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ABSTRACT Anomaly detection is of great significance for intelligent surveillance videos. Current works
typically struggle with object detection and localization problems due to crowded and complex scenes.
Hence, we propose a Deep Spatiotemporal Translation Network (DSTN), novel unsupervised anomaly
detection and localization method based on Generative Adversarial Network (GAN) and Edge Wrapping
(EW ). In training, we use only the frames of normal events in order to generate their corresponding dense
optical flow as temporal features. During testing, since all the video sequences are input into the system,
unknown events are considered as anomalous events due to the fact that the model knows only the normal
patterns. To benefit from the information provided by both appearance and motion features, we introduce
(i) a novel fusion of background removal and real optical flow frames with (ii) a concatenation of the
original and background removal frames. We improve the performance of anomaly localization in the pixel-
level evaluation by proposing (iii) the Edge Wrapping to reduce the noise and suppress non-related edges
of abnormal objects. Our DSTN has been tested on publicly available anomaly datasets, including UCSD
pedestrian, UMN, and CUHK Avenue. The results show that it outperforms other state-of-the-art algorithms
with respect to the frame-level evaluation, the pixel-level evaluation, and the time complexity for abnormal
object detection and localization tasks.

INDEX TERMS Anomaly detection, anomaly localization, spatiotemporal, unsupervised learning, video
surveillance.

I. INTRODUCTION
Surveillance has rapidly gained increasing popularity as
a modern technology, which can be used to ensure life
safety and break the wall of security mistrust. Closed-Circuit
Television (CCTV) cameras have been widely used for
monitoring and recording situations, providing evidence to
the surveillance system. According to [1], the growth of
surveillance videos has increased by 9.3 percent in 2019.
However, the CCTV cameras are mostly used for the post-
video forensic process by allowing the investigation of previ-
ous events [2]. This means that the CCTV camera feed still
needs to be manually monitored by a human operator for any
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abnormal events which can unpredictably occur in the scene.
An abnormal or anomalous event refers to an activity that
raises suspicions by differing from the majority of the activi-
ties. It can possibly occur in any realistic scenario (e.g. indoor,
outdoor, crowded, and uncrowded scenes) and may lead to
major problems, such as an area invasion, a robbery, and a
terrorist attack, causing a lot of damage, injury, or death [3].
According to the performance of CCTV cameras [2], there is
a need to build intelligent systems to analyze abnormal events
in realistic scenes for surveillance videos. Themain challenge
of building an intelligent CCTV system is how to precisely
detect and locate all possible abnormal events in crowded and
complex scenes.

To design an effective anomaly detection and localiza-
tion system [7], [10], [13], [44], there are four main issues
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to be considered: the complex scene, time-consumption,
dataset, and object localization. The complex or crowded
scene may contain multiple objects with clutter and occlu-
sions which are difficult to deal with. Besides, it is
more challenging than the uncrowded scene as it has
higher complexity. This scene complexity challenge has
drawn interest from researchers in computer vision research
area [4]–[14], [19], [20], [45]–[48]. To handle this signif-
icant issue, two main approaches have been implemented
for anomaly detection in crowds: (i) a traditional-based
approach and (ii) a deep learning-based approach. With (i)
the traditional-based approaches [20]–[28], [35], appear-
ance and motion (e.g. trajectories) are employed to detect
the anomaly events based on hand-crafted features. Their
accuracy depends on object appearances and motion cues
which can be found by extracting features and tracking the
objects [20]. Even though the traditional-based approaches
are able to detect multiple objects in crowded scenes, they
are more difficult to generalize to complex scenarios than
deep learning-based approaches. Hence, deep learning-based
approaches [4], [7], [10]–[17], [29], have been considered
as being more appropriate for handling complex scenes
as they are able to improve the performance of anomaly
detection and localization with the use of a learnable model
of nonlinear transformation [7], [8], [13], [15]. Following
the complex scene issue, time-consumption is one of the
challenging issues for the use of an anomaly detection system
in real-world applications. If high accuracy is required, the
detection of multiple objects in crowded scenes is very time-
consuming, asking for an inherent speed-accuracy tradeoff
[5], [18], [20], [38]–[41]. Recently, the deep learning-based
approaches were considered for reducing the time complexity
while retaining good detection performance due to the impor-
tance of low computational complexity and high detection
accuracy for the surveillance videos [44], [46], [52]–[57],
[59]. The recent advanced techniques for speeding up CNNs
are parameter pruning and sharing and transferred convo-
lutional filters [30]. Many works [52]–[57] try to optimize
the computational time of CNN-based algorithms, focusing
on convolutional architectures by reducing convolutional
layers and redundant parameters that are not drastically
impacting the model performance, resulting in a smaller
and faster network compared to the traditional CNN [58].
Several works [46], [59] use pre-trained fully convolutional
networks (FCNs) as a regional feature extractor for semantic
segmentation to help to reduce the computational complexity
of the traditional CNN. Another significant issue is the lack of
abnormal training samples in the datasets, leading to insuffi-
cient training information and the difficulty of designing good
classifiers for indicating abnormal events. In addition, there
is no chance to train for all possible abnormal events since
they can occur unpredictably in real-world environments.
Therefore, recent works focus on unsupervised deep learning-
based approaches, such as generative approaches [11], [14],
[16], to overcome this problem. Finally, the low performance
of object localization in pixel-level anomaly detection is

also addressed in the literature. Most works achieve high
accuracy (measured byArea Under the Curve (AUC)) only on
anomaly detection in a frame-level evaluation, while the AUC
of object localization in the pixel-level evaluation is much
lower. This occurs because of the lack of sufficient features
of the objects of interest (e.g. appearance and motion patterns
of foreground objects) for model training. These features
should be extracted during training in order to learn the
model. Specifically, the full input frame is fed into the model
without prior knowledge of the objects in the scene, making
it difficult for the model to correctly learn the mapping from
the appearance to the temporal information of objects and
resulting in misdetection and false detection of abnormal
objects [10], [11], [14], [16]. Current works try to improve
the performance of object localization by isolating patches
for deeper feature extraction [7], [13].

Following these considerations, we propose a novel unsu-
pervised spatiotemporal translation based on Generative
Adversarial Network (GAN) for anomaly detection and local-
ization in crowded scenes. Our proposed framework, named
Deep Spatiotemporal Translation Network (DSTN), is differ-
ent from the early works [20]–[28], [35] that focus on hand-
crafted features since we can handle any possible anomalous
event in the complex scenes without tuning parameters dur-
ing testing, making the proposed DSTN particularly robust,
while achieving good running time performance. Addition-
ally, the proposed DSTN is different from [10], [11], [14],
[16] that rely on deep learning-based approaches because
DSTN is additionally equipped with pre- and post-processing
procedures to enhance its detection and localization perfor-
mance and to eliminate non-object and redundant features.
The proposed DSTN has been tested on three challeng-
ing anomaly benchmark datasets and compared with other
state-of-the-art methods, showing the effectiveness of our
proposed framework in terms of both accuracy and time
complexity.

To conclude, our main contributions are four-fold:
(i) We propose DSTN, a novel unsupervised deep learn-

ing architecture based on GAN, to transform information
from the spatial to the temporal domain for addressing the
anomaly detection and localization tasks in crowded scenes
for surveillance videos. Our DSTN automatically learns the
normal samples without varying any parameters, presenting
remarkable advantages over previous traditional methods;

(ii) We propose a novel fusion of a background removal
frame and a real dense optical flow frame in order to elimi-
nate noise from appearance and motion representations and
acquire explicit boundaries of foreground objects;

(iii) We propose concatenated spatiotemporal features to
combine important feature information obtained from the
new design of patch extraction requiring extensive low-level
appearance and motion features;

(iv) This paper presents the first attempt to improve
anomaly object localization at the pixel level by introducing
an Edge Wrapping technique at the final stage of the frame-
work.
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This paper consists of five sections. We review related
works in Section 2 and present our proposed method, DSTN,
in Section 3. Section 4 shows experimental results com-
pared with several state-of-the-art algorithms and analysis of
DSTN. Section 5 provides a conclusion and directions for
future work.

II. RELATED WORKS
The related works of video anomaly detection can be grouped
into twomain categories: traditional-based and deep learning-
based approaches.

A. TRADITIONAL-BASED APPROACHES
In this section, we focus on the frameworks that rely on
hand-crafted features. These can be divided into two types
including temporal (motion) approach and spatiotemporal
(appearance and motion) approach. For the temporal
approach, X. Tang, et al., [21] proposed abnormal event
detection based on motion attention using sparse coding
by comparing current regions with neighboring regions to
generate a motion attention map. Sparse reconstruction is
proposed in [22] by extracting the optical flow and applying
the Histogram of Maximal Optical Flow Projections with a
sparse representation to generate the dictionary of the normal
event. Recently, motion energy [23] and motion entropy [24]
were proposed to characterize the abnormal event based on
its temporal information only. Overall, the temporal approach
is suitable only when dealing with scenes that have a simple
background and a low number of foreground objects.

The spatiotemporal approach combines information from
both appearance and motion features, making it more
robust to complex scenes than the temporal approach. This
approach has been addressed by using various local feature
descriptors, including Gaussian Mixture Model (GMM) [25],
Histogram of Oriented Gradients (HOG) [42], Histogram of
Optical Flow (HOF) [42], Histogram of Optical Flow Orien-
tation (HOFO) [43] and Magnitude (HOFM) [26], Gaussian
regression [27], and Optical Flow (OF) [35] with Principal
Component Analysis (PCA) [60], which can be grouped by
applying classifier methods such as K-Means [28] and Bags
of Visual Words (BoVW) [27]. However, the problem with
the traditional-based approaches is that they rely on hand-
crafted features that limit their generalization to other anoma-
lous events.

B. DEEP LEARNING-BASED APPROACHES
Deep learning-based approaches have gained wide popu-
larity as they consistently achieve higher performance than
the traditional state-of-the-art approaches [20]–[28], [35] in
learning high-level features from a large amount of data
and dealing with complex problems such as object detection
and recognition and image classification. These approaches
can be categorized based on the level of supervision
involved. The supervised learning requires labeled data, caus-
ing difficulty in detecting unpredictable anomalous events
in real-world use cases. Similarly to supervised learning,

semi-supervised learning still needs some labeled samples to
train the model [15], [29]. In contrast, unsupervised learn-
ing is able to handle various anomalous events without any
labeling requirement, making it the most suitable approach
for anomaly detection in real-world applications.Most frame-
works of anomaly detection are based on unsupervised learn-
ing because of its high performance in terms of flexibility and
reliability of anomaly detection and localization.

Unsupervised learning has been investigated for train-
ing in recognition tasks by using CNNs [10], [30].
Ravanbakhsh, et al., [10] proposed a Binary Quantization
Layer as a final layer to plug into the top of the network for
gathering motion information of abnormality. Xu, et al. [7]
proposed an Appearance and Motion DeepNet (AMDN)
for detecting anomalous events in the videos. The discrim-
inative feature is used instead of hand-crafted features by
applying Stacked Denoising AutoEncoders (SDAE) [61].
Fan, et al. [13] proposed two-stream variational autoencoder
by using Gaussian Mixture Model (GMM) with a Fully Con-
volutional Network (FCN) [46] at the bottleneck between
encoder and decoder to compute the spatial and temporal
score. In [17], the authors proposed a neural network for
anomaly detection in video surveillance by using three pro-
cessing blocks; feature learning, sparse representation, and
dictionary learning, and also proposed and reformulate an
adaptive iterative hard-thresholding algorithm as a new long
short-term memory (LSTM).

Liu, et al. [16] introduced a video prediction framework for
anomaly detection using GANs for training normal events,
where the abnormal event is detected by leveraging the dif-
ference between a predicted future frame and its ground truth.
A future frame is predicted based on appearance and motion
feature information. Hasan, et al. [15] proposed an end-to-
end deep learning framework for abnormal detection using a
Convolutional Autoencoder for learning the normal events in
crowds and generating the appearance of the normal pattern
at testing time, where the abnormality score is measured by
the reconstruction error. Similarly to [15], the authors in [14]
recently proposed Generative Adversarial Nets (GANs) for a
cross-channel abnormal event in which the discriminator is
directly used as the final classifiers as an end-to-end anomaly
detector. The difference between [15] and [14] is that the
latter is based on the interplay between generator and dis-
criminator networks. Another study [11] is dealing with the
abnormal event detection in videos using GANs to train only
normal events with the use of two networks, (i) generating
the optical flow from the frame and (ii) generating the frame
from the optical flow.

Following related works, GANs are an outstanding
approach that achieves high performance in the anomaly
detection task. GANs are a great solution to overcome clas-
sification problems as they are able to find the significant
features in the frames without any predefined anomaly types.
The fundamental architecture of GANs [31]–[33] comprises
two networks, the generator G for generating synthetic data
z that are likely to come from the same data-generating
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FIGURE 1. The overview of our proposed framework.

distribution as the real samples and discriminator D for
discriminating whether the input data are real or fake data
generated byG. More specifically,G generates a new image e
from random noise z, whileD tries to distinguish a real image
x from e. In addition, D does its best to classify the synthetic
image generated from G as the fake image, while G tries to
fool D by producing the synthetic image which looks real,
making it challenging to be differentiated. The parameters
of G are optimized by updating only with gradients flowing
through D in order to maximize the probability of D(G(z)) so
that D makes a mistake by classifying the synthetic image as
the real image, making G efficient in generating images [31].
With enough training time and capacity, G and D are inca-
pable to improve because the probability distributions of the
generator and the real data are equal, meaning that D can no
longer distinguish between the two distributions. GANs also
afford data augmentation and implicit data management due
to D, which benefits the deeper training of G on the same
small anomaly dataset without training additional classifiers.

Even though GANs outperform several state-of-the-art
works, there is still room for improvement of the object
localization at the pixel-level evaluation asmost of the current
works [11], [14], [16] can significantly improve only the
performance of frame-level evaluation for the object detec-
tion. Thus, apart from the anomaly detection in the frame-
level evaluation, our DSTN specifically focuses on improving
the performance of anomaly localization at the pixel level.
Our model is implemented based on the image-to-image
translation framework using the U-Net architecture with skip

connections proposed in [34], using the generator with a
patch-based discriminator and allowing transforming images
to other representations. We take this ability to generate
optical flow from raw pixel images by using GANs, so our
G is used for spatiotemporal transformation. The difference
between our DSTN and [34] is that we use G to learn the
normal event to understand its pattern instead of using G to
generate a realistic image. At testing time, G is only used
for generating appearance (spatial) and motion (temporal)
features of the normal event from the input image. With this
generated frame, we can simply detect the anomalous areas
by comparing the generated frame with the real frame.

III. DSTN FOR ANOMALY DETECTION AND
LOCALIZATION
A. OVERVIEW
Our DSTN consists of four main phases including feature
collection, spatiotemporal translation, differentiation, and
edge wrapping for the object localization. Fig. 1 shows the
overview of DSTN that can translate information from the
spatial or appearance to the temporal or motion representa-
tions.

In the feature collection, we introduce a background
removal method, a novel fusion between the background
removal frame fBR and the dense inverse search optical flow
frame OFdis, a patch extraction, and a concatenation between
the original frame f and the background removal frame fBR.
Specifically, the novel fusion of fBR and OFdis is proposed
to obtain the prior knowledge of the foreground objects in
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the scene for the model training. To our knowledge, this is
the first attempt to fuse fBR with OFdis to enhance the perfor-
mance of feature extraction of both appearance and motion
patterns for anomaly detection and localization tasks. The
background removal method provides the complete shape
appearance for each moving foreground object while the
dense inverse search optical flow method provides the tem-
poral information corresponding to its input. However, OFdis
contains noises that may affect the quality of image genera-
tion duringGAN training. Thus, due to the performance of the
background removal method, wemanage to fuse it withOFdis
to get rid of noises and make the edges of each foreground
object sharper and more precise. The output of this fusion,
represented as OFfus, is considered as the real dense optical
flow. The fusion of these simple but yet effective techniques
provides remarkably good results in noise reduction in OFdis
which facilitates G to generate the desired temporal output.
Apart from the fusion, patch extraction is also applied

to each frame before input it into a spatiotemporal deep
GAN model, consisting of competing G and D networks.
Additionally, the concatenation between patches of f and
fBR is introduced to capture more information on the moving
foreground objects in the scene. This concatenation is specif-
ically designed for delivering the low-level appearance of the
moving objects along with their temporal information within
the scenes, assisting the model to learn to map the appearance
information to temporal information in a more comprehen-
sive way. To conclude, these feature collection methods are
introduced in order to obtain better input data to feed into the
spatiotemporal deep GAN model. In this way, the model is
able to translate the information from the spatial or appear-
ance to the temporal or motion representations efficiently.

In training, G learns only the normal events and translates
the spatial to temporal image representations depending on
the real dense optical flow. The output of G is a generated
dense optical flow, represented as OFgen. In D, it tries to
discriminate the patches of real dense optical flowOFfus from
the patches of generated dense optical flow OFgen while G
tries to fool D by producing more OFgen that is difficult to be
discriminated. If D discriminates the patches of OFgen as a
fake or wrong image,Gwill regenerateOFgen until the model
reaches the target objective.

In testing, we input all video sequences so thatG generates
the generated dense optical flow of anomalous events based
on the normal events. The anomalous events can be detected
by differentiating the pixel intensity of the real optical flow
OFfus and the generated dense optical flow OFgen. Finally,
we analyze the final output with a novel edge wrapping
technique to localize pixels that belong to the anomalous
objects. The details of our DSTN are described in the fol-
lowing sections.

B. FEATURE COLLECTION
This is the most important initial task for obtaining the char-
acteristics of objects in the scene. The details of the feature
collection approaches are described in the following sections.

1) BACKGROUND REMOVAL
As we consider the real-world situations recorded from the
static CCTV cameras, the objects of interest are only themov-
ing foreground objects. In this case, where the background
is stationary, we introduce a background removal method,
represented as fBR, to extract only the moving foreground
object features and to remove unimportant pixels in the back-
ground. The fBR image is the representation for appearance
information which can be obtained by computing the frame
absolute difference between two consecutive frames as shown
in (1):

fBR =
∣∣ft − ft−1∣∣ (1)

where ft is the current frame and ft−1 is the previous frame
of a video sequence. In addition, to achieve more appearance
features, we implement a binarization on fBR and then con-
catenate the binarized fBR with f . This concatenation provides
more appearance information on the foreground objects of the
binarized fBR image, assisting in the learning of G.

In Section 4, we compare the background removal method
with a popular technique for background subtraction, i.e., the
GMM-based background subtraction [67]. The experimental
results clearly show that the background removal method is
more effective for anomaly detection in our experiments as
it can preserve more appearance information of the moving
foreground objects than the GMM-based background sub-
traction method.

2) FUSED OPTICAL FLOW
Optical flow (OF) is a technique that is used to detect and
track the motion of the object of interest obtained from two
consecutive frames; ft and ft−1. Since we consider the motion
of foreground objects in terms of running time and accuracy,
we choose Dense Inverse Search (DIS), calculated by [37],
to generate dense optical flow for our DSTN due to its high
performance in real-world applications including low com-
plexity, less time-consumption, and accurate motion detec-
tion and tracking. Then we obtain the real dense optical flow
generated from the DIS technique, named OFdis. However,
OFdis contains some noise dispersed in the scene apart from
the objects. Hence, to eliminate it, we propose a novel fusion
of fBR and OFdis for appearance and motion, respectively,
by integrating these frames to acquire clear foreground object
boundaries for the use of object detection, tracking, and local-
ization. Equation (2) shows how to eliminate the noise inDIS
optical flow by knowing the information of fBR where its pixel
values equal to 0 or 255. Then, the fusion OFfus is defined by
applying image masking of fBR on OFdis to change its pixel
values. Thus, we obtain the new OFdis represented as OFfus
that provides better boundaries of the foreground regions. The
output of this fusion OFfus is formulated as below:

OFfus = OFdis

⌊
fBR

fBR + ζ

⌋
(2)

where ζ is a constant value.
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FIGURE 2. The data preparation of concatenated spatiotemporal features
for the temporal target output.

3) PATCH EXTRACTION
Patch extraction is important for the feature collection process
as it helps to obtain more appearance and motion features.
Additionally, the patch extraction allows the model to learn
the pattern of local pixels in the scene, resulting in achiev-
ing better feature collection performance than extracting the
features directly from the full image frame. To extract the
patch, we consider the magnitude and direction of the dense
optical flow based on the moving objects in the scene. The
patch size can be determined by w

a × h × cp, where w is the
width of the frame, h is the height of the frame, a is a scale
value, and cp represents the number of channels. All patch
elements are normalized into a range of [−1, 1]. In our DSTN,
the patch is extracted by applying a sliding window approach
with a stride d to feed into the spatiotemporal translation
deep GAN model from its input frames, including f , fBR,
and OFfus. While f and fBR are the input for G, OFfus is the
input for D. This patch extraction provides the appearance
of the moving foreground object along with its motion and
direction in the scene, assisting in further processing of the
concatenated spatiotemporal features.

4) CONCATENATED SPATIOTEMPORAL FEATURES
In the learning of G, it is important to provide enough infor-
mation on the appearance to make G understand the features
of normal patterns in the scene extensively. The overview
of data preparation of concatenated spatiotemporal features
is shown in Fig. 2. To achieve more low-level information
on the appearance, we propose the concatenation of f and
fBR patches for the input of G to learn the normal events.
Specifically, the number of channels of the concatenated f
and fBR frames is 2 (cp = 2). As a result, the Gmodel obtains
efficient information since fBR gives the contour edge infor-
mation of the foreground objects while f gives the overall
information in the scene. After input the concatenated f and
fBR frames, the spatiotemporal translation deep GAN will
learn this information until it reaches the desired temporal
information as the target output.

C. SPATIOTEMPORAL TRANSLATION MODEL
This work investigates the deep spatiotemporal transla-
tion GAN network as inspired by the image-to-image

translation [34] based on U-Net architecture [63]. The
GAN network consists of two cores: generator G and
discriminator D, and aims to learn a mapping from the inputs
of spatial representation (f and fBR) to the output of temporal
representation (OFgen).

1) GENERATOR
The generator G model is the main model of DSTN since
it is applied in both training and testing. In the basic
GAN [31]–[33], G takes an image x and a random noise z
as the input. It generates the output image e with the same
resolution as the input x but representing the different chan-
nel, using the random noise z, e = G(x, z). In our DSTN,
G tries to transform the spatial representation image of the
concatenated f and fBR frames to the temporal representation
image of generated dense optical flow frameOFgen. However,
in this work, the random noise z is not effective to G because
the input of G is the spatial representation data and G tries
to generate the temporal representation data based on the
input data. Hence, this model has been designed to include
the drop-out instead of the additional Gaussian noise z. The
Drop-Out algorithm [34] is applied within Batch Normal-
ization [62] in the Decoder, resulting e to be reformulated
as e = G(x).

Specifically, on the generator architecture, G consists of
Encoder (En) and Decoder (De) [34]. Fig. 3 shows the
Encoder and Decoder deep network architecture constructed
by a residual connection. The Encoder network has been
constructed from Convolution (Conv), Batch Normalization
(BN), and the Activation Leaky-ReLU (L-ReLU). On the
other hand, the Decoder network has been built from De-
Convolution (De-Conv), Batch Normalization (BN) with
Drop-Out, and the Activation ReLU that allows the model to
speed up the learning to suffuse the color space of the training
distribution [33]. This residual connection or a skip connec-
tion directly connects the encoder layers to the decoder layers
based on the architecture of U-Net [63]. The layers of the
Encoder and the Decoder are indicated in Fig. 4. In detail,
the residual connection is inserted between each layer l at
the Encoder and layer t-l at the Decoder, where t is the total
number of layers. It allows the information to flow through
the initial layer to the last layer by concatenating all channels
at layer l with layer t-l. In other words, it often allows one to
use smaller networks that are easier to optimize and provide
higher quality results of image transformation with a lower
complexity cost than the deep convolutional network such as
VGG nets [64], [65]. The analysis of the residual connection
is discussed in Section 4.

2) DISCRIMINATOR
The discriminator D is used only at the training time. There
are two inputs for D to discriminate: the fake patch of OFgen
(OFgen = e) and the real patch of OFfus (y = OFfus) obtained
from the fusion between fBR and OFdis. The job of D is
to check whether G can produce OFgen or not, and how it
looks like comparing with OFfus. D provides a scalar output

VOLUME 8, 2020 50317



T. Ganokratanaa et al.: Unsupervised Anomaly Detection and Localization Based on DSTN

FIGURE 3. The overview of our generator architecture in which its input is a spatial representation and its output is a temporal representation.

FIGURE 4. The encoder and decoder architecture.

FIGURE 5. The PatchGAN structure in the discriminator architecture.

denoting the probability of the inputs (OFfus, OFgen) for
determining the real data.

In D, we use PatchGAN which is constructed as shown
in Fig. 5. The PatchGAN can produce a faster training GAN
than the full image discriminator net (e.g. 256× 256) because
it applies to each partial patch of the image. For the imple-
mentation of D, the OFfus image is subsampled from the res-
olution of 256× 256 pixels to 64× 64 pixels. Hence, the total
patches of OFfus image are 16 patches. These 16 patches
are passed through the PatchGAN model to decide whether

OFgen from G is True or False. We analyze the impact of
using 64× 64 PatchGAN in Section 4 where we compare the
performance of different sizes of PatchGAN in terms of FCN-
scores and visual quality outputs.

Two objective functions including a Generator Loss or L1
Loss LL1 and a GAN Loss LGAN are determined for training
G and D. Our DSTN contains only one network consisting
of the translation of spatial to temporal images where the
dense optical flow is defined by three-channel components;
horizontal, vertical, and magnitude. Suppose y is the target
image, which is OFfus, x is the input data of G, which is
obtained by concatenating f and fBR frames. Specifically, G
learns the mapping from x to y without noise z, where the
drop-out algorithm is used in the form of z in this work. The
objective functions, LL1 and LGAN , can be defined as below,

LL1(G) = Ex,y
[∥∥y− G(x)∥∥1], (3)

LGAN (G,D) = Ey
[
logD(y)

]
+ Ex

[
log(1− D(G(x)))

]
. (4)

Finally, the network, G, is optimized as

G∗ = argmin
G

max
D

LGAN (G,D)+ λLL1(G). (5)

This one network of spatiotemporal translation deep GAN
provides less complexity cost while contains enough impor-
tant information for learning normal events. The reason that
we do not train for anomalous events is that we need the
model to know only normal patterns to be able to handle the
possibility of occurrence of various anomalous events without
any descriptions for anomaly ground truth samples.

D. ANOMALY DETECTION
After training the normal events by the spatiotemporal
learning-based deep GAN, the model understands the trans-
lation from the spatial representation of the normal events
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(the concatenated frame of f and fBR) to the temporal repre-
sentation (OFfus). Then, the model parameters of this training
are used in the testing procedure.

During testing, all video sequences are used in the exper-
iment. Each frame f and its previous frame t − 1 from the
test video sequences are input into DSTN. We use G in the
spatiotemporal learning-based deep GAN as it corresponds
to the trained model. In this case, if there are unknown events
in the scenes, G will try to generate the dense optical flow
based on the normal objects as it has been learned only with
the normal events. Thus, it cannot reconstruct the anomalous
event in the same way as the normal events. This inaccuracy
ofG for anomalous event reconstruction leads to the detection
of the possible occurrence of anomaly events.

To detect the anomalous events in the scene, we simply
subtract the patches of OFfus and OFgen to find the pixel
by pixel difference in the scene. In addition, the position of
anomalous objects is required to be identified in the scene.
Hence, we propose the edge wrapping for object localization
in this work. The details of differentiation and edge wrapping
are described as following.

1) DIFFERENTIATION
After completing the model training, OFgen can be observed
by using the trained model parameters. To identify whether
the scene contains the abnormal events or not, the pixel
by pixel differentiation between OFfus and OFgen is simply
defined by subtracting a patch of OFfus and a patch of OFgen
as shown in (6):

1OF = OFfus − OFgen > 0 (6)

where 1OF is the subtraction output after differentiating
between OFfus and OFgen in which the output value is more
than 0. This shows the possible abnormal events in the scene
due to the fact that G was not able to reconstruct the anoma-
lous events inOFgen in the same way as the actual anomalous
events in OFfus.

After the subtraction, we consider the probability of pixels
in 1OF as the score indicating whether the pixels in 1OF
belong to normal or abnormal events. As each 1OF from
different test video sequences needs to have the same range
of pixel values where the lowest value is 0 and the highest
value is 1, we consider the highest pixel value in 1OF as the
abnormal pixel in the frame. We normalize 1OF by comput-
ing the maximum valueMOF of all components for each test
video sequence, regarding its range of values. Then, the ROC
curve is computed by gradually changing the threshold of
anomaly scores to determine the best decision threshold. The
normalization of differentiation 1OF can be defined as NOF
as shown in (7):

NOF (i, j) = 1/MOF1OF (i, j) (7)

whereNOF (i,j) is the normalized differentiation of1OF in the
position of the pixel (i, j).

2) EDGE WRAPPING
After applying differentiation, the differences between OFfus
and OFgen are revealed, showing the anomalous events in the
scene. However, there are some problems with false anomaly
detection on the normal events and over-detection on the
abnormal object areas. Thus, to correctly localize the position
of the anomalous objects and events in the scene, we propose
the Edge Wrapping technique for specifically improving the
object localization at the pixel level by preserving only the
important edge information and suppressing the rest.

To suppress the unimportant edges along with the noise,
we implement the Edge Wrapping based on the Canny edge
detection [49]. This Edge Wrapping approach is a multistage
procedure divided into three stages, including a noise reduc-
tion, a gradient intensity, and a non-maxima suppression. For
noise reduction, a Gaussian filter is used to smooth the nor-
malized differentiation output image NOF by removing noise
from the background and removing pixels from non-related
anomalous events. The size of the filter is we×he× ce where
we and he represent the width and height of the Gaussian
filter of the Edge Wrapping and ce represents the number
of channels such as ce = 1 for the grayscale image and
ce = 3 for the color image. For our DSTN, we obtain the
grayscale image after differentiation, then ce = 1.
For the gradient intensity, the edge gradient (Ge) can be

obtained by convolving the image with a gradient operator in
horizontal (Gx) and vertical (Gy) directions. The derivative
filter size is the same as the Gaussian filter size in the noise
reduction stage. Ge is computed at each pixel using the first
derivative to obtain the edge gradient magnitude and the
edge gradient direction, which is perpendicular to the edge
direction, as shown in (8) and (9) below,

Ge =
√
G2
x + G2

y, (8)

θ = tan−1
(
Gy
Gx

)
. (9)

Finally, the non-maxima suppression is implemented by
determining the threshold to preserve the ridge edges and
suppress the noise. We check whether the magnitude at a
pixel is greater than a threshold T (T = 50). If it is greater
than T , there is a point of the edge, representing a local
maxima in the neighborhood. Thus, if it is the local maxima,
preserve it, otherwise, suppress it to 0. Therefore, we obtain
the edges corresponding to the actual anomalous objects. The
reason why we choose the threshold value of 50 is indicated
in Section 4 where we consider different threshold values in
our experiment.

In addition, the Gaussian filter with kernel sizewe×he×ce
is applied to avoid the occurrence of spot noise in the image.
The output of this procedure is represented as EW , which is
defined for the final anomaly object localizationOL as shown
in (10):

OL = 1OF

⌊
EW

EW + ζ

⌋
(10)

where ζ is a constant value.
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IV. EXPERIMENTAL RESULTS
This section presents the evaluation of our DSTN on
three challenging anomaly datasets, including UCSD
pedestrian [5], UMN [6], and CUHK Avenue [18], with its
implementation details. Our proposed method is analyzed
to highlight the impact of residual connections, background
removal, patch extraction, and edge wrapping with its base
threshold value. The experiment results are comprehensively
compared with other state-of-the-art methods in terms of
the frame-level and pixel-level evaluations and the time
complexity.

A. DATASET
1) UCSD DATASET
The UCSD pedestrian dataset [5] contains crowded scenes
in outdoor environments with various anomalous events such
as cycling, skateboard, vehicle, and wheelchair. It comprises
two sub-sets including Ped1with 34 training and 16 test video
sequences with around 5,500 normal and 3,400 anomalous
frames and Ped2 with 16 training and 12 test video sequences
with 346 normal and 1,652 anomalous frames. Ped1 has a
resolution of 238× 158 pixels, while Ped2 has a resolution
of 360× 240 pixels.

2) UMN DATASET
The UMN dataset [6] has been recorded for distinguishing
the anomalous events in crowded scenes. It has 11 video
sequences in three different scenes, containing both indoor
and outdoor scenes with a total number of 7,700 frames.
The image resolution is 320× 240 pixels. The main char-
acteristics of this dataset are that the crowds walk normally
and then suddenly run into different directions. The walking
and running patterns are represented as normal and abnormal
events, respectively.

3) CUHK AVENUE DATASET
The CUHK Avenue dataset [18] has been recorded with a
fixed camera installed in front of a school gate, containing
frames with a total number of 30,652 frames which are
divided into 16 training and 21 test video sequences with
15,328 and 15,324 frames, respectively. The length of each
video sequence is about 1-2 minutes (around 25 frames
per second). The normal pattern includes pedestrians walking
parallel to the camera, while the abnormal patterns contain
different events (e.g. people throwing objects, jumping, run-
ning, and loitering). The ground truth of abnormal object that
is labeled in the rectangular area is provided in this dataset.

B. IMPLEMENTATION
The proposed method is implemented by using Python
and Matlab based on Keras [50] backend TensorFlow [51].
At training time, we use NVIDIA GeForce GTX 1080 Ti
with NVIDIA CUDA Cores 3584 and a memory band-
width of 484 GB/sec. The testing is implemented by
using a 2.8 GHz CPU with Intel Core i9-7960x processor.

The reconstruction loss LL1 is optimized to 10−3 using Adam
optimization.

C. EVALUATION CRITERIA
We evaluate the quantitative performance of the proposed
DSTN framework based on two criteria: frame level and
pixel level. The frame-level evaluation checks whether there
is at least one anomalous event that occurs in a test frame,
and then the frame is defined as being abnormal. The pixel-
level evaluation indicates the position of anomalous events,
triggered if the detected abnormal area overlaps more than
40% with the ground truth [20]. The pixel-level evaluation is
more challenging than the frame-level evaluation because of
the complexity of anomaly localization.

D. EVALUATION ON UCSD DATASET
The first experiment is on the UCSD pedestrian dataset which
contains 10 image sequences of the UCSDPed1 and 12 image
sequences of the UCSD Ped2 with the ground truth of pixel-
level evaluation. In this dataset, both frame-level and pixel-
level protocols are used to evaluate the UCSD Ped1 and the
UCSD Ped2.

In the feature collection, we independently extract patches
from each original image of the UCSD Ped1 with the size
of 238× 158 pixels and the UCSD Ped2 with the size
of 360× 240 pixels to multiple patches with the size of w

4 ×

h × cp. The total number of patches of the UCSD Ped1 and
the UCSD Ped2 for training is about 22k and 13.6k image
patches, respectively. The patches give information on the
appearance of the foreground object along with its motion
features due to the information of the changing vector within
each patch in the frame. After collecting the appearance
and motion features, all patches are resized to the resolution
of 256× 256 pixels to be fed into the model as the input for
training and testing.

At the training time, the sizes of the input and target data
are set to the resolution of 256× 256 pixels as a default. The
input ofG has been defined by the concatenation of f and fBR
patches to provide the information on the appearance with the
foreground object boundaries. Since G comprises of Encoder
and Decoder networks [34], there are different procedures
implemented in each part. In the Encoder network, the image
resolution of the first layer of the proposed DSTN framework
is 256× 256 pixels. Then it is encoded from 256→ 128→
64→ 32→ 16→ 8→ 4→ 2→ 1 to get the variable vectors
known as latent space that exploits data in one-dimensional
space from the spatial representation of images. The down-
scale from the spatial representation image to latent space is
implemented by using a CNN with a kernel size 3× 3 pixels
and a stride of s = 2. In addition, the number of neurons in
each layer of the Encoder network is set from 6 → 64 →
128 → 256 → 512 → 512 → 512 → 512 → 512, corre-
sponding to its image resolution of each input layer.

After the encoding process, the Decoder network starts to
generate the target data by performing a reverse process with
the same structure. The Decoder decodes the latent space to
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TABLE 1. Performance comparison with state-of-the-art methods on UCSD dataset.

FIGURE 6. ROC comparison on the UCSD Ped1 dataset: (a) frame-level evaluation and (b) pixel-level evaluation.

the target image size of 256× 256 pixels in order to reach
the temporal representation of the optical flow output. The
number of neurons in each layer of the Decoder is the same
as the Encoder configuration with its image resolution of the
input layer. Moreover, the drop-out is applied in the Decoder
to be represented as the random noise z of GAN by remov-
ing connections of neurons with the default probability at
p = 0.5. This drop-out helps to prevent over-fitting on the
training dataset.

Furthermore, the training process requires D to vary G
in order to optimize the distinction of a fake and a real
image. D is represented by PatchGAN, having as input size
64× 64 pixels and output the probability showing whether
the object belongs to a negative class (fake) or a positive
class (real). The PatchGAN structure is defined as 64 →
32 → 16 → 8 → 4 → 2 → 1, where it is flattened to
512 neurons which are then followed by a Fully Connection

(FC) and a Softmax layer to link to the target output label.
Since PatchGAN works on a partial image which has less
learnable parameters, we observe that the training of the deep
spatiotemporal translation GAN network is faster. For other
parameter settings, the batch size is set to 1 and the recon-
struction loss (norm L1) is optimized to be lower than 0.001.
Adam optimization is used with a learning rate of 0.0002 and
a momentum of 0.9.

At the testing time, G is the only model used to generate
OFgen to compare with the original temporal representation
OFfus. The resolution of the test images is the same as the
training images for all datasets. Various state-of-the-art meth-
ods [4]–[8], [10], [11], [13]–[19], [35], [36] are compared
with our DSTN. According to the quantitative comparison of
different methods in terms of Equal Error Rate (EER) and
Area Under Curve (AUC) in Table 1, it is clearly shown
that our DSTN outperforms all the methods as we achieve
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FIGURE 7. ROC comparison on the UCSD Ped2 dataset at the frame level.

the highest AUC value in both frame-level and pixel-level
evaluations of the UCSD pedestrian dataset. We also reach
the lowest EER value compared to the other methods except
only for the pixel-level evaluation on the UCSD Ped2 in [13].

The qualitative results of our proposed method can be
visually illustrated in the standard protocol for abnormal-
ity detection as ROC curves, where the x-axis is the False
Positive Rate (FPR) and the y-axis is the True Positive Rate
(TPR). To produce the ROC curves, the threshold parameter
has been varied from 0 to 1 to indicate the flow of TPR and
FPR. We compare our performance with other state-of-the-
art methods from their original papers (when available) as
shown in Fig. 6 and Fig. 7, where Fig. 6 shows the ROC
comparison on the UCSD Ped1 in both (a) frame-level evalu-
ation and (b) pixel-level evaluation and Fig. 7 shows the ROC
comparison on the UCSD Ped2 in the frame-level evaluation.
According to Fig. 6 and Fig. 7, our proposed DSTN, repre-
sented as the dark blue curves, outperforms all the competing
methods as our curves have the strongest growth on the TPR,
meaning that the abnormal events in our proposed method
are accurately detected and localized in both frame-level and
pixel-level evaluations. We also show some examples of the
anomaly detection and localization on the UCSD dataset
in Fig. 8. The results show that our DSTN can efficiently
detect different anomalous events in the frame including a
single object (e.g. a wheelchair, a vehicle, a skateboard, and
a bicycle) and multiple objects (e.g. bicycles, vehicle and
bicycle, bicycle and skateboard). However, there is a false
anomaly detection in Fig. 8 (h), where the proposed method
detects the normal event (walking pedestrians represented in
red color) as an abnormal event. This is probably because the
speed of walking pedestrians is the same as the cycling event
in the scene.

E. EVALUATION ON UMN DATASET
We evaluate the performance on the UMN dataset using the
same training parameter settings and network configuration
as for the UCSD dataset. Table 2 shows the AUC compar-

TABLE 2. AUC comparison with state-of-the-art methods on UMN
dataset.

ison of our DSTN performance with other state-of-the-art
methods [6], [10], [11], [14], [17], [19], [36]. From Table 2,
it is clear that the proposed DSTN outperforms most of the
baseline methods and its AUC performance is equal to the
best method [17]. The examples of anomaly detection and
localization on three different scenes of the UMN dataset are
shown in Fig. 9.

F. EVALUATION ON CUHK AVENUE DATASET
In this section, we follow the previous training parameter
settings and network configuration of the UCSD and UMN
datasets for the evaluation on the CUHK Avenue dataset.
Table 3 shows the comparison of our DSTNperformancewith
other state-of-the-art methods [13], [15]–[18], in which the
proposed DSTN outperforms all the competing methods for
both AUC and EER. Fig. 10 presents examples of anomaly
detection and localization on the CUHKAvenue dataset, con-
taining multiple abnormal activities including (a) jumping,
(b) throwing objects (papers), (c) falling objects (papers), and
(d) grabbing a falling bag. From Fig. 10, it is clearly seen that
our DSTN can detect and localize various anomalous events
accurately, especially in Fig. 10 (d) where the abnormal areas
(e.g. a bag and a human head) are detected, even though
they have only a slight difference in motion from the normal
events.

G. ANALYSIS OF RESIDUAL CONNECTION
As the residual connection or the skip connection in G is sig-
nificant to our DSTN, we conduct additional experiments to
indicate and analyze the performance of the residual connec-
tion compared to the autoencoder network which is created
by removing the residual connections in the U-Net. First,
we train on all training video sequences from the UCSD
Ped2 dataset for 40 epochs on both networks to study their
performance of minimizing the L1 loss on the training sam-
ples as shown in Fig. 11. The residual connection loss, repre-
sented as a red star curve, exhibits lower training error over
training time compared to the autoencoder loss represented
as a blue dash curve, meaning that the performance of the
residual connection is remarkably higher than the one of the
autoencoder.

In addition, we observe the ability of temporal information
generation of the residual connection and the autoencoder
from the test video sequences of the UCSD Ped2 dataset as
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FIGURE 8. Examples of anomaly detection and localization results on the UCSD Ped1 and Ped2 dataset.

FIGURE 9. Examples of anomaly detection and localization results on the UMN dataset.

TABLE 3. Performance comparison with state-of-the-art methods on
CUHK Avenue dataset.

shown in Fig. 12. Fig. 12 (c) shows that the autoencoder
is unable to generate dense optical flow in our experiment.
On the other hand, the residual connection in Fig. 12 (b) can

properly generate new dense optical flow corresponding to
the real dense optical flow in Fig. 12 (a), providing a good
quality result of the synthesized image.

Besides the above, we also compute FCN-scores on pixel
accuracy [59] and Structural SIMilarity Index (SSIM) [66]
metrics on the UCSD Ped2 dataset to compare the perfor-
mance between the autoencoder and the residual connection
as shown in Table 4. For both evaluations, a higher value
means a better result. The pixel accuracy metric is a common
semantic segmentation evaluation. In this work, there are two
classes; a foreground region class and a background region
class. Let nij be the number of wrong classified pixels of

VOLUME 8, 2020 50323



T. Ganokratanaa et al.: Unsupervised Anomaly Detection and Localization Based on DSTN

FIGURE 10. Examples of anomaly detection and localization results on the CUHK Avenue dataset.

FIGURE 11. Performance comparison between the autoencoder and the
residual connection on the UCSD Ped2 dataset.

class i, and nti be the total number of pixels of class i. The
pixel accuracy can be computed by

∑
i nii /

∑
i nti. For the

SSIM index, we use it to measure the similarity between the
original and the synthesized images. The more the synthe-
sized image looks like the original image, the more efficient
the model is. The results in Table 4 show that the residual
connection clearly achieves superior results on the low-level
information than the autoencoder for both pixel accuracy and
SSIM evaluations.

H. ANALYSIS OF DSTN
In this section, the proposed DSTN is analyzed to emphasize
the significance of its main element. First of all, to demon-
strate the performance of the background removal method
using the frame absolute difference on the proposed DSTN,
we compare it with a popular technique for background
subtraction, i.e., the Gaussian mixture model (GMM)-based
background subtraction method [67], on the UCSD dataset
as shown in Fig. 13. As we train only the normal event
patterns in the scene, Fig. 13 (c) shows that the background
removalmethod can preservemore information on the normal
events than the GMM-based background subtraction method
which loses some appearance information of the normal and

FIGURE 12. Examples of dense optical flow generation results of residual
connection and autoencoder on the UCSD Ped2 dataset.

TABLE 4. Performance comparison of the autoencoder and the residual
connection in terms of FCN-scores on pixel accuracy and Structural
SIMilarity Index (SSIM) on the UCSD Ped2 dataset.

abnormal events as shown in the red box in Fig. 13 (b), provid-
ing incomplete and inaccurate information of the foreground
objects. According to these experimental results, the back-
ground removal method is more suitable for our DSTN since
it comprehensively preserves the appearance feature informa-
tion of the moving foreground objects. Thus, we use it as the
foreground feature extractor under the assumptions of static
CCTV cameras.

Considering the impact of using the patch in our pro-
posed method, we investigate different sizes of PatchGAN
used in D to demonstrate its performance to the DSTN.
Based on [34], the full ImageGAN has greater depth and
more parameters than PatchGAN, making it more difficult
to train. Thus, we test additional PatchGAN with a patch
size of 32× 32 pixels and 64× 64 pixels. The use of the
32× 32 PatchGAN provides lower intensity on the appear-
ance of objects than the 64× 64 PatchGAN which is better
in the visual quality of the synthesized images, meaning that
the structure of synthesized images is more recognizable,
as shown in Fig. 14. We also compute the FCN-scores on the
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FIGURE 13. Performance comparison of background subtraction between
(b) GMM-based background subtraction method and (c) background
removal method on the UCSD dataset.

FIGURE 14. Comparison of different sizes of PatchGAN: (b) 32 × 32 pixels
and (c) 64 × 64 pixels.

TABLE 5. Performance comparison of different sizes of PatchGAN in
terms of FCN-scores on pixel accuracy and Structural SIMilarity Index
(SSIM) on the UCSD Ped2 dataset.

pixel accuracy and the SSIM of the 32× 32 PatchGAN and
the 64× 64 PatchGAN as shown in Table 5. From Table 5,
the 64× 64 PatchGAN achieves slightly better pixel accuracy
than the 32× 32 PatchGAN. Thus, according to the perfor-
mance of the 64× 64 PatchGAN in Fig. 14 and Table 5,
we decided to use it in all the experiments.

FIGURE 15. Comparison of AUC and computational complexity of two
different patch sizes, pa2 and pa4, on the UCSD datasets.

FIGURE 16. Comparison of edge detection with different thresholds: 35,
50, 65, and 80.

Furthermore, we also ran additional experiments to show
the effect of the patch extraction from the feature collection
process. We investigate two different patch sizes with the
scale value a equal to 2 (pa2) and a equal to 4 (pa4) on
the UCSD datasets. Fig. 15 shows the comparison of AUC
and computational complexity of two different patch sizes,
pa2 and pa4, on the UCSD datasets. pa2 provides low com-
putational complexity as it achieves 50% faster processing
than pa4 due to its bigger patch size. However, pa2 has a
lower accuracy than pa4 on both frame-level and pixel-level
evaluations. Specifically, the AUC values of pa2 on the UCSD
Ped1 dataset are 96.9% for frame level and 72.5% for pixel
level, while the AUC values of pa4 are 98.5% for frame level
and 77.4% for pixel level. For the AUC values of pa2 on
the UCSD Ped2 dataset, they are 95.4% for frame level and
78.1% for pixel level, while the AUC values of pa4 are 95.5%
for frame level and 83.1% for pixel level. This remarkably
shows that pa4 achieves more accurate results for both evalu-
ations. Based on these experimental results, we can conclude
that the patch size with higher scale value provides better
abnormal event localization. Since we aim to collect features
from both appearance and motion information for enhancing
the localization accuracy, we use pa4 for the training videos
of all datasets. The stride d is assigned to w

a for extracting
the patches which are then resized to 256× 256 pixels. Thus,
the patch size is w

4 * h * cp.
As we aim to improve the performance of the anomaly

localization in the pixel-level evaluation, we introduce the
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TABLE 6. Impact of Edge Wrapping (EW ) on UCSD frame-level and pixel-level performances.

TABLE 7. Computational time comparison during testing (seconds per frame).

FIGURE 17. Examples of the impact of Edge Wrapping on all datasets: UCSD Ped1, UCSD Ped2, UMN, and CUHK Avenue.

Edge Wrapping (EW ) at the final stage of our DSTN.
To choose the threshold values in EW , Canny edge detec-
tion [49] recommends the ratio of the high to the low thresh-
old in the range two or three to one. In this work, the low
threshold is observed from the high threshold divided by
three. Since the pixels above the high threshold value con-
sidered as strong edges have the maximum value of 255,
the lower threshold should be assigned as 255

3 = 85. Then,
we explore different threshold values, including the threshold
value of 35, 50, 65, and 80. We conduct experiments on edge
preservation of different threshold values as shown in Fig. 16.

The experimental results show that the threshold value of 50
(T = 50) can preserve better edges than other threshold
values. Specifically, the threshold values of 35 (T = 35) and
50 (T = 50) are better than other threshold values (T = 65,
T = 80) because they can preserve more soft edges of the
objects in the scene, while the threshold values of 65 and
80 give incomplete edge results. However, the threshold
value of 35 provides more edges (e.g. object shadows and
background) which are not useful in our experiment. Thus,
in this work, we select the threshold value of 50 as the base
threshold.
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Table 6 shows a comparison of the impact of EW on
the DSTN for the frame-level and pixel-level performances
on the UCSD dataset. Using EW , we achieve a significant
improvement in terms of the AUC and EER, especially in
the pixel-level localization. To further demonstrate the impor-
tance of EW , we show a comparison of applying EW on
examples from all datasets, the UCSD, UMN, and CUHK
Avenue, in Fig. 17. From Fig. 17, it is clear that EW helps to
locate the actual anomalous objects more precisely since all
unrelated features (e.g. shadows, noises, and normal objects)
are suppressed. These results prove the benefit of applying
EW for anomaly detection and localization in combination
with the proposed DSTN.

I. ANALYSIS ON TIME COMPLEXITY
We compare the computational time of the proposed DSTN
with other state-of-the-art methods [5], [7], [18]–[20].
As these methods do not provide their original implementa-
tions, we follow the computational time and the environment
from [7]. With regard to computational time in frame per sec-
ond (fps), our DSTN achieves 3.17 fps, 3.15 fps, 3.15 fps, and
3 fps on the UCSD Ped1, UCSD Ped2, UMN, and CUHK
Avenue datasets, respectively. We also compare our time
complexity in seconds per frame with other baseline methods
as shown in Table 7. It is clear that our computational time is
lower than for most of the baseline methods except for [18].
This is because our architecture is based on a deep learn-
ing framework consisting of multiple convolutional layers
while [18] is based on a sparse combination learning frame-
work that has lower neuron connections. However, we obtain
significantly higher AUC value and relatively much lower
EER value in both frame-level and pixel-level evaluations
on the UCSD and the CUHK Avenue datasets than [18].
According to our experimental results, we can conclude that
the proposed DSTN outperforms other competing methods
by achieving the highest AUC value in both frame-level and
pixel-level evaluations while providing a good running time
for surveillance videos.

V. CONCLUSION
In this paper, we propose a novel unsupervised spatiotem-
poral anomaly detection and localization for surveillance
videos. The proposed DSTN framework is embedded with
concepts of deep convolution neural network of GAN
based Edge Wrapping approach which brings advantages to
anomaly localization. The deep spatiotemporal translation
network is designed to learn the appearance and motion rep-
resentations with the use of the fusion and the concatenation
of patches for combining the learned features. Additionally,
our proposed method does not rely on any prior knowledge in
order to design features for the input (as we use raw pixels)
and does not involve low-level object analysis, such as object
detection and tracking. We provide extensive experimental
results compared with other state-of-the-art methods and
implemented on three publicly available datasets including
the UCSD pedestrian, UMN, and CUHK Avenue. We clearly

show that our DSTN outperforms other state-of-the-art meth-
ods in terms of accuracy and time complexity as we obtain
the highest AUC value in both frame-level and pixel-level
evaluations for all datasets and achieve good running time
that outperformsmost of the baseline methods. Our method is
effective and robust for anomaly event detection and localiza-
tion in the crowded scenes for surveillance videos. For future
work, we will explore an object translation model with a
clusteringmethod to enhance the performance of the anomaly
detection and localization from the complex scene. Other
abnormalities will be observed for increasing the robustness
of the model for real-world use.
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