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Abstract. An Artificial Neural Network (ANN) approach
is used to downscale ECHAM5 GCM temperature (T ) and
rainfall (R) fields to RegCM3 regional model scale over
Europe. The main inputs to the neural network were the
ECHAM5 fields and topography, and RegCM3 topography.
An ANN trained for the period 1960–1980 was able to recre-
ate the RegCM3 1981–2000 meanT andR fields with rea-
sonable accuracy. The ANN showed an improvement over
a simple lapse-rate correction method forT , although the
ANN R field did not capture all the fine-scale detail of the
RCM field. An ANN trained over a smaller area of Southern
Europe was able to capture this detail with more precision.
The ANN was unable to accurately recreate the RCM climate
change (CC) signal between 1981–2000 and 2081–2100, and
it is suggested that this is because the relationship between
the GCM fields, RCM fields and topography is not constant
with time and changing climate. An ANN trained with three
ten-year “time-slices” was able to better reproduce the RCM
CC signal, particularly for the full European domain. This
approach shows encouraging results but will need further re-
finement before becoming a viable supplement to dynamical
regional climate modelling of temperature and rainfall.

1 Introduction

Studies of climate impacts usually require estimates of future
climate parameters at a higher spatial scale than can be pro-
vided by the current generation of General Circulation Mod-
els (GCMs). One method of producing higher resolution es-
timates is to run a Regional Climate Model (RCM) for a par-
ticular sub-region of the globe, forced with lateral and sur-
face boundary conditions from a GCM (Giorgi and Mearns,
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1999). However, current RCMs, which have a resolution of
around 10–50 km, are still computationally expensive to run,
even for only a fraction of the globe.

Uncertainties in future climate projections derive from var-
ious sources, such as future emission scenarios, internal vari-
ability of the climate system and the accuracy and configu-
ration of the climate models themselves, both global and re-
gional (e.g.Giorgi and Francisco, 2000; Deque et al., 2005).
These uncertainties can be quantified to some extent by ex-
amining the climate projections for a range of different sce-
narios, global climate models, climate realizations, and re-
gional downscaling tools (Deque et al., 2005). This process
might require the completion of a very large number of sim-
ulations (Giorgi et al., 2008), which may not currently be
feasible due to the computational expense of each GCM and
RCM model run. Therefore there is interest in possible al-
ternative, less expensive approaches to fill the GCM-RCM
climate change simulation matrix.

Statistical and statistical/dynamical GCM downscaling
techniques require much less computational time than a pure
dynamical approach. Statistical downscaling methods use
empirical relationships established between large-scale and
fine-scale variables using historical data, and a number of
these techniques are described inGiorgi et al. (2001) and
Maraun et al.(2010). These methods rely on these statis-
tical relationships remaining constant with future climate, an
assumption that is open to question (Wilby et al., 1998).

Statistical/dynamical approaches construct a statistical re-
lationship between RCM and GCM outputs over a limited
RCM run, then extrapolate this relationship to produce fine-
scale estimates for other periods of the GCM run (e.g.Busch
and Heimann, 2001). This type of approach is computa-
tionally less expensive than running the RCM for the whole
time period of interest, but relies on the relationship between
GCM and RCM output parameters remaining constant with
time and changing climate.
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In this paper we explore an approach similar to statisti-
cal/dynamical downscaling to provide a means to populate a
downscaled climate projection matrix without having to run
RCMs for the full range of GCM simulations. Instead of
a statistical method, an Artificial Neural Network (ANN) is
used to construct a relationship between a GCM and corre-
sponding nested RCM fields. If such a relationship, which
likely depends on the given GCM-RCM pair considered, can
be shown to be accurate, it can be used to “downscale” the
information of a given GCM to the grid of a given RCM with-
out having to re-run the RCM for each GCM experiment. For
example this could be used to downscale a given GCM onto
a given RCM grid for different greenhouse gas emission sce-
narios or for different realisations of the same scenario. This
approach of course relies on the ability of the derived ANN
relationship to be valid in future climate conditions as well
as the present. The concept can be seen as a type of emula-
tor (Bastos and O’Hagan, 2008; Conti and O’Hagan, 2010),
where an ANN is used to emulate RCM output for future
scenarios without needing to run the RCM.

We develop the ANN model and test its accuracy for
present and future climate conditions using a transient cli-
mate projection (1960–2100) over the European region
completed with the Abdus Salam International Centre for
Theoretical Physics (ICTP) RCM, RegCM3 (Pal et al.,
2007), nested within the Max Plank Institute global model
ECHAM5 (Roeckner et al., 2003). We test the accuracy of
the ANN model for different historical periods and future
time slices in the simulation, and suggest optimal approaches
to maximize the model reliability. The paper begins in the
next section with a description of the climate and ANN mod-
els and of the experiment design.

2 Model and simulation description

The regional climate model used here is RegCM3, described
by Pal et al. (2007) and references therein. RegCM3 is
based on the hydrostatic primitive equation dynamical core
of the NCAR mesoscale 95 meteorological model MM5
(Grell et al., 1994). Resolvable precipitation processes are
treated with a sub-grid explicit moisture scheme (Pal et al.,
2000), and the convection scheme used here is that ofGrell
et al. (1994), with the Fritsch and Chappell(1980) clo-
sure assumption. TheKiehl et al. (1996) CCM3 radiation
scheme, biosphere-atmosphere transfer scheme (Dickinson
et al., 1993) andZeng et al.(1998) ocean flux scheme are
also used.

Initial and 6-hourly boundary conditions and SSTs are ob-
tained from the ECHAM5 AOGCM (Roeckner et al., 2003).
This parallel ECHAM5 run also provides the GCM data used
to develop and test the artificial neural network in this study.

The RCM domain is that used for the EU ENSEM-
BLES project (Van Der Linden and Mitchell, 2009), cover-
ing the entire European region. The domain covers the entire

Table 1. ANN inputs.

Input Input
Number

1 NE GCM temperature/rainfall
2 NW GCM temperature/rainfall
3 SW GCM temperature/rainfall
4 SE GCM temperature/rainfall
5 NE GCM elevation
6 NW GCM elevation
7 SW GCM elevation
8 SE GCM elevation
9 NE GCM gridpoint to RCM gridpoint distance

10 NW GCM gridpoint to RCM gridpoint distance
11 SW GCM gridpoint to RCM gridpoint distance
12 SE GCM gridpoint to RCM gridpoint distance
13 RCM elevation
14 RCM landuse
15 Month
16 Year

European region at a grid spacing of 25 km. RegCM3 was
integrated for the period 1960–2100. ECHAM5 was inte-
grated for the same period at a resolution of 1.89 degrees,
using the A1B scenario of greenhouse gas forcing (Solomon
et al., 2007). The lateral buffer zone is 15 grid points in
width, and uses an exponential relaxation term (Giorgi et al.,
1993). The size of the buffer zone is small compared to the
RCM domain, and RegCM3 is therefore free to produce its
own internal circulations and climatology.

3 ANN methodology

Artificial neural networks (ANNs) are a pattern recognition
tool capable of reproducing empirical, possibly non-linear
relationships between a set of “input” variables and some
corresponding “output” variables. ANNs are based on the
physiology of the brain, with a series of “nodes” able to pass
information between one another in a similar way to cells in
the brain. For a full description of ANN theory, seeBishop
(2000) or Picton(2000). ANNs have been applied on several
previous occasions to problems within climate science (see
Hsieh, 2009; Haupt et al., 2009for recent reviews of these
applications), including to the field of global and regional at-
tribution of climate change (Pasini et al., 2006; Pasini and
Langone, 2010).

In this case, the interest was in establishing the relation-
ship between GCM and RCM output parameter fields, specif-
ically temperature and rainfall (T andR). This was achieved
by presenting properties of the GCM and RCM fields to an
ANN, and “training” it to be able to replicate the relation-
ship between the two. The method used is described in detail
below.
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Fig. 1. DJF climatological mean T (◦C) for Europe, DJF 1981-2000. From RCM, GCM with lapse-rate correc-

tion, EurANN (ANN trained over the full European domain), and EurANNTS (Time-slice ANN trained over

the full European domain).
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Fig. 1. DJF climatological meanT (◦C) for Europe, 1981–2000. From RCM, GCM with lapse-rate correction, EurANN (ANN trained over
the full European domain), and EurANNTS (Time-slice ANN trained over the full European domain).

The particular type of ANN used here is known as a feed-
forward multi-layer perceptron (MLP). MLPs consist of a
number of layers, each containing several nodes. Each node
in a particular layer is linked to every node in the previous
and subsequent layers. For a feed-forward network such as
the one used here, nodes can only pass information one way,
in the direction leading from the first, input layer to the final,
output layer. The number of layers, combined with the num-
ber of nodes in each layer, is collectively known as the “ANN
architecture”.

Each connection between nodes has an associated
“weight” W , the value of which can be modified to
strengthen or weaken the connection between nodes. It is
the value of these weights, together with the ANN architec-
ture, that largely determine the properties of an MLP. The
input to a particular node consists of the weighted sum of the
outputs from all nodes in the previous layer. So the input to
a particular nodey in thej -th layer of an ANN is given by:

Inputjy =

Nj−1∑
x=1

W(j−1)xyOutput(j−1)x, (1)

where Output(j−1)x is the Output of nodex in the(j −1)-
th layer, W(j−1)xy is the weight connecting nodex in the
(j −1)-th layer and nodey in thej -th layer, andNj−1 is the
total number of nodes in the(j −1)-th layer.

This input is mapped to an output for that node by use of
a sigmoid function, where:

Outputjy =
1

1+exp(−Inputjy)
. (2)

This sigmoid function is similar to a simple threshold func-
tion but is also continuous and differentiable, which is neces-
sary for the use of a back-propagation algorithm. The output
Outputjy is then passed on to each node in thej +1-th layer,
and so on until the final layer of output nodes is reached.

A network is prepared for a certain purpose by means of
a calibration, or “training” process. A large number of train-
ing patterns are used, each pattern consisting of a set of input
variables and the corresponding “target” output variable. In
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Fig. 2. DJF climatological mean R (mm/day) for Europe, 1981-2000. From RCM, GCM bilinearly interpolated

to RCM scale, EurANN (ANN trained over the full European domain), and EurANNTS (Time-slice ANN

trained over the full European domain).

Fig. 3. DJF standard deviation of DJF seasonal mean T (◦C) for Europe, 1981-2000. From EurANN (ANN

trained over the full European domain) and RCM.
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Fig. 2. DJF climatological meanR (mm day−1) for Europe, 1981–2000. From RCM, GCM bilinearly interpolated to RCM scale, EurANN
(ANN trained over the full European domain), and EurANNTS (Time-slice ANN trained over the full European domain).

this case it was desired to produce an output ofT or R for
each point in the RCM grid. ANNs were trained separately
for T andR, so each network produced only one output vari-
able, corresponding to a single node in the output layer of the
ANN.

The ANN weights are randomly initialised, and the inputs
for the first pattern are fed into the ANN, producing a cor-
responding output. This output is compared with the corre-
sponding target output for the pattern, resulting in an “error”
value for that pattern. This process is repeated for all remain-
ing patterns, and the total “error”,E is taken to be the sum of
the squared errors from all patterns. One cycle of this process
involving all training patterns is known as an “epoch”.

The goal of ANN training is to minimiseE by adjust-
ing the ANN weights. This is achieved by use of a “back-
propagation algorithm” (Rumelhart and McClelland, 1986).
A relationshipδE/δW can be analytically established for ev-
ery weightW in the ANN. The value of each weight is then
modified by an amount proportional toδE/δW . The process
is then repeated, with all training patterns processed through
the modified network,E calculated, and weights modified,
until the value ofE is regarded to be at a minimum. In

practise it can take several thousand epochs before a true
minimum is reached. A “momentum” term is also included
in the training process. This reduces oscillations of the so-
lution around the absolute minimum ofE and reduces the
number of training epochs needed.

A crucial property of ANNs is that they should be able
to generalise, meaning that after training they can process a
set of inputs not used in the training process (and hence not
“seen” before by the network) into a reasonable output value.
In some cases when too many epochs of training are used, an
ANN can become “overtrained” to its training dataset and
loses the ability to generalise. In order to avoid this, the
available input/output patterns were separated into a training
dataset and a smaller “test” dataset. After each epoch,E was
calculated for both the training and test datasets. IfE contin-
ued to fall or stabilised for the training dataset but began to
rise for the test dataset, then overtraining was diagnosed and
the training process was stopped.

The ANN code used here was based on a modified ver-
sion of that developed byLönnblad et al.(1991) for pattern
recognition problems in particle physics.
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Fig. 3. DJF standard deviation of seasonal meanT (◦C) for Europe, 1981–2000. From EurANN (ANN trained over the full European
domain) and RCM.

Fig. 4. DJF standard deviation of seasonal meanR (mm day−1) for Europe, 1981–2000. From EurANN (ANN trained over the full European
domain) and RCM.

An MLP with at least 3 layers should be able to reproduce
any mapping between input and output variables (Hornick
et al., 1989), but 4 layers are used here as it has been found
previously that an extra layer leads to more efficient ANN
training for problems similar to this one (Tomassetti et al.,
2009; Chadwick and Grimes, 2011; Coppola, 2006).

As inputs it was possible to use any information from the
GCM output field, and non-time-variant properties of the
RCM field such as gridpoint elevation and land-use. As
GCM and RCM gridpoints are not in general spatially co-
incident, and the RCM field has a higher spatial resolution, a
decision had to be taken on which GCM gridpoints to use as
input data for each RCM gridpoint.

Tomassetti et al.(2009) used an ANN approach to down-
scale precipitation fields from 27 km to 3 km, and their
method of matching the two fields of differing spatial res-
olution has been adopted here. For each RCM gridpoint, the

surrounding 4 GCM gridpoints are used as inputs. So one
GCM gridpoint will be to the NE of the RCM gridpoint, one
to the NW, one to the SW and one to the SE. The inputs used
are shown in Table1. For RCM-scaleT as output, GCMT

input values were used, while GCMR values were used for
RCM-scaleR output.

To improve the efficiency of ANN training, inputs are stan-
dardised to values in the range [0 1] by the function:

xfinal =
x −xmin

xmax−xmin
, (3)

wherexmax andxmin are the min/max values for a particular
input andxfinal is the final standardised input for use in the
ANN.

GCM and RCMT/R fields were used at monthly time-
resolution. The available coincident RCM and GCM dataset
was for the period 1960–2100.

www.nonlin-processes-geophys.net/18/1013/2011/ Nonlin. Processes Geophys., 18, 1013–1028, 2011
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Fig. 5. DJF meanT (◦C) for the Mediterranean region, 1981–2000. From RCM, GCM with lapse-rate correction, EurANN, and MedANN.

4 Results and discussion

The ANN was trained initially with RCM data from 1960–
1980 (separate randomly selected subsets of this dataset were
used for ANN training and testing) and validated with RCM
data from 1981–2000. Due to the large number of RCM grid-
points available in the European domain over the 21 yr train-
ing period, and in order to reduce processing time, only a ran-
domly selected selection of 20 % of the total available grid-
points for each month in the training period were used for
training. The particular gridpoints used were selected sepa-
rately for each month of the training period, in order to fully
sample the RCM domain during training. Sensitivity tests es-
tablished that increasing this proportion above 20 % made no
noticeable difference to ANN performance, so 20 % of the
data was considered to be a sufficient amount to properly
train the ANN. ANN training proceeded with the training
dataset untilE was minimised, with the subset of test data
used to prevent overtraining. Once trained, the ANN was ap-
plied to the validation dataset and ANN estimates produced
for each validation month and RCM gridpoint.

The time-mean 1981–2000 ANN DJF output using the en-
tire European RCM domain (excluding buffer zones for both
training and validation) are shown in Figs.1 and2. The RCM
fields are also shown.

The ANN downscaling method described here was also
compared against a simple lapse-rate downscaling method
for temperature fields similar to the one described inEngen-
Skaugen(2007). The GCMT and elevation fields are first

bilinearly interpolated on to the RCM grid. The differ-
ence4h in km between the interpolated GCM elevation and
the RCM elevation is then calculated at each RCM grid-
point. Finally a standard atmospheric lapse-rate correction of
6.5 K km−1 is applied to each point in the interpolated GCM
T field:

Tlapse−rate= TGCMinterp−6.5×4h (4)

This lapse-rate corrected field is shown in Fig.1. As no
similar lapse-rate correction is appropriate for rainfall, Fig.2
instead shows the GCMR field bilinearly interpolated on to
the RCM grid.

As the purpose here was to reproduce RCMT and R

fields, ANN performance was measured by how well it could
reproduce the large and small-scale features of these fields.
Although RCM fields may not necessarily reflect reality, if
the ANN reproduced these fields accurately then it was con-
sidered to be performing well. As a quantitiative measure
of model performance we use the area averaged bias, root
mean square error (RMSE) and spatial coefficient of corre-
lation between the ANN or GCM models against the RCM
results. These are shown in Tables2 and3.

It was found that the ANN was able to successfully re-
produce the large scale features of the climatological mean
RCM T andR fields (see Figs.1 and2). The representa-
tion of detailed features in the meanT field is good in the
ANN, but there is no obvious qualitative improvement over
the lapse-rate down-scaling method here. The ANNR field
does represent several features of the RCM field better than

Nonlin. Processes Geophys., 18, 1013–1028, 2011 www.nonlin-processes-geophys.net/18/1013/2011/
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Table 2. Area averaged bias, RMSE and spatial correlation coefficient of temperature, for EurANN (ANN trained over the full European
domain), EurANNTS (Time-slice ANN trained over the full European domain), MedANN (ANN trained over the Mediterranean region),
MedANNTS (Time-slice ANN trained over the Mediterranean region), lapse-rate corrected ECHAM5 and ECHAM5, taking RegCM3 fields
as “truth”, for the period 1981–2000 over the Mediterranean region.

EurANN EurANNTS MedANN MedANNTS Lapse-rate GCM

T Bias
(◦C)

DJF 0.041 0.234 −0.186 0.045 1.244 1.141
MAM 0.263 0.116 0.012 0.107 1.364 1.262
JJA −0.198 −0.091 −0.064 −0.073 1.042 0.941
SON 0.359 0.377 0.027 0.088 1.960 1.857

T RMSE
(◦C)

DJF 0.730 0.722 0.427 0.411 1.467 1.875
MAM 0.362 0.319 0.205 0.219 1.364 1.448
JJA 0.746 0.652 0.461 0.475 1.343 1.296
SON 0.627 0.562 0.355 0.303 1.974 2.114

T corr.

DJF 0.970 0.973 0.991 0.990 0.953 0.852
MAM 0.990 0.989 0.995 0.995 0.982 0.760
JJA 0.872 0.896 0.946 0.945 0.796 0.478
SON 0.979 0.986 0.991 0.994 0.970 0.834

Table 3. Area averaged bias, RMSE and spatial correlation coefficient of rainfall, for EurANN (ANN trained over the full European domain),
EurANNTS (Time-slice ANN trained over the full European domain), MedANN (ANN trained over the Mediterranean region), MedANNTS
(Time-slice ANN trained over the Mediterranean region) and ECHAM5, taking RegCM3 fields as “truth”, for the period 1981–2000 over the
Mediterranean region.

EurANN EurANNTS MedANN MedANNTS GCM

R Bias
(mm day−1)

DJF −0.158 −0.117 0.078 0.095 −0.615
MAM −0.262 −0.153 −0.021 −0.074 −0.742
JJA 0.049 0.082 0.154 0.163 −0.409
SON −0.160 −0.074 −0.003 −0.050 −0.743

R RMSE
(mm day−1)

DJF 0.634 0.630 0.472 0.526 0.801
MAM 0.387 0.338 0.282 0.297 0.763
JJA 0.195 0.203 0.226 0.214 0.411
SON 0.445 0.433 0.348 0.373 0.777

R Corr

DJF 0.591 0.601 0.853 0.831 0.327
MAM 0.814 0.823 0.906 0.902 0.595
JJA 0.877 0.883 0.848 0.869 0.818
SON 0.648 0.656 0.836 0.806 0.461
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Fig. 6. DJF meanR (mm day−1) for the Mediterranean region, 1981–2000. From RCM, GCM bilinearly interpolated to RCM scale,
EurANN, and MedANN.

the GCM, such as the high precipitation over North-West
Spain and Portugal (see Fig.2). However some of the more
detailed features such as enhanced rainfall over the moun-
tainous coast of Croatia, and the extent of enhanced rain-
fall over the Alps, are not captured by the ANN. Quantita-
tively, it can be seen from the bias, RMSE and spatial cor-
relation shown in period 1 (1981–2000) of Fig.12 that the
ANN shows an improvement over the both the GCM and the
lapse-rate correction, for bothT andR.

Figures3 and4 show the standard deviation of the RCM
and ANN fields over the period DJF 1981–2000. In general
the two fields have the same pattern, with the ANN slightly
underestimating the magnitude of the RCM standard devia-
tion, particularly for rainfall. This is consistent with previous
work showing that ANNs often fail to capture the full range
of values that they are attempting to simulate (Chadwick and
Grimes, 2011).

In order to try and improve ANN performance for smaller
regional rainfall features, a European sub-region covering
the Mediterranean was focused on (defined as 36–44◦ E, 3–
25◦ N). The ANN was retrained specifically for this reduced
area in the same way as before, but using only data from
within the region.T andR output from this more localised
ANN (referred to as MedANN) are shown in Figs.5 and6.

It can be seen that MedANN captures the high rainfall
along the Croatian coast far more effectively than either
the original European ANN (EurANN) or the GCM, with
some enhanced rainfall over mountainous areas of Italy also

apparent. The MedANN temperature field also shows some
improvement over the lapse-rate method when observed at
this level of detail, with better agreement with the RCM
in Southern Italy, Sicily and Sardinia. Area-averaged bias,
RMSE and spatial correlation statistics ofT andR, for Eu-
rANN, MedANN, ECHAM5 lapse-rate corrected ECHAM5
(for T only) and ECHAM5 with respect to RegCM3 fields,
for the period 1981–2000 over the Mediterranean region are
shown in Tables2 and 3. It can be seen that in general
MedANN performs better than EurANN over the Mediter-
ranean region (with the exception of JJA rainfall).

These results indicate that the performance of the ANN is
sensitive to the choice of region of calibration. The more lo-
calised the region of ANN calibration, the more it is able to
reproduce the specific relationship between orography, GCM
variables and RCM variables found in that region. So the
MedANN is more appropriate for estimating rainfall and
temperature over the Mediterranean than the EurANN, but
equally the MedANN would be expected to perform poorly
if applied over the European region as a whole.

Our results concerning the performance of the ANN for
the historical period show encouraging indication towards
the use of the ANN to downscale GCM information at the
RCM level. It then remains to be seen whether the ANN can
correctly reproduce the climate-change (CC) signal shown
by the RCM over Europe. Towards this goal, estimates were
produced with the same ANN as above for the future time
period 2081–2100, and the differences of the meanT and
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Fig. 7. JJAT (◦C) climate change signal, mean 2081–2100 – mean 1981–2000 for Europe. From RCM, GCM with lapse-rate correction,
EurANN, and EurANNTS.

R fields between 2081–2100 and 1981–2000 were calcu-
lated for EurANN and MedANN, as shown in Figs.7–9.
Bias, RMSE and spatial correlation statistics for these cli-
mate change estimates are shown in Tables4 and5.

Figure 7 shows that EurANN reproduces the large-scale
RCM CC signal for temperature relatively well, and is much
more similar to the RCM field than the GCM is. However
smaller scaleT CC patterns are not so well represented. The
ability of the ANN to reproduce the fine-scale RCM signal is
variable between seasons, with Fig.8 showing a reasonably
accurate ANN estimate and Fig.9 a less accurate example.

Figure10 and Table5 shows that the EurANN CC signal
does not reproduce the RCM rainfall field well. In particu-
lar, the ANN shows a general drying over Southern Europe
which is present in the GCM but not the RCM. The MedANN
also performs relatively poorly, as can be seen in Fig.11and
Table5.

As the ANN is capable of reproducing the RCM 1981–
2000 mean fields reasonably accurately and consistently, this
failure to consistently reproduce the CC signal must be due
to an inability to correctly reproduce the 2081–2100 fields.
The ANN was trained with data from 1960–1980, and the

successful application of the ANN to other time periods re-
lies on the relationship between input and output data re-
maining constant with time and changing climate. This as-
sumption appears to hold for the validation period of 1981–
2000, which is close to the training period, but may break
down for time periods further in the future such as 2081–
2100.

In order to try and improve the CC signal of the ANN,
retraining was performed using a “time-slice” approach. In
this case, training data was taken from 3 separate 10 yr time-
periods (1961–1970, 2011–2020 and 2061–2070), and this
time-slice ANN (ANNTS) was then used to produceT andR

estimates for 1981–2000 and 2081–2100. The ANNTS was
trained both for the whole European domain (EurANNTS)
and for the Mediterranean (MedANNTS) in a similar way to
the original ANN.

The ANNTS output for 1981–2000 is shown in Figs.1–
6, and it can be seen that this new approach produces results
similar to the ones obtained from the original ANN. The AN-
NTS seems able to replicate the 1981–2000 RCM output as
well as the original non-timeslice ANN, and this can also be
seen in the statistics in Tables2 and3 and Figs.12and13.
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Fig. 8. MAM T (◦C) climate change signal, mean 2081–2100 – mean 1981–2000 for the Mediterranean region. From RCM, GCM with
lapse-rate correction, MedANN, and MedANNTS.

Fig. 9. DJF T (◦C) climate change signal, mean 2081–2100 – mean 1981–2000 for the Mediterranean region. From RCM, GCM with
lapse-rate correction, MedANN, and MedANNTS.

The ANNTS CC signal is shown in Figs.7–11, and here
there is some improvement over the original ANN (see Ta-
bles4 and5 for a comparison of skill statistics). The Eu-
rANNTS CC signal shows that on the large scale the RCM

CC signal is well reproduced for bothT andR (see Figs.7,
10 and Tables4 and5), with the rainfall field in particular
much improved over the original ANN and a slight improve-
ment over the GCM. For the MedANNTS, the detail of the
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Fig. 10. JJAR (%) climate change signal, mean 2081–2100 – mean 1981–2000 for Europe. From RCM, GCM with lapse-rate correction,
EurANN, and EurANNTS.

RCM CC signal is often reproduced well (and slightly bet-
ter than the GCM), but in some cases is not an improvement
over the GCM CC signal (e.g. DJFT andP ). In most cases,
the MedANNTS is an improvement over the original non-
timeslice ANN. Although the ANNTS is able to correctly re-
produce the RCM CC signal in many cases, this is not always
true.

To examine why a timeslice training approach produces a
more accurate CC signal than training with a single period,
ANN and ANNTS estimates were produced for a series of
six different 20 yr periods (shown in Fig.12). Area-averaged
Bias, RMSE and spatial correlation values of EurANN, Eu-
rANNTS, MedANN and MedANNTS (taking RegCM3 as
“truth”) for the time-mean output of each of these periods
are shown in Figs.12 and13. Figure12 shows that while
the GCM bias and RMSE remain approximately constant
with time, the EurANN estimates degrade as the time period
gets further from the ANN calibration period. In contrast
the EurANNTS bias and RMSE do not drift with time. For
MedANN and MedANNTS similar behaviour can be seen
for the RMSE in Fig.13, though there is no drift in bias of
the MedANN.

This drift in accuracy explains the poor replication of the
CC trend by the ANN, despite the accuracy of the ANN
for any single time period remaining better than that of the
GCM. The stationarity in bias and RMSE of ANNTS should
make the CC trend obtained by this method more reliable
than that of the original ANN.

5 Conclusions

In this paper we present an ANN approach for the downscal-
ing of GCM temperature and precipitation fields to reproduce
corresponding fields obtained with a nested RCM, and apply
this approach to a nested RCM transient climate change sim-
ulation over Europe. The ANN appears able to realistically
recreate RCM output fields from GCM input data for bothT

andR. An ANN trained with the full European domain rep-
resents large scale patterns well, but misses smaller rainfall
features such as high rainfall over the mountains of Croa-
tia. The EurANN appears to represent the RCM rainfall field
more closely than the GCM rainfall field does (see Fig.2).
For temperature the lapse-rate corrected GCM, the EurANN
and the RCM fields are all qualitatively similar (Fig.1), but
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Fig. 11. DJFR (%) climate change signal, mean 2081–2100 – mean 1981–2000 for the Mediterranean region. From RCM, GCM bilinearly
interpolated to RCM scale, MedANN, and MedANNTS.
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Fig. 12. Area averaged bias (top), RMSE (middle) and spatial coefficient of correlation (bottom) of EurANN

(ANN trained over the full European domain), EurANNTS (Time-slice ANN trained over the full European

domain), ECHAM5 lapse-rate corrected ECHAM5 (for T only) and ECHAM5 with respect to RegCM3 fields

for 6 different time periods over Europe. Statistics are averaged over all four seasons. Left-hand plots show

temperature statistics, right-hand plots show rainfall. Time periods are 20 year means starting from the year

shown on the x axis.

22

Fig. 12. Area averaged bias (top), RMSE (middle) and spatial coefficient of correlation (bottom) of EurANN (ANN trained over the full
European domain), EurANNTS (Time-slice ANN trained over the full European domain), ECHAM5 lapse-rate corrected ECHAM5 (forT

only) and ECHAM5 with respect to RegCM3 fields for 6 different time periods over Europe. Statistics are averaged over all four seasons.
Left-hand plots show temperature statistics, right-hand plots show rainfall. Time periods are 20 yr means starting from the year shown on the
x axis.
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Fig. 13. Area averaged bias (top), RMSE (middle) and spatial coefficient of correlation (bottom) of MedANN,

MedANNTS, ECHAM5 lapse-rate corrected ECHAM5 (for T only) and ECHAM5 with respect to RegCM3

fields for time-means of 6 different 20-year periods over the Mediterranean region. Statistics are averaged over

all four seasons. Left-hand plots show temperature statistics, right-hand plots show rainfall. Time periods are

20 year means starting from the year shown on the x axis.
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Fig. 13. Area averaged bias (top), RMSE (middle) and spatial coefficient of correlation (bottom) of MedANN, MedANNTS, ECHAM5
lapse-rate corrected ECHAM5 (forT only) and ECHAM5 with respect to RegCM3 fields for time-means of 6 different 20-yr periods over
the Mediterranean region. Statistics are averaged over all four seasons. Left-hand plots show temperature statistics, right-hand plots show
rainfall. Time periods are 20 yr means starting from the year shown on the x axis.

the EurANN skill scores are an improvement on the lapse-
rate method (see period 1 (1981–2000) of Fig.12).

Training the ANN over a smaller regional domain im-
proves the level of detail that it can capture. In this case,
the MedANN shows an improvement over the lapse-rate
method for recreating RCM temperature fields (Fig.5), and
the MedANN rainfall fields represent RCM rainfall much
more closely than the GCM rainfall does (Fig.6). MedANN
also shows an improvement over EurANN for this region.

Although the ability of ANNs to reproduce RCM mean
fields for a certain time period is interesting, the real prop-
erty of note here is whether an ANN approach can correctly
replicate the climate change signal of an RCM. The origi-
nal ANN, trained only with data from 1960–1980, does not
reproduce the 2081–2100 – 1981–2000 CC signal well for
eitherR or T , and for either the full European domain or the
Mediterranean sub-region .

Figures12and13show that this is due to a drift with time
in the accuracy of the ANN. As the validation time period
gets further from the ANN training period the accuracy of
the ANN decreases. This may be because the relationship
between input and output data changes with time and chang-
ing climate, meaning that the patterns established during
ANN training for 1960–1980 are not suitable for 2081–2100.
One possibility is that regional circulation changes and/or

land-atmosphere feedbacks (e.g. soil moisture-precipitation)
occur within the RCM during climate change that are not
also present in the GCM. This could alter the relationship
between RCM and GCMT andR values at coincident grid-
points, and render the 1960–1980 calibration unreliable for
later time periods.

We attempted to mitigate this problem by training the
ANN model using different time slices in the future climate
simulation (ANNTS model). With this approach the error re-
mains stationary throughout the range of time periods. The
improvement could be either because the ANNTS has access
to a wider range ofT andR data during training, because
“year” is included in the ANN inputs and the ANN is able to
apply a time-variable relationship between GCM input, ele-
vation and output, or a combination of the two. In this way
the ANNTS might be able to capture time-varying non-linear
dynamical processes in the RCM.

The non-stationarity of ANN error shown here has im-
plications for statistical-dynamical (and possibly statistical)
GCM downscaling methods. In particular, any method which
relies on the relationship between GCM variables, orogra-
phy and RCM variables remaining constant with changing
climate might also be expected to be subject to the same drift
in accuracy as seen here. Training using future time slices
improves the performance and applicability of the ANN
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Table 4. Area averaged bias, RMSE and spatial correlation coefficient of temperature climate change signal between 1981–2000 and 2081–
2100, for ANN, ANNTS, and lapse-rate corrected ECHAM5, taking RegCM3 fields as “truth”. First three columns show results for EurANN
and EurANNTS validated over the European region, and the remaining columns show results for MedANN and MedANNTS validated over
the Mediterannean region.

Europe Med

EurANN EurANNTS Lapse-rate/GCM MedANN MedANNTS Lapse-rate

T Bias
(◦C)

DJF −0.692 −0.112 0.309 −0.359 −0.268 0.129
MAM −0.524 −0.152 −0.002 −0.122 −0.093 −0.228
JJA −0.673 −0.057 0.151 −0.176 −0.224 0.320
SON −0.672 −0.033 0.235 0.299 −0.137 0.247

T RMSE
(◦C)

DJF 0.697 0.206 0.413 0.695 0.274 0.220
MAM 0.562 0.253 0.325 0.410 0.160 0.239
JJA 0.887 0.365 0.457 0.719 0.346 0.613
SON 0.678 0.213 0.377 0.507 0.241 0.315

T corr.

DJF 0.936 0.955 0.956 −0.359 0.654 0.847
MAM 0.932 0.944 0.947 0.209 0.718 0.788
JJA 0.894 0.917 0.908 0.722 0.580 0.562
SON 0.952 0.946 0.917 0.546 0.782 0.797

Table 5. Area averaged bias, RMSE and spatial correlation coefficient of temperature and rainfall climate change signal between 1981–
2000 and 2081–2100, for ANN, ANNTS, and ECHAM5 interpolated to RegCM3 spatial scale, taking RegCM3 fields as “truth”. First
three columns show results for EurANN and EurANNTS validated over the European region, and the remaining columns show results for
MedANN and MedANNTS validated over the Mediterannean region.

Europe Med

EurANN EurANNTS Lapse-rate/GCM MedANN MedANNTS GCM

R Bias
(mm day−1)

DJF −0.247 0.068 0.023 0.316 −0.023 −0.037
MAM −0.255 0.065 0.035 0.071 0.087 0.131
JJA −0.358 −0.055 −0.073 −0.319 −0.105 −0.053
SON −0.300 −0.005 −0.016 0.278 0.599 0.517

R RMSE
(mm day−1)

DJF 0.292 0.161 0.169 0.417 0.187 0.152
MAM 0.286 0.162 0.163 0.245 0.173 0.207
JJA 0.367 0.149 0.169 0.320 0.124 0.091
SON 0.328 0.147 0.173 0.287 0.231 0.247

R Corr

DJF 0.750 0.887 0.803 0.395 0.696 0.831
MAM 0.793 0.889 0.850 −0.072 0.562 0.207
JJA 0.728 0.764 0.654 0.561 0.636 0.567
SON 0.556 0.756 0.622 0.278 0.599 0.517
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approach. However our results do point to the importance
of the issue of stationarity in statistical downscaling models,
which needs to be addressed in further research.

The use of local inputs could in principle reduce the abil-
ity of the ANN to reproduce precipitation and temperature
changes associated with changes in synoptic scale circula-
tion. As the ANN performs well for the validation period
1981–2000, the use of local inputs does not appear to be a
problem when the climate change signal between training
and validation period is small. However, as noted above,
one possible cause of the poor performance of the original
non-timeslice ANN in the 2081–2100 period is that regional
circulation changes occur in the RCM that are not present
in the GCM. It is possible that the introduction of non-local
inputs into the time-slice ANN could provide information to
the ANN about any divergence between the RCM and GCM
circulations with time, and this is something that merits fur-
ther investigation.

The time-slice ANN was in general able to reproduce the
RCM climate-change signal more accurately than the GCM,
but not in all cases. We plan to further refine the ANNTS ap-
proach in order to use it as a tool to fill the GCM-RCM sim-
ulation matrix necessary to assess uncertainties in regional
climate change projections.
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