) 10 26 J previously reported in [30].

3.2. The AURIGA data and the GUP

A crucial issue for comparing the experimental data of AURIGA with the theory described in
the previous section is the adaptation of the discussion, which deals with a point-like oscillating
mass, to a normal mode of an elastic body. A first problem is that the discussion concerns the
oscillations of the center-of-mass of the particle, but the center-of-mass of the bar is fixed (or,
put in better form, we are in the Lorentz frame of the center-of-mass of the bar). A second
crucial issue is the determination of the appropriate value of the mass to be used in relations
(10) and (11). The observed modal motion can be described by the equation of a damped
harmonic oscillator of effective mass Meff. The effective mass contains the overlap integral
between the modal profile and the readout system and, therefore, it can be quite different from
the total oscillator mass. The lowest value of Meff is obtained when the readout is concentrated
in a region of maximum oscillation amplitude (anti-node), while it is infinite for a readout on a
node. In our case the readout measures the axial displacement of a bar face, and thus we
calculate =M M /2eff , where M is the bar physical mass (see the supplementary information in
[30]). Such a discretionary definition of the effective mass does not yield any problem, even in a
quantum mechanical treatment. To each mode one can associate a quantum harmonic oscillator
with frequency ωn and mass Meff, and the validity of this description has been implicitly
confirmed by the previously mentioned recent experiments on macroscopic quantum-
mechanical oscillators. On the other hand, in the framework of GUPs, the Planck-scale
deviations from standard quantum mechanics depend on the probe mass. Therefore, we need to
identify the ‘real mass’ involved in the motion, getting rid of the dependence from the shape of
the readout.

Both problems can be tackled starting from the consideration that the motion of the
fundamental bar mode is symmetrical with respect to the plane (x,y), (perpendicular to the bar
axis) that bisects the bar. The bar can be considered as rigidly constrained to the symmetry
plane, and the modal motion implies an oscillation of the center-of-mass positions—zcm s— of
each half-bar. The reduced mass of this couple of centers of mass is

= = ×M M /2 1.1 10red
3 kg. Incidentally, the values of the effective and reduced mass are

coincident; however, generally speaking, the reduced mass is the correct parameter to be used in
equations (10) and (11).

The energy associated to the oscillation of the centers-of-mass is about 80% of the total
modal energy. Therefore, the measured Eexp remains an upper limit also for the minimal energy
Emin associated to the oscillation of the zcms; i.e., considered for extracting an upper limit to
quantum gravity effects according to the discussion of the previous section.
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Replacing in equations (8–10) the AURIGA parameters, we finally find β < ×4.4 104 and
β < ×3 100

33. Our upper limit for β0 is still far from forbidding new physics at the Planck scale.
On the other hand, several models involving compactified large extra dimensions predict the
emergence of intermediate fundamental scales between the electro-weak and the Planck scale
[46]. This is a strong motivation for proposing experiments able to explore these new
intermediate scales.

4. Deformed canonical commutators

As we have seen, the emergence of a nonzero minimum position uncertainty and of generalized
uncertainty relations is a common feature in quantum gravity models. It is therefore natural to
ask whether there is an algebraic structure from which the GUP follows, just like the
Heisenberg uncertainty principle follows from the algebra = x p i[ , ] . Starting from
equation (2), the most direct modification of canonical commuting relations that can be
obtained is:

β= + ( )( )x p i L p[ , ] 1 . (23)p
2

0
2

The limit to the β0 parameter in the modified commutator of equation (23), extracted from
AURIGA data, is obviously the same that we had previously derived while discussing the GUP.
The experiments proposed in [21], based on the modified quantum dynamics that follows from
the modified commutation relations, could strongly improve this upper limit. However, we
remark that the meaning of the GUP that is directly tested by AURIGA is somehow more
general than that of specific modified commutation relations.

A relevant question is whether this is the most general deformed algebra reproducing
equation (2) or, from a wider point of view, implying the existence of a minimal observable
length. Under a certain hypothesis, Maggiore has derived in [47, 48] modified commutation
relations leading to a GUP, which reduces to (2) in a suitable limit. Under a different set of
assumptions it is possible to obtain even more general commutation relations, e.g., as in [52],
which also lead to equation (2). However, they are not unique, and experiments could help to
distinguish between the various theoretical approaches.

We then consider a different kind of modified commutator [47]:

μ= + +x p i
p c m

M
[ , ] 1 2

( )
, (24)

p
20

2 2

where m is the test particle rest mass and μ0 is a dimensionless parameter. If the modification to
the commutator is supposed to be relevant at the Planck scale, μ0 must be of the order of the
unity.

If equation (24) is applied to a macroscopic coordinate x and its associated momentum p,
characterizing a normal mode of a non-relativistic macroscopic object with mass ≫M p c/ , it
can be written as:

= ̃x p i[ , ] (25)

with μ˜ ≃ +  M M1 2 / p
2

0
2 . We can therefore keep the standard quantum equations for the

harmonic oscillator, with an effective Planck constant ̃ . The ground-state energy of the
oscillator becomes:
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ω= ̃E
1
2

. (26)min 0

We now come back to the first longitudinal mode of AURIGA with cold damping and
consider the oscillation of the center-of-mass positions of the two half-bars. Using the mode
resonance frequency, the reduced mass Mred, and the measured modal energy

= × −E 1.3 10exp
26 J, we obtain from equations (7) and (26) ˜ < × − 4.7 10 30 J s, and from

the definition of ̃ we finally find μ < × −4 100
13.

This constraint is very strong and apparently disproves the validity of the modified
commutator described in equation (24) when applied to the coordinates of a normal mode, even
at the Planck scale. The emphasis on the normal mode is here particularly important: our result
can alternatively reject the model or just indicate that an experiment on a macroscopic object,
such as those recently proposed in [21], cannot really test it. However, such an interpretation
needs to be motivated by a self-consistent development of the theory. The generalization from
the position/momentum of a single particle to that defining a collective motion is indeed well
described in standard quantum mechanics. The canonical commutator = x p i[ , ] remains valid
for any Lagrangian coordinate x and its conjugate momentum p, including the coordinates
describing the center of mass or a normal vibrational mode of a macroscopic object. We remark
that recent experiments have cooled down mechanical modes of micro-oscillators to their
quantum ground state [35–37], proving that a mechanical normal mode can be described by
quantum-mechanical observables [35, 38]. On the other hand, if a modified commutator is
considered, a self-consistent description in terms of macroscopic coordinates is not
straightforward. The direct application of a modified commutator to a macroscopic body and
the rough extrapolation to the classical world based on the correspondence principle would
imply a set of paradoxes. Some recent works have tackled the problem, proposing solutions that
imply a strong suppression of the expected effect of Planck-scale physics when probed by
multi-particle objects [49, 50]. However, none of these approaches is fully satisfactory. Such
hypotheses indeed entail the fact that macroscopic bodies have quantum-spacetime properties
different from those of their fundamental constituents, whose nature (atoms, quarks, etc.)
remains undetermined. A different solution is based on coherence properties of quantum
systems and proposes that deformed commutators hold just for coherent collections of particles
(e.g, Bose–Einstein condensates or a pure state of a macroscopic oscillator) and not for
incoherent states, such as daily life macroscopic objects [51]. Given this situation, any kind of
experimental analysis remains meaningful in particular if performed on macroscopic variables
that display quantum properties.

The results of highly accurate low-energy experiments have been analyzed with the
purpose of extracting upper limits to possible quantum gravity effects. From spectroscopic
measurements in the hydrogen atom, whose energy levels are predicted very precisely, the
deduced upper limits are β < 100

36 (using the Lamb shift [17]) and β < ×4 100
34 (from the 1S-

2S level energy difference [50]). Our AURIGA results improve the latter limit by one order of
magnitude. Curiously, we are presently at the level of the electro-weak scale (defined by
∼ L10 p

17 , or β ∼ 100
34). The upper limit to β0 from the hydrogen atom is calculated starting

from the modified commutator of equation (23), using a perturbative approach. It is not clear if
the same limits can be also deduced by starting directly from the GUP (maybe with variational
methods), as performed in [30] for AURIGA, thus obtaining a result independent from a
specific modified algebra.
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5. Limits on spacetime discreteness

A satisfactory treatment of macroscopic bodies in the framework of generalized commutators is
a challenging, not yet solved, theoretical problem. On the other hand, experiments on quantum
macroscopic systems, such as those recently realized [35, 38], allow us to reach unprecedented
sensitivity in metrology applications and enable fundamental tests of quantum physics. In this
context, a relevant question is whether experiments on these systems could test at least very
general, model-independent features of quantum gravity. One of these features is the Wheeler
proposal of quantum foam; i.e., the idea that spacetime at the smallest scales should manifest
quantum fluctuations of geometry.

In this framework, Bekenstein proposed in [22] an experiment for observing Planck-scale
effects on the center-of-mass position of a macroscopic body, namely a glass block. The starting
hypothesis is that the block cannot move by a distance lower or comparable to Lp: roughly
speaking, either it moves by more than Lp, or its motion does not happen at all (and, of course, it
cannot be measured). This lack of translation would not be directly measured but inferred,
exploiting momentum conservation from the behavior of a single optical photon which crosses
the block and has the role of inducing its motion.

Such a proposal requires Planck-length accuracy in the control of the center-of-mass
position of the macroscopic probe; this can hardly be reached in an experiment that is not
specifically conceived for this purpose. On the other hand, resonant gravitational waves
detectors are already designed to detect extremely small displacements and therefore exhibit
very low background length fluctuations. The AURIGA bar oscillator has not yet been cooled
down to its quantum ground state, and experiments based on micro- and nanomechanical
oscillators have reached much lower energy levels. However, due to its large mass and
relatively low temperature, the cold longitudinal mode of the AURIGA bar is probably the most
well localized oscillator ever observed. Indeed, for a given energy, the root mean square value
of an oscillator velocity scales as M1/ and that of its position as ω M1/( )0 . More specifically,
the root mean square position is given by:

ω ω= =( ) ( )x k T m E m . (27)0
2

0
2

rms B exp

In the framework of the mentioned view of spacetime discreteness, the measured xrms could be
directly compared to the Planck length Lp. From the AURIGA parameters given before, we
obtain ∼ × −x 6 10 mrms

19 . The possibility to measure such a low level of vibration [22] (also
implying that there are not extra displacement noise fluctuations originated by spacetime
discreteness [53]) indicates that the threshold below which spacetime can no more be
considered as smooth is lower than × −6 10 19 m. Indeed, as previously discussed, a deformation
parameter larger than unity defines a new length scale β= Lp0 , where quantum
gravitational effects should come into play. By comparing equation (27) with equations (8)
and (10), we see that, in the limit of high βmax (i.e., when the oscillator is not very close to its
ground state), the experimental upper limit on  corresponds to ∼xrms. (In general, as shown by
equation (11), we have β< x/2 zpfmax .) However, we are not simply repeating in a different
form the previous discussion: the considerations contained in this section are related to a
different and maybe more general point of view. In particular, they are not restricted to a
specific form of GUP and do not rely on its validity when applied to macroscopic objects.
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Such a derivation of the limit to spacetime discreteness, starting from the observed modal
motion of AURIGA, is probably oversimplified. Indeed, in the models discussed in the previous
sections the addressed physical system is the bar main mode, view as a (quantum) oscillator,
and in particular its position is considered the meaningful observable. On the other hand, we are
now dealing with the complete displacement of the half-bar center of mass. Such displacement
contains contributions from all the bar modes that (except the first longitudinal mode) are still at
the equilibrium thermodynamic temperature of 4.2K. In this framework it is useful to consider
the ultracryogenic Weber bars that, with their lower temperature, provide a meaningful length
scale even without the strong cooling of the main mode. For instance, AURIGA was cooled
down to ∼0.1K [54], as well as the similar bar detector NAUTIILUS [34]. In this configuration,
the rms displacement of the center of mass—i.e., the region of space explored during its motion
—is = × −x 6 10rms

18 m , corresponding to × L4 10 p
17 . Also in this case, the huge mass and

low temperature of the gravitational wave bars both contribute to their extremely low residual
vibration and make them particularly suitable for testing fine space structures.

6. Conclusions

In this paper, we have analyzed the residual motion of the first longitudinal mode of the bar
detector AURIGA, and in particular of its first longitudinal mode cooled down to the mK, in the
search of low-energy signatures of quantum-gravitational effects. More specifically, we place an
upper limit for possible Planck-scale modifications on the ground-state energy of a harmonic
oscillator, and we set bounds to the scale at which quantum fluctuations of the spacetime
geometry might come into play. The experiment is motivated by the fact that quantum-
gravitational effects could manifest also at low energies in the form of deviation from the
predictions of a standard theory, manifested as modifications of quantum mechanics and/or the
appearance of a discrete spacetime structure. However, the possibility to unveil Planck-scale
effects through low-energy measurements is the subject of an intense debate. In the absence of a
self-consistent theory, there are different assumptions concerning the mechanisms at the basis of
spacetime quantization which have deep implications on our experiment or similar proposals
[21, 22, 29]. A heuristic physical interpretation of GUPs is that any attempt to determine the
position of a particle with Planckian accuracy requires the use of a photon with Planckian
energy, which would significantly deform the spacetime geometry, thus introducing an
additional (gravitationally induced) uncertainty on the particle position. In this picture, the
spacetime fuzziness appears as a direct consequence of the measurement process; i.e., it is
dynamically related to the photon used to probe it. Therefore, only high-energy experiments,
concentrating an energy of the order of Ep within a Planck-length-sized region, would be able to
observe quantum gravitational effects. On the other hand, if discreteness emerges as an intrinsic
property of the spacetime geometry when quantum mechanics is taken into account, Planck-
scale effects would also affect the low-energy motion of a macroscopic body and could be
tested by any dedicated experiment with the required sensitivity. Future experiments on
macroscopic oscillators operating in their fundamental quantum state, whose center-of-mass
motion can be controlled with Planckian accuracy, could provide even more significant limits
and explore also a different hypothesis, such as the phenomenon of quantum-gravity induced
decoherence.
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