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Abstract: Gas sensor arrays, also known as e-noses, are used in several heterogeneous fields, ranging from environmental
monitoring to food quality control. Often, these measurement systems operate within dynamic environments and are subject to
conditions which may dramatically vary over time. Furthermore, the response of an e-nose is influenced by several parameters,
whose interactions may be complex and highly non-linear. Therefore, in this study, the authors propose a complex network
approach to model the overall interaction pattern of e-noses. They show that this approach can significantly improve the
understanding of the overall behaviour of e-noses, and can be used as a basis to optimise the design of these measurement
systems.

1 Introduction
Chemical gas sensors compounds analysis has been extensively
involved in a broad range of contexts including environmental
monitoring [1], food quality control [2, 3], and medical
applications [4, 5]. Basically, it requires the setup of chemosensor
arrays (i.e. e-nose arrays) to identify a chemical compound and
estimate its quantity. In this context, the design of highly sensitive,
top-performing and fault-tolerant devices is of paramount
importance. However, it should bear in mind, that sensor arrays are
placed in environments with characteristics that vary over time.
Therefore, dynamic conditions and the responses of the sensor
arrays to such variations should be considered, to correctly
recognise the chemical analytes.

Recently, a data-driven approach has been proposed to identify
gas chemical compounds from pre-recorded measurements
collected at different distances from the source and under a range
of flow conditions [6]. The work of Vergara and colleagues
introduced new approaches for seeking better calibration
techniques of e-nose arrays as well as monitoring and maintenance
systems for outdoor devices. In particular, they presented a large
dataset of experiments from ten chemical agents, recorded by
utilising chemoresistive metal–oxide-based chemical sensors
located at different positions in the test field. Such measurements
are then employed to train a classifier to represent a great variety of
possible conditions for better discriminating chemical analytes in a
test-set scenario.

In this work, we present a methodology for exploring the
interaction of sensor responses to verify whether an optimal device
configuration exists to identify different compounds under varying
flow conditions. In details, we adopted a complex network
approach [7] to model the correlation of the signals’ responses to
the same input between each couple of sensors of the array. This
approach is implicitly multivariate and allows to consider
simultaneously the existence of different factors that could affect
the sensing of the chemical analytes such as turbulent and
environmental conditions (e.g. pressure, temperature, humidity) as
well as technical specifications of the device (e.g. a number of
sensors, reciprocal position etc.).

The main purpose of the exploratory analysis carried out in this
paper is to investigate a method for identifying a minimum set of
configuration parameters and flow conditions that maximise the
distances among the sensors’ responses to different chemical
analytes. The remaining of the paper is organised as follows.
Section 2 presents a brief review of the main data-driven analysis

methods. Section 3 describes the data used in this work together
with the adopted methodology. The most relevant results achieved
are reported in Section 4. Finally, Section 5 outlines the
conclusions of the work and future developments.

2 Related works
Studies concerning the suitability of e-noses to discern among
different classes of chemical compounds have been focused on
both the mathematical tools and the preprocessing of data used for
classification [8].

Data preprocessing is the first step needed to obtain a signature
of the sample [1, 8]. Usually, this step involves several data
transformations, such as denoising or standardisation, to properly
input signals to the mathematical tools employed in the following
steps. Other times, a feature extraction procedure [9, 10] may be
needed to extract meaningful features in complementary domains,
such as the frequency domain.

Then, exploratory data analysis (EDA) [11] is usually
performed. EDA is extremely important to assess data quality: i.e.
an expert can determine whether data are suitable for the
classification task using visual tools, such as polar plots [12].
However, such analysis may involve data mapped into a high-
dimensional space, which is difficult (if not impossible) to visually
explore. Therefore, dimensionality reduction techniques, such as
PCA [13], may be used to perform either an initial cluster analysis
[14], to reduce the dimensionality of data [15], or to allow for a
simpler data visualisation [16]. We also note that, apart from PCA,
feature selection and data visualisation methods such as t-SNE [17]
may be well suited to be used throughout the exploratory data
analysis.

The following step is to use classification techniques to discern
from data. Often, data are considered as independent and
identically distributed and, therefore, traditional classifiers can be
used. Less often, however, data present dependencies over time,
and therefore time series clustering or forecasting techniques may
apply.

As for the first type of classifier, simpler classification
techniques rely on the notion of distance between data points. That
is, as each data point can be mapped to an n-dimensional space,
where n is the number of features, the distance between data points
can be evaluated as an index of similarity, as in [18]. However, we
must argue that such approaches are more similar to ranking
procedures, where each data point can be ranked as closer or
farther from another one; to provide for a more traditional
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classification, some boundaries within the feature space must be
introduced. These boundaries are strictly related to the behaviour
of more advanced techniques.

The simplest of these techniques is a k-nearest neighbour (k-
NN), which is widely used thanks to its simplicity and good
performances [19]. k-NN simply computes Euclidean distance
between data points, assigning each unlabelled sample to one of the
classes on which the classifier has been trained. However, as noted
in [20], we note that, especially when the number of features is
high, Euclidean distance may not be the best choice to compute
meaningful distances between points. Traditional statistical
approaches are also used, such as discriminant function analysis
[21, 22] and partial least squares (PLS) [23].

Artificial neural networks (ANNs) have also been used for
classification tasks [14, 24]. More advanced approaches have also
used ensemble learning [25], with [6] which proposes the use of an
inhibitory SVM (ISVM) [26]. Specifically, an ISVM trains one
classifier f i for each class i available within the dataset and
compares its output to the average output of the ensemble of
classifiers.

The approaches which consider data coming from e-noses as
time series focus on different mathematical tools. A popular tool
which has been used for such tasks are Time-Delay Neural
Networks (TDNNs) [27–29], and also recurrent neural networks
have been employed for such tasks [30]. Another perspective has
been given by Schleif et al. [31], which proposes the use of
generative topographic mapping trough time as an unsupervised
model for time series inspection. Another interesting approach
deals with the need to perform forecasting and prediction in real-
time, starting from data acquired by the e-nose. Specifically,
Fonollosa et al. [32] provide predictions starting from data
acquired in real time by using reservoir computing [33].

3 Experimental section
3.1 Dataset description

In our analysis, we used the dataset defined in [6], freely available
at the UCI Machine Learning Repository [34]. This dataset
contains data acquired by a set of nine identical e-noses, each
composed of eight different MO-X sensors. Specifically, the
selected sensors belong to the TGS26XX family and are sensitive
to hydrocarbons, hydrogen, nitrogen, sulphur compounds, and
carbon monoxide.

The dataset was acquired in a wind tunnel test-bed facility, and
the e-noses were positioned at six different locations, normal to the
wind direction, uniformly distributed throughout the tunnel. At
each trial, the authors injected within the tunnel a selection of
chemical compounds at a predefined concentration. Chemical
compounds are acetaldehyde, acetone, ammonia, benzene, butanol,
CO with two different concentrations, ethylene, methane, methanol
and toluene. All these substances are characterised by high
volatility. The chosen sensors appear to be suited to respond to the
compounds. However, a proper chemical characterisation is
beyond the scope of this paper.

Trials were performed following the classic methodology [32],
and the entire reference-measurement-cleaning cycle lasts about
260 s. Throughout the trials, two different conditioning parameters
were considered. The first is the heater voltage Vh, directly related
to the temperature of the active surface of each sensor, while the
second is the airflow speed S, i.e. the speed of the fan within the
wind tunnel. For Vh, five values (i.e. {4.0, 4.5, 5.0, 5.5, 6.0} V)
were considered, while for S only three values (i.e. {0.10, 0.21,
0.34} m/s).

Within their experiments, the authors found out that chemical
sensors had weaker responses if exposed to higher values of S, and
central measurement lines showed better robustness if compared to
the rest of the wind tunnel facility. We can see in Section 3.3 how
these results are confirmed, and therefore reinforced, by our
methodology.

3.2 Methodology

We use the mathematical framework of complex networks, which
can be employed to model complex systems, such as a wind tunnel
facility. In our case, the e-nose is modelled as a complex network
G = V , E , whose nodes V = v1, …, vn are represented by the
sensors embedded into the array, and edges E = e12, …, enn are
defined according to a certain principle.

In our case, n = 72, as there is one node for each sensor within
the e-nose. Therefore, there will be n × n − 1 /2 edges, since our
network is supposed to be dense.

We defined edges in a way which is similar to the one adopted
to define functional connectivity in brain networks [35], i.e. the
edge ei j between nodes vi and vj is defined using the correlation
coefficients between the time series yti and yt j acquired for nodes vi
and vj, respectively. Formally

ei j = τ yti, yt j (1)

In (1), τ is the Kendall correlation coefficient. We choose to use τ
over other correlation coefficients (e.g. Pearson r or Spearman ρ),
because we could suppose neither linearity nor monotonicity
between yti and yt j.

Intuitively, the configuration of the network G gives an idea
about the overall response of the e-nose to a specific substance. As
an example, if the responses of the e-nose to two different
substances are uncorrelated, these substances will be easily
discriminated by the respective signatures.

To evaluate the discriminative capabilities of such an approach,
we proceed as follows:

(i) Firstly, we identified how many degrees of freedom are
available within data. In our case, there are three of them. The first
two are determined by the conditioning parameters, i.e. the values
for Vh and S. The third one is given by the layer l at which the
measurement is performed. In our experiments, we tried to cover a
large part of possible cases, determining a set of networks Gvsl,
with v ∈ Vh, s ∈ S, l ∈ L. Each network models the response of the
signal to various experiments for each chemical compound when
values for voltage heater, fan speed and level are fixed.
(ii) Once the networks are determined, a signature was obtained for
each layer of each substance, represented by the edge set E. Then,
we evaluated the distance among these signatures by using cosine
distance D = (1 − C), where C is the cosine similarity. Following
our intuition, high values of cosine distance allow to easily discern
between the overall responses of the e-nose to each couple of
chemical substances.

3.3 Discussion

Figs. 1–3 show the count of maximum distances between trials
varying Vh and L for each of the three fixed
s = 0.10, 0.21 and 0.34 m/s. Interestingly, as it can be seen, the
behaviour of the system appears to be consistent with the value
fixed for Vh. Specifically, it can be noted that, for a fixed value of
s = 0.10 m/s, the value of Vh which results in the most
discriminative is v = 4.0 V, while for s = 0.21 and 0.34 m/s the
most discriminative v is 4.5 V.

Therefore, we can observe in Figs. 4–6, the values of the cosine
distance fixing Vh at the previously defined most discriminant
values. Visually, the heat maps with ‘warmer’ colours are more
discriminative, as the distance values D are on average higher.
These findings are better summarised in Table 1 which shows the
cosine distance values for each of the three fan speeds for the most
discriminative Vh and varying L. 

From the above considerations, we can confirm some of the
results given in [6]; in particular, S results in the most relevant
conditioning parameter, and we can also give some more hints on
the relevance of L and Vh. Specifically, as expected, L seems to be
relevant for higher values of S due to the fact that the initial layers
are mostly affected by the aspects already depicted in [6].
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Fig. 1  Count of maximum distances varying Vh and L with fixed S = 0.10 m/s
 

Fig. 2  Count of maximum distances varying Vh and L with fixed S = 0.21 m/s
 

Fig. 3  Count of maximum distances varying Vh and L with fixed S = 0.34 m/s
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Fig. 4  Maximum distances for the most discriminative Vh varying L with fixed S = 0.10 m/s
 

Fig. 5  Maximum distances for the most discriminative Vh varying L with fixed S = 0.21 m/s
 

Fig. 6  Maximum distances for the most discriminative Vh varying L with fixed S = 0.34 m/s
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Furthermore, from the bar plots, it clearly appears that the value of
the voltage heater, for this set of sensors, is strongly relevant, and
dependent upon the specific value of the fan speed. It can also be
argued that at low speeds, the maximum discrimination among the
chemical agents is achieved, as the system is less affected by
turbulent phenomena.

4 Conclusions and future works
In this paper, we gave some insights on how complex networks can
be used to analyse the behaviour of an e-nose when several
parameters vary. On the one side, our experiments confirm
previous results; on the other side, we give some other perspective
on how the other conditioning parameters condition the
discrimination results, therefore allowing for a proper design of the
measurement experiment.

However, several improvements can be made in our approach.
First, in future developments, we will consider the whole network
as a multiplex network [36], with the various layers given either by
the variation of each one of the conditioning parameters or by the
definition of the behaviour of the networks over time. Specifically,
in the second case, the behaviour of the network over time can lead
to a better characterisation of the reference-measurement-cleaning
steps. Furthermore, data coming from our analysis can feed a
classifier, whose performances can be evaluated for substance
classification.

The code used in this work is publicly available on GitHub at
the following address: https://github.com./anhelus/envlab.
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