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A reduction of gas turbine maintenance costs, together with the increase in machine availability and the reduction of management
costs, is usually expected when gas turbine preventive maintenance is performed in parallel to on-condition maintenance.
However, on-condition maintenance requires up-to-date knowledge of the machine health state. The gas turbine health state
can be determined by means of Gas Path Analysis (GPA) techniques, which allow the calculation of machine health state indices,
starting from measurements taken on the machine. Since the GPA technique makes use of field measurements, the reliability of the
diagnostic process also depends on measurement reliability. In this paper, a comprehensive approach for both the measurement
validation and health state determination of gas turbines is discussed, and its application to a 5 MW gas turbine working in a
natural gas compression plant is presented.

1. Introduction

Maintaining high levels of availability and reliability is an
essential objective for all production units, especially for
those that are subject to high costs due to loss of production.
Nonscheduled stops due to unforeseen faults cause relevant
costs related to the reduction or the interruption of the
process and to the consequent repairing actions. For this
reason, in strategic applications, stand-by machines are
usually required to ensure the desired level of availability.

In the last decades, gas turbines have been more and
more used either for power generation or as mechanical drive
(e.g., in natural gas compression plants), thanks to their
favorable characteristics with respect to other technologies,
such as low emissions and high availability and reliability.
In particular, the latter issues represent winning features of
gas-turbine-based power plants. Hence, in order to utilize
these systems as effectively as possible, the management of
machine maintenance must be optimized.

The optimization of maintenance management, which
should lead to cost saving and increase in machine availabil-
ity, can be performed by supporting gas turbine preventive
maintenance (which comes from manufacturer experience
in terms of component life and performance degradation

versus working hours and is performed according to a priori
schedules, regardless of the effective gas turbine health state)
with on-condition maintenance, which consists of “ad hoc”
actions descending from gas turbine actual operating state
[1–7]. Therefore, On-condition maintenance requires up-to-
date knowledge of the machine health state in real time.

One of the most successful approaches for gas turbine
health state determination consists of the application of Gas
Path Analysis (GPA) techniques, which use a physical ther-
modynamic model of the machine. Linear GPA techniques
have been developed and applied since the seventies [8],
while nonlinear GPA techniques have been applied since the
nineties [9–12].

As an alternative to physics-based methodologies, diag-
nostic information can also be obtained through black-box
models [13, 14], which usually prove successful and robust
[15].

In case the machine under investigation is often operated
under transient conditions, steady-state models (e.g., GPA
models) cannot be used, and dynamic models have instead
to be applied. In this field, the authors developed several
simulation models, both through a physics-based approach
[16–21] and through a black-box approach [22, 23].
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In this paper, a nonlinear GPA technique, together with
its potential and limitations, is presented. The GPA-based
diagnostic process uses gas turbine field measurements
to determine, by means of a gas turbine thermodynamic
cycle model (cycle program (CP)), the actual values of the
parameters that are indices of the gas turbine health state
(Health Indices (HIs)), such as efficiencies, characteristic
flow passage areas and pressure drops along the gas path
[9, 12, 24–27]. One of the main effects of deterioration
and fault is the modification of compressor and turbine
performance maps. Since detailed information about actual
modification of component maps is usually unavailable, the
effects of deterioration and fault are simulated by scaling
the map itself, that is, by calculating the map scaling factors
through the inverse solution of the CP, in order to reproduce
the measurements taken on the gas turbine [9, 12].

Recently, the authors developed a stage-by-stage model
to investigate the effects of compressor and turbine stage
deterioration [28]. This model uses generalized stage per-
formance curves matched by means of a stage-stacking
procedure [29] and was also successfully applied for wet
compression modeling [30, 31]. Moreover, the analysis of
stage performance deterioration was carried out by means
of CFD simulations [32–35]. The CFD approach allows to
overcome the lack of experimental data necessary to correlate
measurements, HI variations, and causes of degradation.
Some experimental findings were reported by the authors in
[36–38].

In this paper, a GPA tool, developed by the authors
[12] and validated through testbench measurements [39], is
used. By comparing the actual and the expected values of
the HIs, it is possible to determine (i) how far the actual
machine operating condition is from the expected one, (ii)
which components are degraded, and (iii) the causes of
malfunctioning.

One of the most critical problems that has to be faced
when GPA techniques are applied is the reliability of the
information that can be obtained, which depends on several
factors [40, 41].

(i) Capability of the CP to accurately reproduce the
actual gas turbine thermodynamic cycle [42].

(ii) Accuracy of field measurements. To minimize mea-
surement error effects, it is usually advisable to sup-
port GPA techniques by means of methodologies for
measurement validation [43–48]. In this way, it is
possible (i) to determine whether a measurement set
is reliable and, if it is recognized, that an outlier is
present, and (ii) to adapt the technique for the health
state determination, for example, by excluding such a
measurement set from the diagnostic process.

(iii) Limited availability of measured quantities on the
gas turbine, which causes problems to correctly
assess the actual health state. In fact, for example,
a single failure can lead to the same effects (same
measurement variations) as those that can be induced
by a series of concurrent failures. Furthermore, some
typologies of failures, as clearance increase or com-
bustor malfunctioning, are usually detectable with

difficulty [12]. So, only an adequate number of
measured quantities can help to distinguish among
different failures.

(iv) Some of the HIs to be estimated have to be kept
constant during the calculations. In fact, since the
number of the available measured quantities is usu-
ally lower than the number of HIs that have to be
determined, some of them have to be considered
constant. This causes an estimation error on the HIs
considered as problem variables, when variations due
to aging or deterioration occur on the HIs which were
considered as fixed HIs [40, 41].

Thus, methodologies for the improvement in HI determi-
nation accuracy are required [43, 44, 49–52]. In particular,
since the methodology makes use of field measurements,
the reliability of the diagnostic process also depends on
measurement reliability. For this reason, two techniques for
measurement validation are presented in the paper: the first
one is based on the use of acceptability bands [43, 53],
while the other uses statistical-based methods for outlier
identification [44]. Analytical redundancy techniques for
sensor fault detection and isolation can also be used [54]. In
any case, if there is insufficient data or measurement accuracy
is low, a “reality check” should be always made to verify
plausibility of the information obtained through the GPA-
based tool.

In this paper, a comprehensive methodology devel-
oped by the authors for both measurement validation and
health state determination of gas turbines is presented. The
methodology is applied to a 5 MW gas turbine working in a
natural gas compression plant. Finally, this paper illustrates
the main features of a software, which was implemented in
the considered compression plant to automate the presented
methodology.

2. Methodology for Measurement
Validation and Health State
Determination of Gas Turbines

The methodology for measurement validation and health
state determination of gas turbines requires the availability
of a CP, which should reproduce the particular gas turbine
under consideration as accurately as possible. Two situations
can occur:

(1) The cycle deck developed by the manufacturer is
available. This CP reproduces a gas turbine type,
which presents average characteristics among gas
turbine units of the same model.

(2) A generalized CP is available. In this case, the pro-
gram has to be tuned to reproduce the machine
type under investigation, for instance, by using the
performance curves supplied by the manufacturer to
the user.

In any case, both the cycle deck and the generalized CP have
to be tuned in order to represent the particular gas turbine
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Figure 1: Comprehensive methodology for measurement validation and health state determination of gas turbines.

unit under consideration. CP tuning procedure is reported
in detail in [55].

A low number of measured quantities is usually available
on gas turbines in field operation. This fact limits the number
of HIs that can be determined through the GPA method.
Therefore, the optimal set of HIs, that can be determined by
the set of available measurements, has to be identified. This
requires an a priori optimized selection of the HIs which have
to be considered as problem variables and of the ones to be
kept constant during the calculation [41, 43, 52].

Once a CP is tuned on the particular gas turbine and
the optimal set of HIs is identified, the main steps of the
comprehensive methodology for measurement validation
and health state determination are sketched in Figure 1 and
reported below.

(1) Acquisition of field measurements and storage on a
historic database, to perform off-line data processing.

(2) Measurement validation. This allows the identifica-
tion of measurements that have a level of uncertainty
higher than a fixed threshold. Thus, the measurement
set can be excluded from the gas turbine diagnostic
process, to avoid an incorrect evaluation of the
machine health state.

(3) Analysis of the normalized measurement trend (trend
analysis). This analysis is required for measurement
validation and also provides useful information for
the determination of gas turbine health state, so
improving the results obtainable by using the GPA
technique alone [43, 53].

(4) Use of acceptable data to perform gas turbine health
state determination, which consists in the determi-
nation of gas turbine HIs by using a GPA-based
technique.

(5) Improvement of the diagnostic process through the
determination of a higher number of gas turbine HIs

by considering more than one operating point (mul-
tipoint analysis). In fact, the multiple operating point
analysis allows the determination of a number of HIs
higher than available measurements, since it com-
pensates for the lack of measurements with the mea-
surements taken at different operating points [24,
56].

(6) Decisional process, which consists of the identifica-
tion of unacceptable measurements, the planning of
the machine stop for maintenance, on the basis of
the values of machine HIs, the possibility of on-line
actions, such as compressor washing, the adaptation
of the gas turbine control logic to its actual health
state, and, in the worst case, the immediate stop of
the machine.

A software that automates the described methodology may
be very helpful as a decision support tool for both plant
director and maintenance personnel [57]. Artificial intelli-
gence techniques may help in focusing on the most signifi-
cant information for improving the diagnostic process and
maintenance practices [58]. Moreover, prognostics method-
ologies would allow to forecast degradation evolution over
time, based on current diagnostic state [59, 60], to optimize
both production and maintenance, from both a technical
and an economical point of view. In a wider sense, making
prognostics, based on understanding machine deterioration
and aging, may allow the estimation of machine remaining
useful life.

3. Methodology for Measurement Validation

In this paper, two techniques are considered for measure-
ment validation, both applied to the normalized measure-
ment trend. Measurement normalization is performed by
dividing each measured value by its expected value calculated
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in the same ambient and load conditions, in order to render
measurements comparable to each other, though collected in
different ambient and load conditions. Such expected value
can be calculated by using a CP or functional relations. While
the CP is rarely available to gas turbine users, functional
relations can be obtained by only using measurements taken
along the gas path and thus the user can always apply this
methodology.

The functional relations can be obtained through identi-
fication techniques, as for instance by using a linear regres-
sion procedure [53] or neural networks [61, 62]. The tuning
of the models requires the identification of a baseline condi-
tion across gas turbine life (e.g., the condition after overhaul
maintenance). In this condition, some measurement sets
taken at different loads and ambient conditions have to be
available. Starting from these sets of measurements it is
possible to establish relations in the form Qm = F(Qwp). The
relations obtained relate thermodynamic measurements Qm

(such as pressure and temperature at the compressor outlet)
to ambient and load conditions Qwp (ambient pressure and
temperature, relative humidity, rotational speeds, and power
output) over the entire gas turbine operating range. The
identification procedure has to be performed once for each
Qm measured quantity and has to be updated when the
chosen baseline condition can be considered no longer
representative for the engine. The obtained relations can be
then used to normalize each measurement.

3.1. Measurement Acceptability Bands. Once measurements
are normalized and the trend over time of each measured
quantity is determined, measurement validation can be per-
formed through measurement acceptability bands [43, 53]:
a measurement lying within these bands will be considered
acceptable, otherwise not. Band amplitude can be calculated
by considering the following contributions.

(a) Measurement accuracy, that can be taken into
account by considering band amplitude equal to
measurement uncertainty.

(b) An engine fault, which may affect the value of the
measurements along the gas path.

(c) Measurements noise along the data acquisition sys-
tem. This error is usually included within measure-
ment accuracy.

(d) Errors due to the CP accuracy. In fact, the CP is
usually tuned on the engine type and not on the
specific unit. This leads to an estimation error on the
expected value of measurements and so to an error in
the normalization process.

For the calculations performed in this paper, the uncertainty
“d” was not considered since the CP was tuned on the specific
unit and, therefore, this source of error was considered
negligible. Two bands were instead considered: the first takes
into account measurements uncertainty (contribution “a”),
while the second considers the variation of the measurement
due to an engine fault (contribution “b”). The total band
amplitude is the sum of these two contributions.

Therefore, it is possible to identify three cases to establish
whether a measurement is acceptable.

(i) Value beyond measurements accuracy.

(ii) Value out of measurements accuracy, but within the
maximum estimated variation of the measurement
due to a fault. A measurement can lie in this region
either because of sensor fault or because of an
incipient engine fault. In this situation, to obtain
significant information, it is necessary to consider the
engine behavior before and after the anomalous value
and data have to be processed by the diagnostic tool.

(iii) Value out of the maximum variation due to a fault.
The measurement should not be processed by the
diagnostic tool since it is identified as an outlier.

As anticipated, the bands have to be referred to as reference
value. The trend value of the normalized measurements
seems a reasonable choice, since, in this manner, measure-
ment variations due to aging can be taken into consideration.

3.2. Statistical-Based Method for Outlier Identification. An
alternative way for measurement validation is the analysis of
the statistical distribution of the normalized measurement
trend in order to detect outliers. A wide number of tech-
niques for outlier detection exist in the literature. In gas tur-
bine applications, practical and easy-to-use techniques such
as parametric test methodologies seem to offer a compromise
solution with respect to simplicity and robustness [44].

A parametric test methodology is based on the definition
of a test criterion. For any given element xi of an N-
dimensional sample, a test criterion can be written as

|xi − xm|
S

≥ k, i = 1, ...,N , (1)

where xm is the mean of the sample and S is the standard
deviation. In the most general case, the coefficient k is a
function of the sample size N and of the level of significance
α. The latter parameter has to be chosen a priori and
represents the probability of rejecting a good point. For
practical purposes, three levels of significance are usually
considered, namely α = 1%, 2%, and 5%. This means, for
example, that if α = 5% is considered, the odds against
rejecting a good point are 20 to 1 (or less).

If (1) applies, xi is to be considered an outlier. Different
methods, based on (1), and characterized by different
assumptions for the coefficient k, are available in the liter-
ature (e.g., the Thompson method, and the Grubbs method,
the Chauvenet criterion).

These “traditional” methods proved only partially effec-
tive and not very robust for gas turbine data [44], in
particular when data trends are not constant over time, such
as in the case of measurements taken during a long period
of time on a gas turbine. In order to overcome some of the
limitations of these methods, a new method was developed
[44]. The method is based on the application of a test
criterion in the form of (1), but both the left-hand side term
and the coefficient k are modified to meet the requirements
that have been highlighted. The specificity of the method
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is that the coefficients introduced account for decreasing
or increasing data trends, although they are also correctly
defined when constant over time data trends are considered.

In other words, the new coefficients allow the test crite-
rion to take the behavior-in-time of the considered quantity
into account. In the new formulation, the test criterion is
defined as

|xi − xm|
kBS

≥ tαkA, i = 1, ...,N. (2)

The coefficient kA is defined as

kA = 1 +
limN→∞t2

α + 1
4N

. (3)

This coefficient is defined in such a manner as to tend to one
when N tends to infinity. The coefficient tα represents the
value of the quantile corresponding to a certain level of sig-
nificance related to the Gaussian distribution. The coefficient
kB, defined as

kB = (1 + N)1/N
(

1 +
∣∣∣Sov − Si

∣∣∣
)

, (4)

allows the scatter of the considered sample to be taken
into account. In fact, a relationship between the overall
standard deviation Sov and the standard deviation calculated
by considering the data range [1, i], namely Si, where i is the
current data, which is under investigation, is introduced in
the test criterion. In this manner, the left-hand side term of
(2), instead of being constant as in the Thompson, Grubbs,
and Chauvenet methods, is updated at each step and, thus,
the behavior-in-time of the quantity is taken into account.
However, this requires the availability of all data for the time
period under examination, in order to estimate data overall
standard deviation Sov, and, thus, kB dependence with time
can be evaluated only in the case of data off-line processing.
Otherwise, if data are processed on line, kB only depends on
sample size N , since, in this case, Sov equals Si.

4. Methodology for Health State Determination
of Gas Turbines

4.1. Single Operating Point Analysis. Gas turbine operating
state determination consists of the assessment of the modi-
fication, due to deterioration and fault, of performance and
geometric data characterizing the machine components. One
of the main effects of deterioration and fault is the modifi-
cation of compressor and turbine performance maps. Since
detailed information about actual modification of compo-
nent maps is usually unavailable, many authors simulate the
effects of deterioration and fault by scaling the map itself,
that is, by multiplying the maps in new and clean condition
by scaling factors F point by point [9, 12, 56]. Different
scaling factors can be used; compressor and turbine maps
are usually scaled by multiplying efficiency and corrected
mass flow rate, at constant pressure ratio (or equivalent
parameter, such as the ratio between isentropic enthalpy
variation and turbine inlet temperature) and at constant
corrected rotational speed [9, 12, 56]. The modification of
compressor and turbine performance maps with respect to

new and clean condition due to actual deteriorations and
faults can be assessed by calculating the map scaling factors
F in order to reproduce the measurements taken on the gas
turbine [9, 12, 56].

Therefore, the scale factors of efficiency and corrected
mass flow of compressor and turbines can be assumed as
characteristic parameters of compressor and turbine health
state. In addition to these parameters, two other important
parameters for representing the gas turbine health state are
the combustor efficiency and pressure drop. In particular, the
combustor efficiency accounts for thermal losses along the
gas path, which are considered as a fixed constant percentage
of the thermal power introduced by the fuel, while the
combustor pressure drop is usually defined as a constant
percentage of the total pressure at the combustor inlet. This
type of parameters is sensitive to the gas turbine health state,
while it is not dependent on the gas turbine operating point.
Parameters with this characteristic are usually called health
indices (HIs).

The HIs can be calculated by solving in inverse mode the
CP in order to reproduce the measurements taken on the
gas turbine. In fact, the values of the measurable variables
computed by the CP Qm,c are a function of the values
assumed both by the health indices X and by the variables
that unequivocally determine the operating point at which
the gas turbine is working Qwp:

Qm,c = f
(
X ,Qwp

)
. (5)

By inverting (5), it is possible to calculate X starting from the
measured variables:

X = f
(
Qm,Qwp

)
. (6)

The solution of (6), usually called “inverse” solution, has
been performed by the authors through a minimization
technique which determines the values of HIs that minimize
the sum of the square differences, between measured and
computed values of the measurable variables [12]. This
problem is solved by using a nonlinear algorithm, which
minimizes the objective function:

fob
(
X1, . . . ,XNX

) =
Nm∑

i=1

wi

(
Qm,c −Qm

Qm

)2

i
, (7)

where Xi (i = 1, . . . ,Nx) are the unknown values of HIs,
(Qm,c)i and (Qm)i are the computed estimates and the
measured values of the measurable quantities, respectively,
and wi are the weights which can be assigned to each term of
the objective function.

The minimization algorithm which was used is included
in the IMSL math library [63] and was successfully utilized to
solve the gas turbine mathematical model [3, 11, 12, 24, 29,
39, 41, 57, 64]. Once the HIs are calculated, the gas turbine
health state is determined by evaluating the variations of the
HI values with respect to the expected values in the “new
and clean condition.” This allows the faulty component to be
localized and malfunctions to be identified and quantified.

From (6), the number and type of gas turbine HIs that
can be determined for each operating point (i.e., for each



6 International Journal of Rotating Machinery

. . .

. . .

Minimization
   algorithm

Cycle program

      Multiple 
operating points

which minimize F

Health indices X

min Fob(

,     ,Xnx

)

Measured quantities (Qm)
in multiple operating points

ob

(Qm,c)

X1

,     ,XnxX1

 Computed estimates of
the measurable quantities

Figure 2: Multiple operating point analysis.

set of Qwp) depend on the number and type of equations,
which, in turn, depend on the number and type of the
available measured quantities. In particular, the number of
HIs is usually equal to the number of the Qm measured
variables. Thus, since the number of the Qm available
measured quantities is usually lower than the number of
HIs to be estimated, some of them have to be kept constant
during the calculations. Therefore, variations due to aging or
deterioration which, in the actual machine, occur on the HIs,
which were considered as fixed HIs, will cause an estimation
error on the HIs to be determined [40, 41].

4.2. Multiple Operating Point Analysis. A direct consequence
of (6) is that more equations can be obtained by using more
than one Qwp set. Thus, the number of gas turbine HIs
that can be determined also depends on the number of gas
turbine operating points (i.e., number of Qwp sets) [24, 56].
Therefore, by using multiple operating points it is possible
to evaluate a number of HIs higher than the number of the
available Qm measured quantities.

Therefore, as made in the case of single operating point
analysis, the solution of the system of equations obtained by
using more than one Qwp set in (6) was performed through
a minimization technique, which determines the values of
HIs that minimize the sum of the square differences, between
measured and computed values of the measurable variables
in all the operating points considered. The objective function
to be minimized becomes

fob
(
X1, ...,XNX

) = 1
NOP

NOP∑

j=1

⎡
⎣
Nm∑

i=1

wi

(
Qm,c −Qm

Qm

)2

i

⎤
⎦

j

, (8)

where Xi (i = 1, . . . ,Nx) are the unknown HIs, (Qm,c)i and
(Qm)i are the computed estimates and the measured values of
the measurable variables respectively, and wi are the weights
assigned to each term of the objective function.

The main steps of the multiple operating point technique
are sketched in Figure 2. The adopted minimization algo-
rithm is the same as for that the single point analysis [63].

The different operating points have to be taken within a
small time interval (for instance during the same day) so that
the gas turbine health state can be considered the same for
all the operating points and, thus, the solution X of (6) is the
same for all the operating points. The most suitable choice of
the operating points to be used was analyzed in [24].

5. Application of the Methodology to
Gas Turbines Running in a Natural Gas
Compression Plant

The comprehensive methodology for measurement valida-
tion and health state determination of gas turbines was
applied to two compressor drive gas turbines working in a
natural gas compression plant. In this plant, the pressure
of the gas coming from the Adriatic Sea reservoirs is
raised to the value required by the Italian Gas Supply
Company by using four compression systems. Two of them
are driven by 5.2 MW regenerative cycle two-shaft industrial
gas turbines with variable power turbine nozzles (VN) and
two by 1.2 MW simple cycle two shaft gas turbines. The
methodology was applied to the two 5.2 MW gas turbines
whose lay out is shown in Figure 3.

In any case, the methodology is completely general. In
fact, it was also successfully applied to a single shaft gas
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Figure 3: Layout of the 5.2 MW two-shaft regenerative cycle gas turbine.

Table 1: Available measurements.

Qwp measurements Qm measurements

T1: comp. inlet temp. p2: comp. outlet pressure

pa: ambient pressure T2: comp. outlet temp.

RH: relative humidity T6: power turb. outlet temp.

Δpa−1: filter pressure drop

VN : var. nozzle position

NGGT: gas gen. turb. rot. speed Other measurements

NPT: power turbine rot. speed T3: recuperator outlet temp. (air side)

PPT: power output (calculated from measured Tc1, Tc2 and Mc1) T7: recuperator outlet temp. (gas side)

turbine working in a cogenerative combined power plant
[65].

Table 1 reports the measurements available on each
5.2 MW gas turbine system. As can be seen from Table 1,
some very important measurements for a reliable diagnosis
analysis are not available. They are the fuel mass flow rate
(at present, only the total fuel mass flow feeding both the
5.2 MW gas turbines is measured), the pressure and temper-
ature between the gas generator and the power turbine (p5,
T5), the air side and exhaust side regenerator pressure drops
(Δp2-3, Δp6-7), and the air inlet mass flow rate (M1).

The methodology was applied to a poorly instrumented
plant, since it represents a selective test for verifying the
capabilities of the proposed diagnostic system. Moreover,
poor instrumented plants are highly widespread and, thus,
the application to such cases seems particularly interesting.

Before applying the methodology for gas turbine health
state determination, a generalized CP developed by the
authors was tuned to reproduce the gas turbine under
consideration. This was made by using as reference values
the performance curves provided by the gas turbine manu-
facturer to the user.

These curves provide the compressor outlet pressure (p2)
and temperature (T2), power turbine outlet temperature
(T6), fuel and inlet air mass flow rates (Mf and M1) at
various gas turbine working points. After the tuning, the
program estimates manufacturer data with a maximum error
usually lower than 1% [3].

The following step of the procedure requires the identi-
fication of the optimal combination measurements/HIs. As
shown in Table 1, there are only three available measure-
ments to perform the operating state determination: p2,
T2, and T6. In fact, the other measurements are used to
define the working point. Therefore, only three HIs can be
unequivocally determined. The optimal HIs set (identified
according to [43, 52]), which can be determined by using the
set of available measurements, is composed of the following
HIs: compressor efficiency (ηC), corrected mass flow (μC),
and gas generator turbine efficiency (ηGGT).

Phase 1: Acquisition and Storage of Field Measurements. The
available data were gathered once a day manually by an
operator. This caused the presence of a number of wild points
originating from sources such as reading errors, data taken
in unstable and/or not representative conditions, and so
forth, which were difficult to detect. This may be a common
situation in practice and thus it could represent a test bed
for measurement validation techniques. The results reported
refer to data acquired in the period from 2nd November 1999
to 16th January 2000 on one of the two gas turbines under
investigation.

Phase 2: Measurement Validation. Measurement validation
was performed by means of the two previously described
techniques, both applied to the normalized measure-
ment trend. Measurement normalization was performed by
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Table 2: Band amplitude: measurements accuracy and total band amplitude.

Measured Quantities Measurements accuracy [% of reference value] Confidence band [% of trend value]

T2 ±0.85 [−1; + 5.5]

p2 ±1.00 [−4; + 3]

T6 ±0.75 [−1; + 5.5]

Acceptable data

(days)

Unacceptable data (acc. bands)

Outlier (stat.-based method)
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Figure 4: Normalized values of compressor outlet pressure (p2
∗), compressor outlet temperature (T2

∗) and power turbine outlet
temperature (T6

∗) versus time.

dividing each measured value by its expected value calculated
in the same ambient and load conditions, by using the CP
tuned on the machine under consideration. Measurement
acceptability bands were applied to the normalized mea-
surement trend and take into account both measurement
uncertainty and maximum variations of measurements due
to faults, according to Table 2 [43, 53].

Measurement uncertainty bands (second column in
Table 2) were set according to the sensor accuracy reported in
[66] and by considering the case in which the measurements
were taken in the field with standard machine instrumen-
tation during normal operation and not when conducting
an acceptance test. In order to establish the amplitude of
the bands deriving from measurement variation due to
faults, the CP tuned on the considered machine was used
to simulate some of the most common faults that can
occur on a gas turbine (compressor fouling, compres-
sor mechanical damage, gas generator turbine mechanical
damage, gas generator turbine erosion, and power turbine
erosion) [43]. Faults are to be considered as sudden faults,
since measurement variations due to aging or deterioration
are considered through the normalization process. Figure 4

reports the normalized values of the compressor outlet
pressure (p2) and temperature (T2) and of the power turbine
outlet temperature (T6) versus time. The solid line indicates
measurement trend over time, while the dashed lines are the
acceptability bands. The figure highlights:

(i) the decreasing trend of the outlet compressor pres-
sure and the slightly increasing trend of the com-
pressor outlet temperature. These symptoms may
be attributed to compressor fouling The increasing
trend of the power turbine outlet temperature can be
also observed.

(ii) the measurement scattering due to the uncertainties
in field measurement readings.

(iii) the unacceptable measurements according to the use
of acceptability bands (white symbols). Moreover, the
application of the statistical-based method for outlier
identification reveals that only one measurement
set (i.e. the one at day no. 20) can be considered
unacceptable also by using this second method. Thus,
the use of the statistical-based method reveals less
restrictive than the use of acceptability bands.
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Figure 5: Computed and reference value percentage variations for compressor efficiency (ηC) and corrected mass flow (μC) and gas generator
turbine efficiency (ηGGT).

Phase 3: Analysis of the Normalized Measurement Trend
(Trend Analysis). The analysis is aimed at establishing
relations among performance drops and normalized mea-
surement trends of compressor outlet pressure (p2) and
temperature (T2) and the power turbine outlet temperature
(T6) reported in Figure 4.

Form Figure 4, a reduction of about 2% in 70 days
on the trend of normalized compressor outlet pressure can
be noticed, while compressor outlet temperature remains
almost constant. These trends highlight a normal compressor
fouling. The analysis of T6

∗ alone, whose trend is slightly
increasing, does not provide additional diagnostic informa-
tion about the two turbines.

Phase 4: Gas Turbine Health State Determination. The per-
centage variation E between computed and reference values
of compressor efficiency (ηC) and corrected mass flow (μC)
HIs and of gas generator turbine efficiency HI (ηGGT) versus
time is reported in Figure 5. The black and white symbols
indicate the HIs evaluated by using the acceptable and
unacceptable measurement sets, respectively.

Figure 5 highlights the decreasing trends of both com-
pressor efficiency and mass flow function HIs, which can be
attributed to compressor fouling, as already highlighted by
the Trend Analysis in the previous section. Over a period of
two months, the trend values of ηC, and μC HIs were reduced
by 1.0% and 2.5%, respectively, showing that fouling is not
severe [67, 68]. The trend of gas generator turbine efficiency
HI is instead almost constant, indicating that this component

is not suffering from significant changes in its health state.
Figure 5 also highlights the remarkable reduction of the
scattering of HI trends, obtainable by using the acceptable
measurement sets only.

Phase 5–Gas Turbine Health State Determination on Multiple
Operating Points. A multipoint analysis was also applied to
the gas turbine unit considered by using measurements taken
during special operating conditions, immediately before and
after a maintenance stop. In these cases, measurements at
different gas turbine loads were performed, so that it was
possible to perform the multipoint analysis.

Two different calculations were performed by using
different sets of variable HIs. In Figure 6(a), the normalized
values of ηC, μC, ηGGT, and μGGT, calculated by using the
multipoint analysis with three HIs (ηC, μC, ηGGT) as problem
variables, are reported. In Figure 6(b), the normalized values
of ηC , μC, ηGGT, μGGT, ηPT, and μPT, calculated by using
the multipoint analysis with five HIs (ηC, μC, ηGGT, μGGT,
and ηPT) as problem variables, are shown. Black and white
symbols refer to the measurements taken before and after the
maintenance stop, respectively. It can be highlighted how the
multipoint analysis allows the determination of a number
of HIs higher than available measured quantities, since it
compensates for the lack of measured quantities with the
measurements taken at different operating points.

The results obtained by using five HIs as problem
variables (Figure 6(b)) seem more convincing than the ones
obtained in the case of three variable HIs (Figure 6(a)). In
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Figure 6: Normalized values of HIs in case of (a) three problem variables (ηC, μC, and ηGGT), and (b) five problem variables (ηC, μC, ηGGT,
μGGT, ηPT, and μPT) (multiple operating point analysis).

this last case, in fact, it seems that there are no improvements
due to maintenance, while, in the case of five variable HIs,
an increase in the compressor and gas generator turbine
corrected mass flows HIs can be noticed.

6. Software Tool for Gas Turbine On-Condition
Monitoring and Diagnostics

For the considered natural gas compression plant, a software
tool was developed and implemented [57], to allow the
prompt visualization of the required information by means
of a user-friendly interface, so allowing gas turbine health
state analysis and supporting the decision for maintenance
actions.

The developed software, whose structure is sketched in
Figure 7, allows

(i) the measurement normalization,

(ii) the calculation of HIs for the evaluation of gas tur-
bine health state,

(iii) the comparison of the measured delivery of com-
pressed natural gas compared with the calculated
maximum possible delivery. This latter value is esti-
mated by assuming the gas turbine in new and clean
conditions.

Moreover, the software system stores all data in a database
and calculates the trend line in order to perform the trend
analysis for all the parameters.

The kernel of the software system consists of the sub-
routines that allow the manual insertion of data, data direct
acquisition from the control system, the visualization of
the results, and the modification of calculation parameters.
The user interface is provided by means of floating toolbars
(buttons and/or text).

Results can be displayed in form of graphs and tables,
which allows a user-friendly interpretation of the results.
The graphical form shows plots of calculated values and the
corresponding trend lines versus time; acceptability bands
are visualized around the trend line to evidence unacceptable
data.

The program also determines the net power output of
the gas turbine starting from measurements acquired on the
centrifugal compressor, the overall gas turbine efficiency, and
the turbine inlet temperature. The ratio between the actual
and the nominal value for both the net power output and the
turbine inlet temperature can be used as indices of the gas
turbine overall health state.

Moreover, starting from the indices of the gas turbine
health state, the software calculates the value of the produc-
tion losses due to the actual health state. In fact, if MgasM

is the measurement of the natural gas flow rate processed
by the centrifugal compressor and MgasC the flow rate that
the centrifugal compressor could process when the driving
gas turbine is in new and clean conditions, a lost production
index LPI can be calculated as

LPI = MgasC−MgasM

MgasC
. (9)

In Figure 8 a sample trend of LPI is reported. The trend is
increasing due to gas turbine ageing: in fact, the more the gas
turbine deterioration increases (and, thus, its performances
decrease), the more the gas flow rate that the centrifugal
compressor can process (MgasM) reduces.

In conclusion, the software can actually represent a help-
ful support tool for the plant operation management. The
persons which can take advantage of these analyses can be

(i) the plant manager; In fact LPI evaluation allows
useful information on the actual economical benefit



International Journal of Rotating Machinery 11

 Manual
insertion

RegressionAcquisition 
from DCS

Input.txt

Direct cycle Inverse cycle

   Output 
Inverse.out

  Output 
Direct.out

Measurements

Direct

Inverse

Maintenance 
    reports

Regression

Database

Data

Figure 7: Software system architecture.

LP
I 

(%
)

0.6

0 30 60 90 120 150 180

0.4

0.2

0

−0.2

(day)

Figure 8: Lost production index trend.

of keeping the plant in operation rather than stop it
to perform maintenance actions,

(ii) the maintenance manager, which, through the anal-
ysis of the normalized measurement and of the HIs
trends, can obtain information on overall perfor-
mance deterioration, on the components that are
responsible for the deterioration, on the type and on
the quantification of the deterioration;

(iii) the maintenance chief engineer, which, still through
the analysis of the normalized measurement and of
HIs trends, can obtain information on the perfor-
mance recovery after maintenance actions.

7. Conclusions

In this paper, a comprehensive methodology for both mea-
surement validation and health state determination of gas
turbines was presented, discussed, and applied to a 5 MW gas
turbine working in a natural gas compression plant.

The methodology demonstrated to be effective in sup-
porting plant operation and maintenance management and
some interesting results were presented. In particular.

(i) The application of the methodologies for measure-
ment validation allowed the identification of outliers,
the elimination of which allowed a remarkable reduc-
tion of the scattering of the trend-over-time of the
measurements. The measurement sets composed of
outliers were not used for estimating machine health
indices.

(ii) Gas turbine health state determination, performed by
applying the developed gas path analysis technique
over a working period of two months, highlighted
that compressor fouling (though not severe) was
occurring, while gas generator turbine was not suf-
fering from significant changes in health state.

(iii) The application of the multipoint analysis to mea-
surements taken immediately before and after a
maintenance stop allowed a more detailed analysis of
the health state of the main gas turbine components.

Finally, the main features of a software, which was imple-
mented in the considered compression plant to automate
the diagnostic process and to support plant operation and
management, were presented. As a sample application, the
loss of production, due to gas turbine deterioration, was
reported.

Nomenclature

E: Variation
F: Map scaling factors
Fob: Objective function
k,kA, kB: Test criterion coefficients
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LPI: Loss of production index
M: Mass flow rate
N : Sample size, rotational speed
Nm: Dimension of Qm vector
Nop: Number of operating points
Nx: Dimension of X vector
P: Total pressure
P: Power
Qm: Vector of measured variables
Qm,c: Vector of computed estimates of the mea-

sured variables
Qwp: Vector of measured variables necessary to

define the working point
RH: Relative humidity
S: Standard deviation of the sample
T : Total temperature
tα: T-student distribution quantile
VN: Variable nozzle angular position
w: Weight
x: element of the sample
X : [X1, . . . , XNx]T vector of health indices
α: Level of significance
Δ: Variation
η: efficiency
μ: =M

√
T/p mass flow function

∗: Normalized value.

Subscripts

a: Ambient
C: Compressor
f : Fuel
m: Mean value
GGT: Gas generator turbine
GasC: Compressed gas (calculated)
GasM: Compressed gas (measured)
ov: Overall
PT: Power turbine.

Acronyms

C: Compressor
CC: Combustion chamber
CP: Cycle Program
F: Filter
GGT: Gas generator turbine
GPA: Gas path analysis
HI: Health index
PT: Power turbine.
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