
Journal of Internet Services
and Applications

Sanctis et al. Journal of Internet Services and Applications (2020) 11:2
https://doi.org/10.1186/s13174-020-00123-6

RESEARCH Open Access

Dynamic adaptation of service-based
applications: a design for adaptation
approach
Martina De Sanctis1*, Antonio Bucchiarone2 and Annapaola Marconi2

Abstract

A key challenge posed by the Next Generation Internet landscape is that modern service-based applications need to
cope with open and continuously evolving environments and to operate under dynamic circumstances (e.g., changes
in the users requirements, changes in the availability of resources). Indeed, dynamically discover, select and compose
the appropriate services in such environment is a challenging task. Self-adaptation approaches represent effective
instruments to tackle this issue, because they allow applications to adapt their behaviours based on their execution
environment. Unfortunately, although existing approaches support run-time adaptation, they tend to foresee the
adaptation requirements and related solutions at design-time, while working under a "closed-world" assumption. In
this article our objective is that of providing a new way of approaching the design, operation and run-time adaptation
of service-based applications, by considering the adaptivity as an intrinsic characteristic of applications and from the
earliest stages of their development. We propose a novel design for adaptation approach implementing a complete
lifecycle for the continuous development and deployment of service-based applications, by facilitating (i) the
continuous integration of new services that can easily join the application, and (ii) the operation of applications under
dynamic circumstances, to face the openness and dynamicity of the environment. The proposed approach has been
implemented and evaluated in a real-world case study in the mobility domain. Experimental results demonstrate the
effectiveness of our approach and its practical applicability.

Keywords: Service-based adaptive applications, Next generation internet, Design for adaptation, Incremental service
composition, Smart mobility

1 Introduction
The Internet of Services (IoS) is widespread and it is
becoming more and more pervasive, due to the trend of
delivering everything as a service [1], from applications
to infrastructures, passing through platforms [2]. Further-
more, the IoS is envisioned as one of the founding pillars
of the Next Generation Internet [3], together with new
metaphors, such as those of the Internet of Things (IoT)
and the Internet of People (IoP) [4].

*Correspondence: martina.desanctis@gssi.it
1Gran Sasso Science Institute, Computer Science department, Viale Francesco
Crispi, 67100 L’Aquila, Italy
Full list of author information is available at the end of the article

In last decades, the aim of service-oriented computing
has been that of encouraging the creation and delivery
of services. Automated service composition is a powerful
technique allowing to compose and reuse the existing ser-
vices as building blocks for new services (and applications)
with higher-level functionalities.
To date, service-based applications are employed in a

multitude of domains, such as e-Health, smart homes,
e-learning, education, smart mobility and many others.
Additionally, the role played by companies and orga-
nizations is also considerable. They are publicly pro-
viding their services to allow third-party developers to
exploit them in defining new services, thus enhancing
their accessibility [5] (e.g., Google Maps, Paypal). This

© The Author(s). 2020Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13174-020-00123-6&domain=pdf
mailto: martina.desanctis@gssi.it
http://creativecommons.org/licenses/by/4.0/

Sanctis et al. Journal of Internet Services and Applications (2020) 11:2 Page 2 of 29

is of relevant importance in the Future Internet sce-
nario, since it implies the availability of a multitude of
reliable services offering even complex functionalities.
Different organizations are building on this trend to pro-
vide online platforms for the management of well-defined
RESTful APIs—REpresentational State Transfer Applica-
tion Program Interface, through which these services can
be accessed. For instance, ProgrammableWeb 1 has now
more than 10,000 APIs in its directory. As a consequence,
both researchers and practitioners are highly motivated
in defining solutions allowing the development of service-
based applications, by exploiting existing available ser-
vices.
In this scenario, service-based applications must face

the increased flexibility and dynamism offered by modern
service-based environments. The number and the qual-
ity of available services is continuously increasing and
improving. This makes service-based environments open
and highly dynamic, since service–oriented computing
takes place in an “open world” [6].
These premises demand self-adaptive service-based

applications, that is, applications able to both adapt to
their context (i.e., the currently available services) and
react when facing new contextual situations (e.g., miss-
ing services, changes in the user requirements and needs).
However, there are still major obstacles that hinder the
development and potential realization of service comput-
ing in the real world [5]. In fact, the latest Next Gener-
ation Internet vision further challenge the IoS paradigm.
Service-oriented computing has to face the ultra large
scale and heterogeneity of the Future Internet, which are
orders of magnitude higher than those of today’s service-
oriented systems [7].
In this context, self-adaptation is still one of the

main concerns. Many service-based methodologies and
approaches have been proposed with the aim of increas-
ing the flexibility of applications and supporting their
adaptation needs. They span from microservices [8, 9],
to DevOps (e.g., [10]), passing through dynamic software
product lines [11], to name a few. Nevertheless, none of
them is specifically meant for open environments, where
the available services might not be known a priori and/or
not available at execution time. However, to perform accu-
rately, service-based applications must be aware of the
specific execution environment during their execution,
thus operating differently for different contextual situa-
tions. The openness of the environment makes traditional
adaptation mechanisms no longer sufficient. Differently
from applications where traditional adaptation mecha-
nisms can be used, the IoS requires applications that
are adaptive by design. These premises motivated the
work presented in this article about a novel design for

1http://www.programmableweb.com

adaptation approach of service-based applications. To this
aim, the adaptation must be hold by a coherent design
approach, supporting both the definition and the applica-
tion of adaptation.
In very general terms, the idea of the approach consists

in defining the complete lifecycle for the continuous devel-
opment and deployment of service-based applications, by
facilitating (1) the continuous integration of new services
that can easily join the applications, and (2) the applica-
tions operation under dynamic circumstances, to face the
openness and dynamicity of the environment.
This article is an extension of [12, 13] where we

have introduced and formalized a design for adapta-
tion approach of service-based applications relying on
incremental service composition. The novel contributions
of this article are: (i) the overall lifecycle of the design
for adaptation approach that gives a complete overview
of the different perspectives (i.e., modeling, adaptation,
interaction) of the approach, the involved components
(e.g., artefacts, performed activities, engines) and the con-
nections among them, while also considering the role
played by the potentially involved actors; (ii) present-
ing the approach as a whole, gave us the possibility to
shape a clear positioning of the presented approach in
the literature about existing approaches for the design of
service-based applications and their dynamic adaptation;
(iii) further details about previously unpublished con-
structs of the approach, and extended experimental results
that include new elements on the approach efficiency.
The article is organized as follows: a motivating sce-

nario and research challenges are described in Section 2.
In Section 3 a high level overview of the whole approach
in introduced. The subsequent two sections present the
novel design for adaptation approach, in Section 4, and
how the defined applications operate at run-time, in
Section 5. Validation results are reported in Section 6
where the approach is applied to a real case study, in the
Smart Mobility domain. Section 7 describes the overall
lifecycle of the design for adaptation approach. Related
work are discussed in Section 8. Section 9 discusses the
open issues raised by the approach, while Section 10 con-
cludes the article with final considerations and directions
for future work.

2 Motivating scenario and research challenges
In this section we introduce the travel assistant scenario,
in Section 2.1, and the research challenges arising from
these applications, in Section 2.2.

2.1 Travel assistant scenario
The travel assistant scenario belongs to the mobil-
ity domain, which is particularly suitable to show the
challenges of open and dynamic environments. It con-
cerns with the management and operation of mobility

http://www.programmableweb.com

Sanctis et al. Journal of Internet Services and Applications (2020) 11:2 Page 3 of 29

services, within a smart city as well as among differ-
ent cities/countries. Nowadays, users dispose of a large
offer of mobility services that may differ depending on
diverse aspects, such as the offered functionalities, the
provider, the geographical applicability scope, etc. In addi-
tion, mobility services span from journey planners to
specific mobility services, such as those referring to spe-
cific transport modes (e.g., bus, train, bikes) or provided
by specific transport companies. Moreover, an emerging
trend is that of shared mobility services that are based
on the shared use of vehicles, bicycles, or other means.
Mobility services can offer disparate functionalities (e.g.,
journey planning, booking, online ticket payment, seat
reservation, check-in and check-out, user profiling, and so
on). Some functionalities may be peculiar to specific ser-
vices and/or require particular devices (i.e., unlocking a
bike from a rack is peculiar for bike-sharing services, and
a smart-card might be needed to do it). These services
are made available through a large variety of technolo-
gies (e.g., web pages, mobile applications), with different
constraints on their availability (e.g., free vs. pay).
A journey organization, from a user perspective, con-

sists of a set of differentmandatory and/or optional phases
that must be carried out (e.g., planning, booking, check-
in, check-out). While these phases define what should be
done, how they can be accomplished strongly depends
on the users requirements and preferences, and from the
procedures that need to be followed, as provided by the
available mobility services.

Example 1 A user plans her journey by looking for the
available (multi-modal) alternatives satisfying her needs.
The journey can be both local, in the context of a city, or
global involving different cities/countries. A multi-modal
solution can involve different transportation means, each
requiring for different procedures to be followed. During
the execution, if extraordinary events affect the journey, it
can be re-planned and recovery solutions can be suggested
to the user. Thus, users need support or the whole travel
duration.

To this aim, different mobility services need to syner-
gistically cooperate. While the idea of an intelligent travel
assistant has already been figured out in the past, as for
instance in [14], our opinion is that we are still far from
making it happens.

2.2 Research challenges
Modern service-based applications need to satisfy differ-
ent requirements to deal with the features of modern exe-
cution environments, thus arising the following research
challenges:
Applicability in open environments. Applications

must be capable to operate in open environments with

continuously entering and leaving services. Nonethe-
less, traditional approaches work under a “closed–world”
assumption, although the today scenario is that service–
oriented computing happens in an “open world” [6].
Autonomy and heterogeneity of services. Applica-

tions must take into account the autonomous nature of
the services involved as well as the heterogeneity among
services.
Context-awareness. The application must take into

account the state of the environment in which it operates,
to behave according to it.
Services interoperability. Applications must be capa-

ble to propose complex solutions taking advantages of
the variety of services. Moreover, different solutions can
be applied for the same goal (e.g., user goal), depending
on, i.e., the available services or the user requirements.
This means that the composition of services must be
performed dynamically.
Adaptivity and scalability. The application must be

able to react and adapt to changes in the environment that
might occur and affect its operations. Moreover, due to
the dynamicity of the environment, the adaptation must
be postponed as much as possible to the runtime execu-
tion of applications, when the environment is known.
User centricity and personalization. Applications

must take into account the nature of users, which are
proactively involved in the applications they use and
increasingly demanding. Applications must provide users
with personalized solutions.
Portability. Modern applications should be deployable

in different environments without an ad-hoc reconfigura-
tion from the developers.

3 Overview of the approach
The work presented in this article has been inspired from
the work presented in [15] where the authors argue that
mechanisms enabling adaptation should be introduced in
the lifecycle of applications, both in the design and in
the run-time phases. In other words, applications must
be adaptive by design. They should rely on a dynamic
set of autonomous and heterogeneous services that are
composed dynamically without any a-priori knowledge
between the applications and the exploited services. To
this aim, three conditions are required, as depicted in
Fig. 1:

1 the models adopted for the applications design must
allow the definition of dynamically customizable
applications behaviors, through the adoption of
adequate constructs. This is done in the Modeling
phase of Fig. 1, where specific models are used to
wrap-up in a uniform way existing or new services in
a given domain (Real services wrapping & Value
Added Services (VAS) modeling activity).

Sanctis et al. Journal of Internet Services and Applications (2020) 11:2 Page 4 of 29

Fig. 1 High level overview of the design for adaptation approach

2 The approach must implement or exploit adaptation
mechanisms and strategies whose application allows
for a context-aware and dynamic adaptation, during
their execution. To this aim, during the Adaptation
phase of Fig. 1 adaptation strategies must be
implemented (Adaptation mechanisms & strategies
configuration activity), while the adaptation logic of
the defined applications must be configured
accordingly (Adaptation logic configuration activity).

3 In open world, the adaptation must be postponed as
much as possible to the Execution phase of
applications (Application interaction activity), when
the environment is known, without any a-priori
definition of adaptive solutions.

Eventually, we specify that the approach is domain-
independent and it can be applied in multiple domains
(e.g., logistic, traveling, entertainment, smart environ-
ments). Notably, in [16] its has been applied in the IoT
domain. Nonetheless, in this article we only focus on a
scenario belonging to the IoS domain.

In the following sections we will deeper illustrate the
models of the approach, in Section 4, and the adaptation
mechanisms and strategies in Section 5.

4 Adaptive service-based applications: modeling
In our approach is central the use of two separate models,
namely the domain model and the domain objects model,
which implement the separation of concerns principle
(adaptation vs. application logic). Keeping the two mod-
els separate allows the operational semantic of services
(i.e., in the domain model), to be detached from the differ-
ent implementations that might be provided by a plethora
of different concrete services (i.e., in the domain objects
model). We start with an overview on the general frame-
work and its models, in Section 4.1. Afterwards we give
formal definitions of the models elements, in Section 4.2.

4.1 The design for adaptation approach
In this section, we describe the models, by also mapping
each element with a corresponding example within the
travel assistant application.

Sanctis et al. Journal of Internet Services and Applications (2020) 11:2 Page 5 of 29

The travel assistant is modeled through a set of domain
objects representing the services provided by the applica-
tion (e.g. Travel Assistant, Journey Manager).
In particular, existing or newly defined services can be
wrapped-up as domain objects. Wrapping a service as a
domain object means shape it in terms of the domain
objects components, which we are going to introduce in
the following. More precisely, the service’s implementa-
tion already exists and is made available, e.g., through
APIs. The wrapping activity consists in modeling the ser-
vice in a uniformway, namely as a domain object, in which
the provided APIs are exploited. As depicted in Fig. 2, each
domain object is characterized by a core process, imple-
menting its own behavior, and a set of process fragments,
representing the functionalities it provides.
Fragments [17, 18] are executable processes that can

be received and executed by other domain objects to
exploit a specific functionality of the provider domain
object. Exposed fragments and the core process commu-
nicate through the execution of input/output activities.
This concerns the fact that fragments act as an inter-
face for the internal behavior of a domain object, thus
they need to interact with the core process to eventually
accomplish the functionalities they model. Both core pro-
cesses and fragments are modeled in Adaptive Pervasive
Flow Language–APFL [19].
Unlike traditional application specifications, where ser-

vices’ behavior are completely specified pre deployment,
our approach allows the partial specification of the
expected operation of domain objects. Indeed, APFL han-
dles the use of abstract activities labeled with goals and
acting as open points enabling the customization and

adaptation of processes (see the white activities with goals
in Fig. 2). These activities are then refined at run-time
according to the fragments offered by the other domain
objects in the application. We illustrate this notion with a
simple example.

Example 2 In Fig. 3 we show a portion of the travel
assistant made by a subset of its services and their poten-
tial dependencies. The Journey Planners Manager
can partially define the functionality allowing the plan-
ning of a journey. Then, different journey planners can
join the application and publish different planning pro-
cedures, covering areas of varying size and boundaries
(i.e., local and global journey planners). Only at run-time,
when the user’s source and destination points are known,
the Journey Planners Manager will discover those
domain objects modeling journey planners, with their frag-
ments, and it will exploit them to refine its abstract activity
and to eventually get the list of available multi-modal
alternatives for the specified input.

An important aspect of the design model that strongly
supports the application’s dynamicity consists in the fact
that abstract activities can be used in the core process of a
domain object as well as in the fragments it provides.
In the first case, the domain object leaves under-

specified some activities, in his own behavior, that are
automatically refined at run-time. The latter case is more
complex, and it enables a higher level of dynamicity, since
it allows a domain object to expose a partially specified
fragment whose execution does not rely only on com-
munications with its core process but also on fragments

Fig. 2 Domain Object Model

Sanctis et al. Journal of Internet Services and Applications (2020) 11:2 Page 6 of 29

Fig. 3 Portion of the travel assistant application

provided by other domain objects, thus enabling a chain
of refinements. This will be shown and discussed in
Section 5.
These dynamic features rely on a set of domain concepts

describing the operational environment of the applica-
tion, on which each domain object has a partial view. In
particular (see Fig. 2), the internal domain knowledge

captures the behavior of the domain concept implemented
by the domain object, while the external domain knowl-
edge represents domain concepts that are required to
accomplish its behavior but for whose implementation it
relies on other domain objects. The domain knowledge
(both internal and external) makes the domain model. It
is defined by domain properties, each giving a high-level

Sanctis et al. Journal of Internet Services and Applications (2020) 11:2 Page 7 of 29

representation of a domain concept (e.g. journey plan-
ning, ride-sharing journey). Domain properties are mod-
eled as State Transition Systems (STS) evolving as an effect
of the execution of service-based applications, or because
of exogenous events in the operational context [20, 21]. At
this point we must clarify that even if in Fig. 2 we show
the domain properties as part of the domain object, which
is actually true, we say that domain properties exist inde-
pendently of the domain objects implementing or relying
on them, if any2. Indeed, they are identified and defined by
domain experts before the application is developed (i.e.,
before domain objects are designed). Each STS is obtained
by analyzing the behavior of those services that will imple-
ment it. For instance, the Ride Sharing STS in Fig. 4
comes from an analysis and an abstraction of the ride
sharing services.
In Fig. 4 we provide some examples of (simplified)

domain properties and we give a domain property’s evo-
lution example in the following.

Example 3 The Travel Assistance domain prop-
erty models the behavior of a travel assistant. First of all,
the journey needs to be planned (JOURNEY PLANNED
state), after that a specific request from the user arrives
(REQUEST RECEIVED state). Then, the user receives
the list of possible alternatives (ALTERNATIVES SENT
state) and she chooses the preferred solution among them
(USER CHOICE RECEIVED state). At this point her plan
can be further refined by considering the transporta-
tion means effectively composing the chosen alternative
(PLAN REFINED state). If required by the involved trans-
portation means, the plan can be also booked (PLAN
BOOKED state), otherwise the user can start her journey
(JOURNEY EXECUTION state) until she reaches her desti-
nation (ASSISTANCE COMPLETE state). During the nor-
mal behavior of the application, a domain property may
evolve as an effect of the execution of a fragment activity
(e.g., if the journey planning activity is successful, the travel
assistant moves in the state JOURNEY PLANNED). Other-
wise, if something unexpected occurs, a domain property
may also evolve as a result of exogenous changes (e.g.,
because of roadworks the bus is not passing).

Eventually, a domain configuration is given by a snap-
shot of the domain at a specific time of the journey,
capturing the current status of all its domain properties.
The link between the domain model and the domain

objects model is given by annotations. Indeed, APFL
gives the possibility to relate the execution of pro-
cesses with the application domain, through the use of
annotations on process activities. Annotations represent

2For simplifying the graphical representation of complex applications made by
different interconnected domain objects, through this article we draw domain
properties as part of domain objects.

domain-related information and they implicitly define a
mapping between the execution of processes and frag-
ments and corresponding changes in the status of domain
properties. Note that, by properly annotating services
(i.e., processes in domain objects) and without chang-
ing the domain properties, it is easy to add new services
implementations (i.e., new domain objects).
Annotations can be of different types. In particular,

each abstract activity is defined in terms of the goal it
needs to achieve, expressed as domain knowledge states
to be reached. Then, the annotated abstract activity is
automatically refined at run time, by considering (1) the
set of fragments currently provided by other domain
objects, (2) the current domain knowledge configuration,
and (3) the goal to be reached. In particular, goals are
defined over the external domain knowledge, since they
refer to functionalities which belongs to domain prop-
erties implemented by other domain objects. They can
be defined as disjunctions of conjunctions over states of
domain properties, as we will see further on. To show how
annotations are defined, in Fig. 5 we report an example
of a fragment modeling the functionality of paying for a
rideshare (Rideshare Payment fragment), as it might
be exposed by a ride-sharing mobility service, such as
BlaBlaCar 3. Moreover, in Fig. 6 we give the (partial) APFL
listing for the same fragment.

Example 4 The activity Pay for rideshare is an
abstract activity, represented with a dotted line, labeled
with the goal G1 that is defined over the Payment
Management domain property (see lines 25-35 in Fig. 6).
Indeed, the BlaBlaCar service does not implement the
online paying, but it relies on external payment services for
the secure payment over internet.

In addition to goal annotations, activities in processes
and fragments are annotated with preconditions and
effects. Preconditions constrain the activity execution to
specific domain knowledge configurations.

Example 5 In Fig. 5, the precondition P1 says that, to
execute the fragment Rideshare Payment, the domain
property RIDE SHARING (see Fig. 4) must be in the
state PICK-UP POINT DEFINED (see lines 10-16 in
Fig. 6). This precondition constrains the execution of the
Rideshare Payment fragment only in those configura-
tions in which the driver and the passenger already defined
the pick-up point.

Effects, instead, model the expected impact of the activ-
ity execution on the domain and represent its evolution in
terms of domain properties events.

3https://www.blablacar.it/

https://www.blablacar.it/

Sanctis et al. Journal of Internet Services and Applications (2020) 11:2 Page 8 of 29

Fig. 4 Domain properties modeled as state transition systems

Example 6 The effect E1 in Fig. 5, models the evolu-
tion of the RIDE SHARING domain property (see Fig. 4).
It is caused by the event PayRideshare, triggered by the
Receive payment ack activity and it brings the prop-
erty in the state RIDESHARE PAYED (see lines 38-40 in
Fig. 6).
Preconditions and effects are used to model how the

execution of fragments is constrained by and evolve the
domain knowledge. This information is used to identify
the fragment (or composition of fragments) that can be
used to refine an abstract activity in a specific domain
knowledge configuration.

Example 7 As shown in Fig. 3, the RIDE SHARING
domain property belongs to the internal domain knowl-
edge of the BlaBlaCar domain object and to the exter-

nal domain knowledge of the Journey Manager. This
property can be used to specify goals of abstract activ-
ities within the Journey Manager (e.g. to handle a
ride-share journey). Similarly, fragments offered by the
BlaBlaCar domain object are annotated with precondi-
tions and effects on the RIDE SHARING domain property.

Potential dependencies (soft dependencies, from here
on) are established between a domain object and all those
domain objects in the application whose modeled domain
concept (internal domain knowledge) matches with one
of its required behaviors (domain property in its external
domain knowledge). Figure 3 shows the soft dependen-
cies (dashed arrows) among some of the domain objects
modeling the travel assistant application. A soft depen-
dency between two domain objects becomes a strong

Fig. 5 Example of an annotated fragment modeling the functionality of paying for a ride-share

Sanctis et al. Journal of Internet Services and Applications (2020) 11:2 Page 9 of 29

Fig. 6 APFL listing of the Rideshare_Payment fragment

dependency if, during the application execution, they
inter-operate by exchanging their fragments and domain
knowledge. In Section 5, which is about the execution
of service-based applications, we present a run-time sce-
nario and we show how soft dependencies become strong
dependencies after the refinement of abstract activities.
Eventually, the resulting adaptive application can be

seen as a dynamic network of interconnected domain
objects which dynamically inter-operate. In particular,
the network is structured as a hierarchy of domain
objects, where the abstract activities refinement mecha-
nism enables a bottom-up approach allowing fragments,
once they are selected for the composition, to climb the

domain objects’ hierarchy to be injected in the running
processes. Notice that the external domain knowledge of a
domain object is not static since, it can be extended during
the execution of domain objects, due to specific opera-
tional cases, as we will better see in Section 5. As regards
the entrance/exit of new domain objects, the approach
explicitly handle the domain by managing the dynamic-
ity of services, which can enter or leave the application at
any moment. This is due to the use of the domain model
that provides an abstract representation of the domain
concepts, which can be concretized by different ser-
vices, each giving their own implementation of a specific
concept.

Sanctis et al. Journal of Internet Services and Applications (2020) 11:2 Page 10 of 29

4.2 Models formalization
In this section, we give formal definitions of the core
elements of our approach. Firstly we define the domain
model in Section 4.2.1 and then we formalize the domain
objects model elements in Section 4.2.2.

4.2.1 Domainmodel
In this section we formalize the domain model through
the definition of the domain property concept as its
founding element.

Definition 1 (Domain Property) A domain property is
a state transition system dp = 〈L, l0,E,T〉, where: L is a set
of states and l0 ∈ L is the initial state; E is a set of events;
and T ⊆ L × E × L is a transition relation.

We denote with L(dp), E(dp), T(dp) the corresponding
elements of dp.
Examples of domain properties are shaped in Fig. 4.

Definition 2 (Domain model) A domain model is a set
of domain properties C = {dp1, dp2, . . . , dpn} with dpi =
〈Li, l0i,Ei,Ti〉 for every 1 ≤ i ≤ n, and such that for every
pair 1 ≤ i, j ≤ n, if i �= j, then Ei ∩ Ej = ∅.
The set of all domain states is defined as LC =

n∏

i=1
Li

and the initial context state is l0C = (l01, l02, . . . , l0n).
The set of all domain events is EC =

n⋃

i=1
Ei. Finally, the

transition relation in the domain model is given as TC
such that for every pair of states (l1, . . . , ln) ∈ LC and
(l′1, . . . , l′n) ∈ LC, and for every event e ∈ EC, if e ∈ Ei then
((l1, . . . , ln), e, (l′1, . . . , l′n)) ∈ TC iff

(li, e, l′i) ∈ Ti, and for everyj �= i we havelj = l′j .

A domain model consists in a set of domain properties.
We assume that two distinct domain properties pi, pj ∈ C
in a domainmodel do not intersect. The states of a domain
model is the product of its domain properties. A state
in a domain model can then be seen as the conjunction
of states of domain properties. The events of a domain
model is the union of the events of its domain proper-
ties. Transitions in a domain model are component-wise:
each transition changes the state of at most one domain
property.
Given a domain model C = {dp1, dp2, . . . , dpn}, it will

be convenient to denote with li = l̄↓dpi the projection of
state l̄ ∈ LC onto the domain property dpi.

4.2.2 Domain objects model
In this section we start by introducing all the elements that
form a domain object, then we show how domain objects
combine to form an adaptive system.

The domain model previously defined is instrumental
in the definitions of internal and external knowledge of
domain objects.
A domain object has an internal domain knowledge.

Definition 3 (Internal Domain Knowledge) An inter-
nal domain knowledge is a domain model DKI = {dpI}
where dpI is a domain property that represents the domain
concept implemented by the domain object.

For instance, let us consider the FLIXBUS domain
object in Fig. 3. Its internal domain knowledge is given
by the singleton containing the BUS JOURNEY domain
property.
A domain object has also an external domain knowl-

edge.

Definition 4 (External Domain Knowledge) An exter-
nal domain knowledge is a domain model DKE =
{dp1, . . . , dpn}, where each dpi, 1 ≤ i ≤ n, are domain
properties that the domain object uses for its operation but
that are not under its own control.

For instance, in the FLIXBUS domain object in Fig. 3, its
external domain knowledge is given by the singleton con-
taining the PAYMENT MANAGEMENT domain property,
since the Flixbus service requires for the online booking
and payment of the tickets, but it does not implements
the payment service. Notice that in general, the external
knowledge can contain more than one domain property.
The external domain knowledge and the internal

domain knowledge are domain models. Hence, they have
a set of states, and set of events, and a transition relation
as specified in Definition 2. For convenience, we denote
LE and EE the set of states and the set of events in the
external domain knowledge.We also denote LI and EI the
set of states and the set of events in the internal domain
knowledge.
Both the internal behavior of a domain object, as well as

the fragments it provides to others, are modeled as pro-
cesses. A process is a state transition system, where each
transition corresponds to a process activity. In particular,
we distinguish four kind of activities: input and output
activities model communications among domain objects;
concrete activities model internal operations; and abstract
activities correspond to abstract tasks to be refined at
run-time. All activities can be annotated with precondi-
tions and effects, while abstract activities are annotated
also with goals. For instance, let consider the example
of fragment shown in Fig. 5: input/output activities are
represented with an entering/outgoing message; abstract
activities are drawn with a dotted line, while concrete
activities are defined by solid lines. We define a process as
follows:

Sanctis et al. Journal of Internet Services and Applications (2020) 11:2 Page 11 of 29

Definition 5 (Process) A process defined over an inter-
nal domain knowledge DKI and an external domain
knowledge DKE is a tuple p = 〈S, S0,A,T ,Ann〉, where:

• S is a set of states and S0 ⊆ S is a set of initial states;
• A = Ain ∪ Aout ∪ Acon ∪ Aabs is a set of activities,

where Ain is a set of input activities, Aout is a set of
output activities, Acon is a set of concrete activities,
and Aabs is a set of abstract activities. Ain, Aout , Acon,
and Aabs are disjoint sets;

• T ⊆ S × A × S is a transition relation;
• Ann = 〈Pre,Eff ,Goal〉 is a process annotation, where

Pre : A → 2LI ∪ 2LE is the precondition labeling
function, Eff : A → 2EI ∪ 2EE is the effect labeling
function, and Goal : Aabs → 2LE is the goal labeling
function.

Wedenote with S(p),A(p), and so on, the corresponding
elements of p.
We say that the precondition of the activity a is satisfied

in the domain knowledge state l̄ ∈ LI ∪ LE , and denote it
with l̄ |= Pre(a), if l̄ ∈ Pre(a). Similarly, we say that the
goal of the activity a is satisfied in l̄ ∈ LI∪LE , and denote it
with l̄ |= Goal(a), if l̄ ∈ Goal(a). Notice that the goal of an
abstract activity specifies a subset of states in the external
domain knowledge. As mentioned earlier, a goal can thus
effectively be seen as a disjunction of conjunctions of states
of domain properties. We say that the effects of activity a
are applicable in the domain knowledge state l̄ ∈ LI ∪ LE ,
if for each event e ∈ Eff (a) there exists a dpi ∈ DK and
l′i ∈ L(dpi) such that (l̄↓dpi , e, l

′
i) ∈ T(dpi).

In particular, in our approach, processes are modeled
as Adaptable Pervasive Flows (APF) that is an exten-
sion of traditional work-flow languages making processes
suitable for adaptation and execution in dynamic environ-
ments.

Definition 6 (Domain Object) A domain object is a
tuple o = 〈DKI ,DKE , p,F〉, where:

• DKI is an internal domain knowledge,
• DKE is an external domain knowledge,
• p is a process, called core process, defined on DKI

and DKE ,
• F = {f1, . . . , fn} is a set of processes, called fragments,

defined on DKI and DKE , where for each fi ∈ F ,
a ∈ Ain(fi) implies a ∈ Aout(p) and a ∈ Aout(fi)
implies a ∈ Ain(p).

The latter constraint on fragments specification con-
cerns the fact that input/output activities in fragments
represent explicit communication with the provider
domain object. Thus fragments, once received by other
domain objects and injected in their own process, start

a peer-to-peer communication with the core process of
the provider, that implements the required functionality.
A graphical representation of a domain object is reported
in Fig. 2.

Definition 7 (Adaptive System) An adaptive system is
modeled as a set of domain objects: AS = {o1, . . . , on}.

Figure 3, for instance, shows a portion of the travel
assistant adaptive system. In it, we say that there is a
soft dependency between objects o1 and o2, denoted with
o1 ��� o2, if o1 requires a functionality that is provided by
o2. A soft dependency is formally defined as follows:

Definition 8 (Soft Dependency) ∀oi, oj ∈ AS with oi �=
oj , oi ��� oj if there exists dpE ∈ DKE(oi) then there exists
dpI ∈ DKI(oj) such that dpE = dpI .

In the next section we introduce the adaptation mech-
anisms and strategies exploited and facilitated by our
design for adaptation approach, as well as the enablers
for the execution and adaptation of service-based applica-
tions.

5 Adaptive service-based applications: execution
In this section, we first provide an overview on the adapta-
tionmechanisms and strategies exploited by our approach
[22], in Section 5.1. In Section 5.2, we give a description
of the enablers of the design for adaptation. For illustra-
tion purpose, we provided a running scenario of the travel
assistant example in Section 5.3. The execution model is
formalized in Section 5.4.

5.1 Adaptation mechanisms and strategies
The adaptationmechanisms and strategies that we employ
implement the dynamic adaptation of fragment-based and
context-aware business processes proposed in [22], which
are in turn based on AI planning [23]. The link between
the approach presented in this article and the approaches
in [22] is the use of the APFL to model processes. It allows
developers to define flexible processes that are particu-
larly suitable for adaptation and execution in dynamic
environments.
The used adaptation mechanisms deal with three types

of adaptation needs. The first, which is the one we mainly
use in our scenario, refers to the need for refining an
abstract activity. This is made by triggering the refine-
ment mechanism whose execution allows the approach
to automatically find and compose available fragments in
the application, on the basis of the goal of the abstract
activity and the current context. As a result, an exe-
cutable process whose execution guarantees to reach the
abstract activity’s goal is provided (details are given in
Section 5.3).

Sanctis et al. Journal of Internet Services and Applications (2020) 11:2 Page 12 of 29

The second is called local adaptation mechanism and
it refers to the violation of the precondition of an activity
that has to be performed. It requires for a solution help-
ing in re-starting a faulted process. For instance, booking
a place in a ride-share is constrained by a precondi-
tion requiring that the user is subscribed to the specific
ride-sharing service.
The last is called compensation mechanism and it

allows designers to avoid the explicit definition of activ-
ities’ compensation procedures, and to dynamically pro-
vide a context-aware compensation process (i.e., when a
travel ticket refund is needed).
Furthermore, the AI planning on which the goal-based

adaptation relies is able to deal with stateful and non-
deterministic services. In addition, the fragments com-
position (i.e., a plan) returned by the AI planner as a
result to an adaptation problem is correct by construc-
tion [23], that is, if a plan is found, it is guaranteed that
its execution allows the application to reach a situation
in which the goal of the adaptation problem is satisfied.
However, dealing with stateful services implies that the
planner might even not find a solution to an adaptation
problem. For these reasons, adaptation strategies have
been designed. Indeed, the mechanisms introduced above
can be further combined into adaptation strategies allow-
ing the application to handle more complex adaptation
needs (e.g., the failure of an abstract activity refinement).
The before-mentioned mechanisms and strategies have
all been implemented in an adaptation engine [24]. This
engine is one of the enablers of our design for adaptation
approach.

5.2 Enablers of the design for adaptation approach
The run-time operation of service-based applications
realized with our approach relies on different execution
and adaptation enablers, shown in Fig. 7.
The Execution Enablers, namely the Domain Objects

Manager and the Process Engine, leverage on the differ-
ent services wrapped up as domain objects and stored in
the application’s knowledge base. The execution enablers
are in charge of executing the domain objects processes
(i.e., core processes and fragments) during the operation
of service-based applications. The Adaptation Enablers,
namely the Refinement Handler, the Adaptation Manager
and the AI planner, instead, leverage on the adaptation
mechanisms and strategies, described in Section 5.1. They
are in charge of managing the adaptation needs of appli-
cations, arising at run-time. Consided as a whole, they
represent the adaptation engine.
To start, it is required that developers select the

available services in a given domain (e.g., mobil-
ity) and wrap-up them as domain objects. These are
stored in the Domain Objects Models repository in
Fig. 7. To understand how the execution and adaptation

enablers interact, we defined a sequence diagram
in Fig. 8.
Domain objects core processes (simply processes from

here on) are executed by the Process Engine. It manages
service requests among processes and, when needed, it
sends requests for domain objects instantiation to the
Domain Objects Manager. A request is sent for each
demanded service whose corresponding process has not
yet been instantiated. The domain objects manager replies
by deploying the requested process on the process engine.
In this way, a correlation between the two processes is
defined.
During the normal execution of processes, abstract

activities can be met. These activities need to be refined
with one or a composition of fragments modeling ser-
vices functionalities. To this aim, the process engine sends
a request for abstract activity refinement to the Refine-
ment Handler component. This component is in charge
of defining the adaptation problem corresponding to the
received request. In particular, the adaptation problem
is represented by: (i) a set of fragments that can poten-
tially be part of the final fragments composition. The
selection is driven by the goal defined by the abstract
activity. (ii) A set of domain properties, and (iii) the adap-
tation goal. The planning domain is then derived from
the adaptation problem by transforming fragments and
domain properties into STS, by applying transformation
rules, such as those presented in [25]. The adaptation goal
is, instead, transformed into a set of configuration of the
planning domain. Then, the refinement handler submits
the adaptation problem to the Adaptation Manager. This
translates the adaptation problem into a planning prob-
lem so that it can be solved by the AI Planner component.
After the plan generation (i.e., made as a STS), the AI plan-
ner sends the plan to the adaptation manager that will
transform it into an executable process. This process can
now be sent to the process engine and injected into the
abstract activity being refined. At this point, depending
on the fragments in the composition, the process engine
can request for the instantiation of one or more domain
objects, whose processes will be deployed. At the end, the
execution of the refinement process can be performed.

5.3 Travel assistant: running scenario
In this section, we show a concrete example on the run-
ning execution of the travel assistant. The focus of this
section is that of showing (i) how domain objects dynam-
ically inter-operate by exchanging and injecting (compo-
sition of) fragments, thus enabling a chain of incremental
refinements (such as that in Fig. 9); (ii) how the refinement
process allows domain objects to span their external knowl-
edge on the domain, by establishing new soft dependency.
The main features of the travel assistant are the follow-

ing: (i) collect the user’s requirements (e.g., source and

Sanctis et al. Journal of Internet Services and Applications (2020) 11:2 Page 13 of 29

Fig. 7 Approach Enablers

destination points, travel preferences, etc) and set up a
journey planning request; (ii) run a local or a global plan-
ning; (iii) identify the transport means in the journey’s
legs of the solution selected by the user. This way, it goes
vertically to find the proper service(s) to use (e.g., the
ones of the specific transport companies), if existing in the
application.
Executing the travel assistant. Our user, Sara, wants to
organize a journey from Trento to Vienna. In Fig. 9, we
report examples of chains of incremental refinements, as
they are dynamically set up and executed after the specific
request of Sara4.
The travel assistant is provided as a mobile application

(modeled by the domain object Travel Assistant
Application in Fig. 3), through which Sara uses it.
The execution starts from the core process of this mobile
app, modeling the user process. Then, a sequence of
three abstract activities (represented with dotted lines and
labeled with a goal) need to be refined (see the top side of
Fig. 9). Here we focus on the first one, Plan Journey,
whose goal models the situation in which Sara ends up
with a specific travel plan. The refinement mechanism
is triggered and the following steps are performed (see
Fig. 9).
Step 1. The fragment PlanJourney provided by the
Travel Assistant is selected for the refinement, and
injected in the behavior of the mobile app core process. It
implements a wider journey planning functionality, allow-
ing for looking for available alternatives and performing a
more detailed planning after that a specific alternative has
been found and selected by the user. To start, it allows Sara
to insert the departure and destination locations.
Step 2. To identify the proper planning mode (local
vs. global), the travel assistant domain object relies
on the Planners Management domain property, as

4We remark that more complex alternatives of our scenario can be modeled
within our approach. In this article we use a trivial but exhaustive example to
highlight the features of the approach. For presentation purposes and without
loss of generality, we report only portions of the processes involved in the
scenario. For each fragment, we specify its name and the domain object which
it belongs to (e.g., fragmentName@domainObjectName).

shown by the abstract activity Travel Assistant
Plan Journey in the PlanJourney fragment in exe-
cution. The Journey Planners Manager domain object
implements the Planners Management domain prop-
erty. Its fragment SelectPlanningMode is selected
for the refinement. This fragment does not implement
any logic. Indeed, its activities Plan Request and
Receive Planning Type model the communication
with its core process, where the request is effectively han-
dled. In particular, the Journey Planners Manager knows
only at runtime if a local or global planning is required. In
our scenario, having Trento and Vienna, the Journey Plan-
ners Manager will reply with a global planning type. This
will drive the execution of its fragment through the Plan
Global Journey abstract activity.
Step 3. At this point, one or more fragments provided by
the available global journey planners existing as domain
objects in the application’s knowledge base can be selected
for the refinement. In our scenario, we suppose that
the Plan Global Journey abstract activity is refined
with the fragment Plan provided by the Rome2Rio5
domain object, a open global planner service. The exe-
cution of this fragment will end up with a list of travel
alternatives, if any.
Step 4. After that the chain of incremental refinements
made by the steps 1, 2 and 3 has been accomplished,
the execution returns to the PlanJourney fragment,
by continuing with the DataViewerPattern abstract
activity. Indeed, an appropriate data visualization pattern
must be selected, based on the data format (e.g., a list, a
message). This is defined at run-time, when the data (and
its format) is known. The Data Viewer domain object pro-
vides the DefineDataViewer Pattern fragment for
this purpose. At this point, Sara can receive and visualize
on her smartphone the list of the found travel alternatives
satisfying her requirements.
Step 5. Sara can now select her preferred alternative (we
suppose that she selects a multi-modal solution made

5https://www.rome2rio.com

https://www.rome2rio.com

Sanctis et al. Journal of Internet Services and Applications (2020) 11:2 Page 14 of 29

Fig. 8 Interaction-flow among the execution and adaptation enablers

by a train and a bus travels). Based on the user choice,
the Define Journey Legs abstract activity is refined
with the HandleJourneyLegs fragment provided by
the Journey Manager domain object. It is able to dynam-
ically define the goal for the Refine Journey abstract
activity, that will be G: TJ = Response Sent AND
BJ = Response Sent, being the selected solutions
made by a train and a bus journeys. The refinement of this
abstract activity will allow the Travel Assistant to look for
and find the proper fragments for each journey leg. Notice
that the Refine Journey activity is a so-called higher
order abstract activity, that we are going to define in the
subsequent paragraph.
Step 6. The last step shows a composition of fragments
provided by the transport companies involved in the legs
of the journey alternative selected by the user (i.e., Sudtirol
Alto Adige and Hello). Their execution provides to Sara
the proper solutions, from the two companies, that com-
bined together satisfy her need of planning a journey from
Trento to Vienna, passing through Bozen.
Higher Order Abstract Activities. In step 5 of the run-
ning example, we have presented the Refine Journey
activity as a Higher Order Abstract Activity (HOAA). This
kind of activity is actually a regular abstract activity and
it is managed as such, with the only difference that its

goal is defined at execution time, within the fragment or
core process it belongs to. For instance, in Fig. 9 – Step
5, we can notice that the Receive Goal for Legs
Specialization activity, is in charge of receiving the
HOAA’s goal and labeling the Refine JourneyHOAA
with it, so that, at the next step, the process engine can
execute it.
HOAAs are used for those abstract activities whose

goal’s specification is fully depending from the run-time
execution environment. Specifying such a goal (i.e., a
composition requirements) at design time, would mean
defining all the possible alternatives that the goal could
assume. But this is exactly what must be avoided. For
this reason, we introduced the HOAA construct allowing
for the dynamic definition of goals when the execution
domain is known.

Example 8 The HandleJourneyLegs fragment
exploited at Step 5 in the running example is exposed
by the Journey Manager domain object. Its main task is
that of relating a specific travel alternative selected by a
user with the proper domain objects able to handle it. It
is easy to notice that a travel solution can be made from
any possible combination of transport means. This implies
that the goal of the Refine Journey HOAA, if defined

Sanctis et al. Journal of Internet Services and Applications (2020) 11:2 Page 15 of 29

Fig. 9 A detailed example of the travel assistant execution through incremental and dynamic refinements

at design time, should model any possible configuration
to cover all the corresponding combination of transport
means. To the contrary, the Journey Manager implements
the logic to dynamically relate a combination of transport
means (e.g., train and bus as in our example) with the
right goal to be associated with the HOAA handling it
(e.g., the goal G: TJ = Response Sent AND BJ

= Response Sent in Fig. 9), which is dynamically
generated.

5.3.1 Dynamic knowledge extension
An important feature of our approach is represented by
the ability of domain objects to span their knowledge on
the whole application domain.

Sanctis et al. Journal of Internet Services and Applications (2020) 11:2 Page 16 of 29

The dynamic extension of the knowledge concerns with
the external domain knowledge and it is triggered by the
execution of the abstract activity refinement mechanism.
In particular, it takes place every time that a domain object
injects in its own core process one or more fragments
containing abstract activities. Indeed, since abstract activ-
ities are labeled with a goal, the receiving domain object
receives, together with the fragments, also those domain
properties on which fragments execution rely on. These
domain properties will extend the external domain knowl-
edge.
For instance, in Fig. 10 we depicted the evolution

of the external domain knowledge in the Travel
Assistant Application domain object, after the
execution of step 1 and step 2 of Fig. 9. Both steps,
indeed, are characterized by the injection of fragments,
namely PlanJourney and SelectPlanningMode,
equipped with abstract activities, whose goals (i.e.,
G4, G7, G8 – see table in Fig. 9) rely on domain
properties which are automatically inherited by the
Travel Assistant Application domain object.
More specifically, the Planning Management, Local
Planning and Global Planning properties are
received.
This dinamicity is now reflected in the soft depen-

dencies of the Travel Assistant Application because new
dependencies are established. In particular, it will estab-
lish new dependencies with all the domain objects in the
application implementing the three just inherited domain
properties.
We can notice how the dynamic knowledge extension

allows domain objects to dynamically discover new ser-
vices that they can, in turn, exploit for the refinement
of inherited abstract activities. It is easy to note that the
refinement at the step 3 in Fig. 9 would not have been
possible without the dynamic extension of the knowledge
because, in its design time version, the Travel Assistant
Application did not have the Global Planning knowl-
edge required to do it. Lastly, we want to highlight that
if new global planners enter the application, the Travel
Assistant Application will be able to know and exploit

them in its further execution, thanks to the establishment
of new soft dependencies.

5.4 Execution model formalization
The following definition captures the current status of the
execution of a given core process. The process instance is
a hierarchical structure, obtained through the refinement
of abstract activities into fragments. A process instance
is hence modeled as a list of tuples process-activity: the
first element in the list describes the fragment currently
under execution and the current activity; the other tuples
describe the hierarchy of ancestor fragments, each one
with abstract activities currently under execution. The last
element in the list is the process model from which the
running instance has been created. A process instance is
defined as follows:

Definition 9 (Process Instance) We define a process
instance Ip of a process p as a non-empty list of tuples
Ip = (p1, a1), (p2, a2), . . . , (pn, an), where:

• each pi is a process and pn = p;
• ai ∈ A(pi) are activities in the corresponding

processes, with ai ∈ Aabs(pi) for i ≥ 2 (i.e., all
activities that are refined are abstract).

An example of process instance is given by the process
of the Travel Assistant Application domain object, shown
in Fig. 9, where we reported an example of its execution.
A domain object instance, instead, is specified as follows.

Definition 10 (Domain Object Instance) A domain
object instance δ of a domain object o = 〈DKI ,DKE , p,F〉
is a tuple δ = 〈DKI ,DKE+ , l̄I , l̄E+ , Ip〉 where:

• DKE+ ⊇ DKE , is the current set of domain
properties in the external domain knowledge;

• l̄I ∈ LDKI and l̄E+ ∈ LDKE+ are the current state of
the domain properties in the internal and external
domain knowledge;

• Ip is its process instance.

Fig. 10 Example of the dynamic extension of a domain object’s knowledge

Sanctis et al. Journal of Internet Services and Applications (2020) 11:2 Page 17 of 29

Notice that DKE+ = DKE when the domain object is
instantiated. Then, DKE+ might grow during the domain
object execution; this mechanism is formally defined later
on.
We define now an adaptive system instance.

Definition 11 (Adaptive System Instance) An adap-
tive system instance ASI of an adaptive system AS =
{o1, . . . , on} is a set of domain object instances ASI = {δij}
where each δij is an instance of domain object oi.

For instance, if we consider the running scenario
depicted in Fig. 9 of the travel assistant system, we can say
that the adaptive system instance, for that specific execu-
tion, is made by instances of the Travel Assistant
Application, Travel Assistant, Journey
Planners Manager, Journey Manager, Data
Viewer, Rome2Rio, Train and Bus domain objects.
We will now formally define the execution model of

domain objects. In the following a refinement need is
formalized.

Definition 12 (Refinement need) A refinement need is
a tuple η = 〈ASI , δ, a〉 where:

• ASI is an adaptive system instance;
• δ ∈ ASI is the domain object instance for which the

refinement is needed;
• a is the abstract activity of δ to be refined.

For instance, considering the process whose refinement
is shown in Fig. 9, the domain object instance for which
the refinement is needed is an instance of the Travel Assis-
tant Application, while the abstract activity to be refined
is the Plan Journey activity.
A refinement is defined as follows.

Definition 13 (Refinement) A refinement for a refine-
ment need η = 〈ASI , δ, a〉, denoted with REF(η), is a tuple
〈pη,DKη, l̄η〉 where:

• pη is the process to be injected;
• DKη is the set of domain properties to be added to

the external domain knowledge;
• for each a ∈ Aabs(pη), Goal(a) ⊆ 2LDKη ;
• l̄η ∈ LDKη is the current state of the domain

properties.

The last two items of the previous definition
require that, in case the refinement process contains
abstract activities, the domain knowledge needed for
their refinement is part of the refinement solution.
Indeed, this is how the domain knowledge extension is
performed.

We will now characterize a correct solution for a refine-
ment need η. Intuitively, a refinement 〈p,DK, l̄〉 is a cor-
rect solution to a refinement need η = 〈ASI , δ, a〉, if the
execution of p brings the external domain knowledge of
object δ in a state that satisfies the goal of a. Notice that
p, being a composition of fragments provided by other
domain objects, might contain abstract activities that will
be refined later on, when the refinement is executed. Our
definition of correct refinement is based on the assump-
tion that abstract activities, once refined, will behave as
declared in their specification (preconditions and effects
on their activities). That is, we treat them as all other
activities in the process, assuming that their behavior is
correctly specified through their annotations in terms of
preconditions and effects.
In the following we give the definitions of action exe-

cutability, action impact, and abstract run of a process.
These definitions are the basis for the formal characteri-
zation of a correct refinement.

Definition 14 (Action Executability) An action a of a
process p is executable from domain knowledge state l̄ ∈
LDK , denoted with Executable(a, l̄), if l̄ |= Pre(a) and the
effects of action a are applicable in domain knowledge state
l̄.

In other words, an action is executable from a given
domain knowledge state if, in that state, its precondition
is verified and its effects can be applied.

Definition 15 (Action Impact) The impact of action a
belonging to some process p when executed from domain
knowledge state l̄ ∈ LDK , denoted with Impact(a, l̄), is a
domain configuration l̄′ ∈ LDK such that for every dpi =
〈Li, l0i,Ei,Ti〉 ∈ DK, if exists an e ∈ Eff (a) such that(
l̄↓dpi , e, l

′
i

)
∈ Ti then l̄′↓dpi = l′i, otherwise l̄′↓dpi = l̄↓dpi .

The action impact is given by the domain configuration
in which the domain knowledge of the domain object that
is executing the activity evolves.

Definition 16 (Abstract Process Run) Given a process
p = 〈S, S0,A,T ,Ann〉 and a domain knowledge state l̄ ∈
LDK , π = (s1, a1, s2, . . . , an−1, sn) is an abstract run of p
from l̄ if:

• s1 ∈ S0 and ∀i,∈[1, n] : si ∈ S;
• ∀i ∈[1, n − 1] : ai ∈ A and (si, ai, si+1) ∈ T ;
• there exists a domain knowledge evolution of DK,

πDK = (l̄1, l̄2, . . . , l̄n) such that:

– l̄1 = l̄;
– Impact(ai, l̄i) = l̄i+1 for all i ∈[1, n − 1];
– Executable(ai, l̄i) for all i ∈[1, n − 1].

Sanctis et al. Journal of Internet Services and Applications (2020) 11:2 Page 18 of 29

Aprocess run that terminates in a state with no outgoing
transitions (final state) is called a complete run.We denote
with �ABS(p, l̄) the set of all possible complete abstract
runs of process p from domain knowledge state l̄ ∈ LDK .
We can now define a correct refinement.

Definition 17 (Correct Refinement) Given a refinement
need η = 〈ASI , δ, a〉, with δ = 〈DKI ,DKE+ , l̄I , l̄E+ , Ip〉,
we say that a refinement 〈pη,DKη, l̄η〉 is a correct solu-
tion for η, if for each complete abstract run π ∈
�ABS(pη, l̄E+), its associated domain knowledge evolution
πDK = (l̄1, l̄2, . . . , l̄n) is such that l̄n |= Goal(a).

Intuitively, a refinement is a correct solution for a refine-
ment need if all its complete abstract runs satisfy the goal
of the abstract activity to be refined.
As regards the execution of an adaptive system instance,

intuitively, it evolves in three different ways. First, through
the execution of activities in domain object instances,
which will be presented in detail in the following. Second,
through the interaction among domain object instances,
which happens according to the standard rules of peer-
to-peer process communication. Third, through a change
in the behavior, or entrance / exit, of domain objects and
domain object instances into the system.
In the following we formalize the execution model of a

domain object, considering also the injection of a refine-
ment solution in the case in which an abstract activity is
executed.

Definition 18 (Action Execution) Given a domain
object instance δ = 〈DKI ,DKE+ , l̄I , l̄E+ , Ip〉, with δ ∈ ASI
and Ip = (p1, a1), (p2, a2), . . . ,
(pn, an), the execution of action a1, denoted with
exec(δ,ASI), evolves δ to 〈DKI ,DK′

E+ , l̄′I , l̄′E+ , Ip〉, where:

• if a1 ∈ Ain(p1) ∪ Aout(p1) ∪ Acon(p1) then

– DK
′
E+ = DKE+ ;

– l̄′I = Impact(a, l̄I) and l̄′E+ = Impact(a, l̄E+);
– if next(p1, a1) �= ∅ then

I ′p = (p1, next(p1, a1)), (p2, a2), . . . , (pn, an),
otherwise I ′p = (p2, next(p2, a2)), . . . , (pn, an).

• if a1 ∈ Aabs(p1), given 〈pη,DKη, l̄η〉 = REF(η), with
η = 〈ASI , δ〉, then

– DK
′
E+ = DKE+ ∪ DKη;

– l̄′E+ ∈ LDK ′
E+ is such that for every

dpi = 〈Li, l0i,Ei,Ti〉 ∈ DK
′
E+ , if dpi ∈ DKη

then l̄′E+↓dpi = l̄η↓dpi , otherwise
l̄′E+↓dpi = l̄E+↓dpi ;

– I ′p = (pη, a0η)(p1, a1), (p2, a2), . . . , (pn, an).

Eventually, we previously said as a soft dependency
among two domain objects becomes a strong dependency,
denoted with δih←δjk , if the domain object δih injects in
its internal process a fragment provided by δjk . This is
formally defined as follows:

Definition 19 (StrongDependency) ∀δih, δjk ∈ ASI with
i �= j and h �= k, δih←δjk if ∃(f , a) ∈ Ip(δih)|f ∈ F(oj).

In the next section, we show how the refinement prob-
lem previously presented can be solved by applying the
automated fragment composition approach based on AI
planning [22].

5.4.1 Automated refinement via AI planning
Within the approach presented in [23] and summarized in
Section 7, we said that a fragment composition problem
is transformed into a planning problem. Relevantly to our
purposes, such techniques cover uncertainty, in order to
allow the composition of services whose dynamics is only
partially exposed, and is able to deal with complex goals
and data flow [25].
In the following we briefly describe how a refinement

need η = 〈ASI , δ, a〉, with δ = 〈DKI ,DKE+ , l̄I , l̄E+ , Ip〉 is
transformed into an AI planning problem. In other words,
we say how the approach in [23] is adjusted and used in
our framework.
First of all, a set of n fragments, (f1, . . . , fn), is selected

from the soft dependencies of δ: for some δ′ ∈ ASI , with
δ ��� δ′, fi ∈ F(δ′).
Advanced optimization techniques, as the one

described in [26], can be used to further reduce the
set of fragments on the basis of the functionalities they
provide and of the preconditions satisfiability of their
preconditions in current domain knowledge state. Both
fragments (f1, . . . , fn) and the set of domain properties
(dp1, . . . , dpm) ∈ DK

+
E , on which the fragments are anno-

tated, are transformed into state transition systems (STS)
using transformation rules similar to those presented in
[23]. During this encoding, all goals on abstract activities
in fragments are ignored, while preconditions and effects
are maintained. With this measure, the refinement plan
will be built under the assumption that abstract activities
will behave according to their annotation, indepen-
dently from the way in which they will be refined (see
Definition 17).
The planning domain � is obtained as the product of

the STSs �f1 . . .�fn and �dp1 . . .�dpm , where STSs of
fragments and domain properties are synchronized on
preconditions and effects, � = �f1‖ . . . ‖�fn ‖ �dp1‖
. . . ‖�dpm . The initial state of the planning domain is
derived from the initial state of all fragments and the cur-
rent state of the domain properties l̄E+ , by interpreting
it as states of the STSs defining the planning domain.

Sanctis et al. Journal of Internet Services and Applications (2020) 11:2 Page 19 of 29

Similarly, the refinement goal Goal(a) is transformed into
a planning goal ρ by interpreting the states in DKE+ as
states in the planning domain.
Finally, the approach of [23] is applied to domain �

and planning goal ρ to generate a plan �η that guaran-
tees achieving goal ρ once executed on system �. State
transition system �η can be further translated into an
executable process pη, which implements the identified
solution.

6 Prototype implementation and validation
This section is devoted to the architecture of the design for
adaptation approach, and the implementation and evalu-
ation of an application on top of it, namely ATLAS, which
implements the travel assistant scenario. The aim of this
section is to demonstrate the feasibility of the approach
for realizing adaptive applications.

6.1 Design for adaptation architecture
From a technical perspective, the architecture is organized
in three main layers, as shown in Fig. 11.
The Enablers leverage on our results on the design

for adaptation approach, described in Section 4. Devel-
opers can exploit and wrap up as domain objects the
available services in the target domain. Besides the design
of services, execution and adaptation enablers allow also
for their run-time operation, as described in Section 5.2.
Moreover, to deal with IoT domains, or more generally
with IoT things, the IoT Platform Services has been added,
together with theThings States repository. The former can
relate to any cloud platform providing IoT services (e.g.,
Amazon AWS-IoT platform6) enabling the management
and interaction with things. The Process Engine can send
instructions to things through the IoT Platform Services
component (e.g., when executing activities including calls
to things API). The Domain Objects Manager is respon-
sible for answering queries about available IoT things
and their capabilities. The latter, stores knowledge about
things operational states.
The Provided Services layer exposes the functional-

ities implemented by the Enablers. These services can
exploit and/or combine into value-added services (e.g., a
travel assistant in the mobility domain) the services pre-
viously wrapped up and made available by the Enablers.
The key idea is that the architecture is open to continuous
extensions with new services, wrapped as domain objects,
whose functionalities can be exploited in a transparent
way to provide value-added services to the end-users.
All the provided services can be eventually delivered to

final users through a range of multi-channels front-end
applications that constitute the Front-end layer. These
can be mobile or desktop applications, and they can also

6https://aws.amazon.com/iot/

rely on existing services, such as chat-bots (e.g., Telegram
chat-bot).

6.2 Case study: ATLAS, a smart travel assistant
In this section, we introduce ATLAS – a world-wide per-
sonAlized TraveL AssiStant [27]. ATLAS consists both in
(i) a demonstrator showing the application’s models and
its execution and evolution through automatic run-time
adaptation, and (ii) a Telegram chat-bot, for the inter-
action with the users. The demonstrator is based on a
process-engine for the execution of automated and adapt-
able processes. Before implementing ATLAS, we looked
for a process engine suitable for the integration into our
design for adaptation framework, as for instance extensi-
ble with abstract activities. We come out with a subset of
eligible process engines, namely jBPM 7, Camunda 8 and
Activiti 9. However, none of them are thought for dealing
with (i) the decentralized management of processes and (ii)
the correlation among different processes that are funda-
mental in our framework. As a consequence, we decided
to realize from scratch a process engine implementing
the features required by our framework. Essentially, it
is a conventional process engine, extended with some
adaptation-related constructs. It handles the multiple-
instance processes management, the dynamic correlation
among processes and the abstract activity management.
The demonstrator also implements the enablers. In this
article we focus on the chat-bot10.
We clarify here that the implementation effort for devel-

oping ATLAS consist only in the modeling of the involved
domain objects and in the realization of the dedicated
Telegram chat-bot. The enablers shown in Fig. 11 are part
of the design for adaptation framework and are reusable
in the implementation of any other application different
than ATLAS.
To realize a world-wide travel assistant we selected real-

world mobility services exposed as open APIs. We identi-
fied their behavior, functionalities and their input and out-
put data. Then, we wrapped them up as domain objects
and stored them in the knowledge base. For instance,
we wrapped Rome2Rio and Google Transit11 as global
journey planners. To overcome the limitations of global
planners in terms of accuracy, we wrapped local planners
too, such as ViaggiaTrento12. It can be exploited for those
journey located in the city of Trento, which can also be
part of a wider inter-modal travel solution provided by a
global planner, but for which the global planner does not

7https://www.jbpm.org/
8https://camunda.org/
9https://www.activiti.org/
10To see the travel assistant in action (both demonstrator and chat-bot), or
simply inspect its full specification, one can freely download ATLAS at:
https://bit.ly/2V2JNy8
11http://www.google.com/transit
12http://www.smartcommunitylab.it/apps/viaggia-trento/

https://aws.amazon.com/iot/
https://www.jbpm.org/
https://camunda.org/
https://www.activiti.org/
https://bit.ly/2V2JNy8
http://www.google.com/transit
http://www.smartcommunitylab.it/apps/viaggia-trento/

Sanctis et al. Journal of Internet Services and Applications (2020) 11:2 Page 20 of 29

Fig. 11 Domain Object-based Architecture

give enough or accurate information. Combining the geo-
graphical coverage of global planners with the accuracy of
local planners is a concrete example of services interop-
erability promoted by our approach. Other open mobility
services we considered are Travel for London 13 as planner
for the city of London, BlaBlaCar as ride sharing service,
CityBikes14 as bike sharing service applying to about 400
cities, to give a few examples.We emphasize that the more
(mobility) services are wrapped up and stored in the appli-
cation’s knowledge base, themore responsive and accurate
the travel assistant will be.
At the Provided Services level we defined the Travel

Assistant. It has been realized as a value-added service
leveraging on the services available in the application’s
knowledge base. Its main features have been described in
Section 5.3.
Finally, among the multi-channel front-ends that can

be exploited, we realized ATLAS as a Telegram chat-
bot, exploiting the open API provided by Telegram. The
same travel assistant might be furnished via a different
front-end, too.
Hereafter, we show how ATLAS runs in the Telegram

chat-bot interface. The chain of incremental refinements

13https://api.tfl.gov.uk/
14https://www.citybik.es/

that is dynamically set up from the execution of the
following scenarios, is similar to that given in Fig. 9.
Local journey organization use case. Sara lives in
Trento, Italy, and she wants to find her way to reach the
Christmas markets located in Piazza Fiera. Her departure
place is in via Fogazzaro. In Fig. 12, we show the rele-
vant screenshots of the ATLAS chat-bot running on her
smartphone.
Sara enters her departure and destination points (see the

screenshot on the left side in Fig. 12). Being both places
in the same city, Trento, a local planning would be more
appropriate. Thus, the Viaggia Trento journey planner is
dynamically selected. The journey planner’s response is
further handled and parsed to be showed on the chat-bot.
The result is shown to Sara as in the central screenshot in
Fig. 12. Since she opted for a healthy solution, the Viaggia
Trento journey planner replies with a bike-sharing service,
whose racks are close to both her source and destination
places. At this point, to know if there are available bikes
to be used, the travel assistant continues with its execu-
tion and it identifies the bike-sharing service available in
Trento, namely e-motion15. It selects its fragment whose
execution allows the application to get information about
the available bikes at the closest bike-sharing racks. The
result is shown as in the right-side screenshot in Fig. 12.

15http://www.provincia.tn.it/bikesharing

https://api.tfl.gov.uk/
https://www.citybik.es/
http://www.provincia.tn.it/bikesharing

Sanctis et al. Journal of Internet Services and Applications (2020) 11:2 Page 21 of 29

Three bikes up to 11 are still available at the rack close to
Sara (first element in the result list). The e-motion bike-
sharing service does not allow for the booking of bikes, so
that the execution of ATLAS stops here.
Global journey organization use case. Paolo must orga-
nize his working journey from Trento to Torino. The rele-
vant screenshots for his journey are reported in Fig. 13.
In this case, the travel assistant opts for a global planning

solution served by the Rome2Rio global journey planner.
The found travel alternatives are shown to Paolo as in
the central screenshot in Fig. 13. Different alternatives are
available (e.g., rideshare, bus, train, etc). Paolo selects the
rideshare solution, which is also the less expensive. It is
provided by the BlaBlaCar ride-sharing service. Further
details about the selected solution are shown to Paolo, as
in the right-side screenshot in Fig. 13. We highlight here
that, to continue with the booking of the ride-share solu-
tion, it is required that he is subscribed to the BlaBlaCar
service.
These execution examples exhibit two important

aspects of our approach. Firstly, they show its bottom-up
nature, where mobility services functionalities go through
the domain objects hierarchy (refer to Fig. 3) till the user
process where they are executed. Secondly, this happens
in a completely transparent way for the user that interacts
with only one application.
6.2.1 ATLAS evaluation
To evaluate ATLAS, both in terms of effectiveness and
efficiency, we have run a set of experiments. The tests

are done on real-world problem that were generated by
randomly choosing an origin and a destination points.
The specification of ATLAS used to evaluate it con-
tains 14 domain object models, 17 fragment models and
12 types of domain properties. We ran ATLAS using a
dual-core CPU running at 2.7 GHz, with 8 Gb mem-
ory. To show its feasibility, we evaluate the following
aspects: (i) how long it takes to wrap up real services as
domain objects; (ii) how much automatic refinement (ser-
vice selection and composition) affects the execution of
the travel assistant.
To answer to the first point, and based on our expe-

rience acquired during the development of ATLAS, we
can argue the following. To wrap a real service as a
domain object, the developer needs (i) to master the
domain objects modeling notation and (ii) to understand
the service behavior, its functionalities, its input/output
data format and how to query it. Wrapping time clearly
changes between experienced and non-expert developers.
From our analysis, it ranges from 4 to 6 hours, con-
sidering average complex services. Moreover, it is also
relevant to claim that this activity is done una tantum:
after its wrapping, the service is seamlessly part of the
approach and exploited for automatic composition and
refinement.
To answer to the second point, we collected both the

adaptation and mobility services execution statistics, to
understand how long they take, on average, to be exe-
cuted. To evaluate the automatic refinement, we carried

Fig. 12 Screenshots of the ATLAS chat-bot – Local Journey Organization

Sanctis et al. Journal of Internet Services and Applications (2020) 11:2 Page 22 of 29

Fig. 13 Screenshots of the ATLAS chat-bot – Global Journey Organization

out an experiment in which we considered 10 runs of
ATLAS handling various end-users’ requests. We col-
lected adaptation data such as the number of adaptation
cases, their complexity and the time required to gener-
ate adaptation solutions. For each run, more than 150
refinement cases were generated. Figure 14 shows the
distribution of problem complexity considering the 10
runs.
The complexity of an adaptation problem is calculated

as the total amount of transitions in the state transi-
tion systems representations of the domain properties and
fragments present in the problem. For simplicity, in the
graph we aggregated the problem complexities in ranges
of 20. The majority of the problems have a complexity in-
between 0 and 19 transitions and 40 and 59 transitions.
Notice that the occurrence of complex problems (com-
plexity ranging from 80 to 100 transitions) is relatively rare
(in this real-world battery of tests). Figure 15 shows the
percentage of refinement problems solved within a certain
time. We can see that, for all the runs, 93% of problems
are solved within 0.2 s. Only 3% of the problems require
more than 0.5 s to be solved, and the worst case is anyhow
below 1.5 s.
To measure how much automatic refinement influences

the execution of ATLAS, we compared the data about the
time required for adaptation with the response time of
real-world services wrapped in ATLAS. Figure 16 relates
the (average) time required to solve a composition prob-
lem to the problem complexity.

The average time is computed considering in the 10 runs
all the refinement problems having the same complexity.
As expected, problems with higher number of transi-
tions (and hence the most complex planning domain) take
more planning time than problem with less complexity.
Figure 17, instead, relates to the (average) response time
of (a subset of) real mobility services, which are part of
ATLAS.
We can notice that, in the worst case, the adaptation

requires a time close to 1.5 seconds, while the services

0−19 20−39 40−59 60−79 80−100

Problem complexity (total transitions number).

N
um

be
r

of
 p

ro
bl

em
s

0
20

40
60

80

Fig. 14 Distribution of Problems Complexity

Sanctis et al. Journal of Internet Services and Applications (2020) 11:2 Page 23 of 29

0.2 0.5 0.9 1.2 1.5

Refinement time t (seconds)

P
er

ce
nt

ag
e

90
92

94
96

98
10

0
10

2

93 %

97 %

99 % 99 %

100 %

Fig. 15 Percentage of problems solved within time t

response time ranges from 0.23 to 3.20 seconds. More-
over, the adaptation takes more time for the most com-
plex problems that, however, are the less frequent to be
executed. We can argue that the automatic refinement
responsiveness is equivalent to that of mobility services.
Eventually, extended experimental results have been

obtained in [16] where the presented approach has
been used to realize an application in the IoT domain,
where devices (e.g., sensors and actuators) act as service
providers. To analyze the scalability of the approach, we
measured the overall execution time of the application
by considering up to 100 devices. Figure 18 shows the
execution times (expressed in seconds) when varying the
number of device instances. We found that the execution
time values vary within a narrow interval, i.e., from 1.96 to
2.10 seconds.
In conclusion, these results demonstrate the effective-

ness and the efficiency of our approach when applied to a
real-world complex scenario.

20 40 60 80

0.
0

0.
5

1.
0

1.
5

Problem Complexity (total transitions number)

T
im

e
in

 s
ec

on
ds

Fig. 16 Trend of the Adaptation Time

Fig. 17 (Average) Services Execution Time

7 Lifecycle of the design for adaptation of
service-based applications

In this section, we illustrate the overall lifecycle that we
envisage for modeling and executing adaptive service-
based applications, as depicted in Fig. 19. It gives a
complete overview of the different perspectives of the
approach (i.e., modelling, adaptation, interaction), the
potentially involved actors (i.e., platform provider, ser-
vice providers, end-users) and an abstraction of the main
activities and artifacts.
In the following, each subsection is devoted to a par-

ticular perspective of the overall lifecycle (i.e., a row in
Fig. 19). For each perspective, we also highlight the view
of the different involved actors (i.e., a column in Fig. 19).

7.1 The modeling perspective
From a modeling perspective, each actor has a different
view on the models of the application and is differently
involved in its development and/or operation.
Platform provider view. The Platform Provider, with

his team, is in charge to realize, maintain and provide to
third parties a comprehensive platform allowing them to
build and execute adaptive service-based applications on
top of it. The design of the foundations for realizing adap-
tive service-based applications is made by the two models
we have introduced in Section 4, namely the Domain
model and the Domain Objects model. Given a specific
domain (e.g., mobility), the domain model is specified by

Fig. 18 Scalability of the approach

Sanctis et al. Journal of Internet Services and Applications (2020) 11:2 Page 24 of 29

Fig. 19 Overall design for adaptation process

domain experts and it describes the operational environ-
ment of the application (see Domain Analysis activity and
Domain Specification document in Fig. 19).
Furthermore, another important contribution from

domain experts is an accurate analysis of the available ser-
vices that are part of the targeted domain (see Real Service
Analysis activity in Fig. 19). As outcome of the analysis,
the domain experts release a high level description of the
features, behavior, usage and offered functionalities of the
analyzed services (see Services Specification document in
Fig. 19).
The domain model and the services analysis consti-

tute the input for the activity of defining the domain
object model, accomplished by the application’s developers
(see Real Services Wrapping as Domain Objects activity in
Fig. 19). In other words, developers wrap-up the services
identified by domain experts as the concrete implemen-
tations of the abstract concepts in the domain model.
This allows us also to overcome the typical mismatch
among services’ interfaces. The domain model and the
domain objects models contribute to enrich the applica-
tion knowledge base where they are stored (see Domain
Objects and Domain Model artifact in Fig. 19).
We highlight that the activity of wrapping services

as domain objects (or defining new ones) is not exe-
cuted only once, and certainly not only during the initial
design of an application. To the contrary, it is a contin-
uous running activity, due to the continuous discovery
and availability of new services (see the loop arrows on
the Real Services Analysis and Domain Analysis activi-
ties in Fig. 19). Moreover, this activity can be performed

as a collective co-development process [28], in a crowd-
sourcing style [29], where each developer contributes to
add new interesting services, thus enriching the applica-
tion knowledge base. For these reasons we say that our
approach supports the continuous development of service-
based adaptive applications.
Service providers view. The role played by service

providers is that of using and exploiting the tools, the
engines and the models provided by the platform, in order
to define, develop and execute their own service-based
applications on top of it, such as ATLAS. This can be done
by selecting and customizing the already available domain
objects (see Domain Objects Selection, Customization &
Modeling activity in Fig. 19) and by defining new value-
added services as domain objects (see Value-added Ser-
vices artifact in Fig. 19), together with the corresponding
new domain concepts they implement. Also the domain
objects defined by service providers can be stored in the
application knowledge base and made available to the
outside. This way they contribute to the continuous devel-
opment of adaptive by design services and corresponding
applications. Moreover, service providers can decide to
develop and release their newly defined applications (see
Service-based Application artifact in Fig. 19), by using
whatever technologies.
End-users view. End-users are the final beneficiaries of

the deployed service-based applications. Different appli-
cation instances will be instantiated for different users (see
Application Instances artifact in Fig. 19) and each instance
will be characterized by its own network of domain
objects instances, dynamically raised from the execution of

Sanctis et al. Journal of Internet Services and Applications (2020) 11:2 Page 25 of 29

adaptable process. The domain objects network is made
by instances of the domain objects corresponding to the
services effectively exploited by the user.

7.2 The adaptation perspective
In this section we describe the adaptation perspective
in the lifecycle of our approach, as depicted in Fig. 19–
adaptation layer.
Platform provider view. The platform provider must

supply all the tools and enablers (see Adaptation Tools
artifact in Fig. 19) allowing the platform users (i.e., service
providers) to define adaptive applications on top of it, as
well as applications to effectively perform the adaptation,
when executed. In other words, the adaptation mecha-
nisms and strategies used by the platform (see Adaptation
Mechanisms and Strategies Definition activity in Fig. 19)
must be exposed in such a way that external users can
benefit from and exploit them.
The platform provider must also provide to the plat-

form’s users a way to use the available adaptation tools,
allowing them to understand and exploit the adaptation
techniques, when defining their applications on top of
the platform. In conclusion, other adaptation approaches
can be exploited, as an alternative or in addition to the
AI-based planning approach.
Service providers view. Different service providers can

exploit the platform for defining their own applications
or new value-added services. They have just to configure
the adaptation mechanisms provided by the platform (see
Adaptation Mechanisms & Strategies Configuration activ-
ity in Fig. 19). As a result, service providers will be able to
release adaptive service-based applications (see Adaptive
Service-based Applications artefact in Fig. 19) that can be
customized and executed on top on the platform.
End-users view. The end-users use the available adap-

tive applications. They effectively enact the adaptation
techniques (see Adaptation Enactment activity in Fig. 19).
Indeed, adapted application instances (see Fig. 19) are
dynamically created, customized and run over their
requirements, based on their applications usage. This hap-
pens thanks to the adaptation mechanisms (e.g., local
and refinement). Once the specific user execution envi-
ronment is known, appropriate services can be selected,
composed and exploited to satisfy the different user’s
goals.

7.3 The interaction perspective
From the operation and usage perspective of the appli-
cation, each actor differently interacts with it (see the
interaction level in Fig. 19).
Platform provider view. The platform provider,

together with his team, is in charge of realizing the plat-
form and its enablers, and then using it to realize and
provide different adaptive service-based applications or

simply adaptive services. In order to allow external ser-
vice providers to exploit these applications through the
platform, the platform provider should make available
all the tools, the modeling environment and languages,
the access to the different engines running in the plat-
form, through an access console (see the Platform Console
component in Fig. 19).
Service providers view. The service providers play a

double role. From one side, they act as platform users.
Indeed, they use the platform (i.e., its tools, enablers,
engines, services) as a third-party service, or a PaaS (i.e.,
a platform as a service). To this aim, service providers
access to and interact with the platform (see the Back-
end Applications Services & Tools component in Fig. 19).
From another side, service providers can decide to release
their value-added services as applications. To this aim
and from an interaction point of view, they can decide
about the technologies to use for developing their applica-
tions (e.g., mobile apps, web applications) and also define
the corresponding user interfaces (see the Multi-channel
Application Front-end component in Fig. 19). While for
the back-end of their applications service providers exploit
the platform, for the front-end they are independent from
the platform and its console.
End-users view. The end-users, finally, are not aware

of the platform itself and exploit it in a completely trans-
parent way. End-users just interact with the available
applications through their interfaces, also using differ-
ent devices, such as their smartphones, laptop, tablet and
so on, depending on the specific technologies through
which the service providers released their applications
(see the Multi-channel Application Instances component
in Fig. 19).

8 Related work
Many modern software systems are increasingly required
to offer continuous services [30, 31]. Traditional software
maintenance supports software evolution by providing
updates that are applied off-line: the system is shut down,
updated, and restarted. This solution, however, is not
applicable when the system management must be carried
out at runtime.
This need has motivated two parallel and independent

approaches. Software engineers have started conceiving
self-adaptive software systems [32, 33] that is, systems
able to exploit internal capabilities to diagnose problems
or changes in the context, and react accordingly. The
advent of virtualized computing resources has also fos-
tered DevOps [34] principles that suggest the idea of con-
tinuous evolution and release through the strict collab-
oration between development and operations. However,
both solutions intrinsically embed someweaknesses. Con-
ceiving a purely self-adaptive system means that any pos-
sible problem or change should be foreseen beforehand;

Sanctis et al. Journal of Internet Services and Applications (2020) 11:2 Page 26 of 29

otherwise the system would not be able to react. While
self-adaptation may be extremely effective at solving spe-
cific problems, widening their scope can be problematic.
The analysis required to foresee potential issues may be
expensive, and not always feasible. In contrast, focusing on
rapidly changing implementations and on their automated
deployment imposes continuous changes, even when they
are not required, and can have severe consequences on the
quality of released software.
Self-adaptation refers to the ability of a system to

autonomously adapt at runtime, based on adaptation
models, to maintain its non-functional requirements, by
reacting to changes in the context it operates in [32, 33].
However, the increased interdependencies between soft-
ware components and the complexity of execution con-
texts make the task of fully defining a priori adaptation
need and solutions more difficult.
A variety of runtime adaptation approaches have been

proposed in the literature. Within Dynamic Software
Product Lines (DSPL) [11], the notion of software fam-
ilies, used to refer to common and reusable software
assets [35, 36] is combined with predefined feature mod-
els that specify alternative variations that can be used
for adaptation. These solutions have also been combined
with aspect-oriented modelling methods for expressing
self-adaptive systems at design time by separating imple-
mentation concerns [37, 38] and enable both design and
runtime adaptations tomeet new requirements [38]. Rule-
based approaches have also been proposed [39–41] for
defining adaptations. Cutting points in software models
are identified at design time and rules are used to capture
adaptations in terms of actions to take at different cutting
points.
Context-oriented programming [42] has also been sug-

gested as a paradigm for programming adaptable systems.
In this case, adaptation relies on a pool of code vari-
ants chosen according to predefined program’s context.
Many languages have been extended (e.g., Lisp, Python,
Ruby, Java) to integrate the notion of code fragments
(e.g., methods or functions) that can be specialized with
respect to each possible context. Adaptations have also
been defined as (rule-based) mechanisms that allow the
system to pass from one implementation logic, expressed
in terms of behavior models, to another [39]. Similar
solutions have been proposed for Mode Automata [43],
Featured Transition Systems [44], and Labelled Transition
System [45, 46] models. More recently, Artificial Intelli-
gence planning frameworks have also been proposed [26,
47] in combination with state transition models of sys-
tem behaviors, to address software adaptation in terms
of a classical planning problem. In our approach, we also
make use of AI planning to realize automated service
compositions. Similarly, in [48] the authors automatically
realize choreography-based service-oriented systems, by

exploiting the CHOReVOLUTION approach [49]. In par-
ticular, the work proposed in [48] represents the con-
crete implementation of a real case study in the mobil-
ity domain employing the CHOReVOLUTION synthesis
process that allows for realizing dynamic choreographies
via distributed coordination of services. In the context
of this work, we can not but argue about microservices
and the microservices architectural style [8]. Most exist-
ing work on microservices focus on general architectural
principles and migration guidelines [10, 50, 51]. Very rare
works propose self-adaptation solutions in this context;
Sampaio et al. [52] propose and approach to optimize
microservice-based applications at runtime.
All the above mentioned approaches for adaptation

rely on the underlying assumption of close world context
and system. Consequently, adaptations can be pre-defined
(e.g., rules-based models for adaptations are developed
at design time) and any dynamic change in the software
system components and/or functionality would require
developers’ intervention. Most approaches also provide
methods where the implementation and adaptation logic
are not clearly separated. This makes the systems’ design
much more complex and the runtime adaptation execu-
tion less flexible in managing dynamic context changes.
Our approach aims at providing the following contribu-

tions in the area of self-adaptive software systems:

• Definition of models and programming
paradigms for the development of software
systems that are adaptable “by design”, whereby
runtime adaptations is not just an exception handling
mechanism but an intrinsic characteristic of the
system.

• Development of adaptation mechanisms and
strategies for identifying the best runtime
adaptations, without modifying the implementation
logic to make software systems resilient to changes
whilst preserving their qualities.

9 Critical discussion
We hereby discuss a set of limitations.
Data-driven composition requirements. Currently, com-

position requirements are expressed in terms of goals on
abstract activities. In particular, they reflect functional
properties of services allowing the definition of control-
flow composition requirements. As a future work, we plan
to define an extension of the domain properties such that
to consider data variables related to context states.
Monitoring of unexpected events. It may happen that

the execution of service-based applications is affected by
unexpected events coming from the context that should
be handled. These events are not devised by domain
experts at design time, they are triggered by the opera-
tional context. In the current version of our approach, we

Sanctis et al. Journal of Internet Services and Applications (2020) 11:2 Page 27 of 29

do not deal with themonitoring of context events. This lim-
itation can be overcome by extending our approach with
existing approaches [20] dealing with the monitoring of
evolving contexts.
Further adaptation mechanisms and strategies imple-

mentation.We highlight that while the Adaptation Engine
implements all the adaptation mechanisms and strate-
gies reported in Section 5.1, in the implementation of our
design for adaptation approach we currently handle the
refinement mechanism. As future work we plan to extend
the approach to the management of the other mecha-
nisms and strategies. However, overcoming this limitation
requires more for an implementation effort that for an
extension of the approach, which already includes all the
required constructs to handle the local and compensa-
tion adaptation mechanisms (e.g., preconditions, effects,
goals).
Users involvement and flexible adaptations. When exe-

cuting ATLAS, we can notice that the selection of the
proper services is transparent to the user. From one hand,
the service selection is indirectly affected by the user pref-
erences. Obviously, it can also happen that there are no
solutions satisfying the user’s preferences, or the provided
service composition represents an undesired outcome for
the user. However, this strictly relates to the availability
of services in the application, too. On the other hand,
the indirect involvement of users in the service selection
and composition tasks can be seen as a limitation of the
approach. Nevertheless, it can be overcome in different
ways. For instance, by considering all the different adap-
tation solutions that might satisfy a specific adaptation
need, if more than one solution are available, and involve
the user in the selection of the preferred one.
QoS-driven service selection and composition. Although

the fragments discovery and selection is currently func-
tional, the presented approach has been recently extended
to include a QoS-driven service selection and composi-
tion [53]. Promising results have been obtained in the IoT
scenario of [16].

9.1 Threats to validity
A threat to the internal validity of our approach is rep-
resented by the Process Engine, which currently operates
in a centralized manner. Obviously, and this is part of
our future work directions, it should evolve to better deal
with the execution of applications running in distributed
environments.
A threat to the external validity is that the pre-

sented results have been obtained on a set of case
studies modeled by us, with the support of a develop-
ers group, comprising also experts in both the mobil-
ity and IoT domains. To increase the representativeness
of the input models (i.e., domain model and domain
object model) to our approach, further domain experts

and software architects should be involved in a wider
experimentation.
A second threat to the external validity consists in the

fact that each service (or thing) needs to be wrapped-up
as domain object for being available in the application.
However, we plan to extend the approach to support the
automated wrapping of services/things as domain objects,
thus also enabling the definition of new goal types at
runtime.

10 Conclusion and future work
The design for adaptation approach presented in this arti-
cle is a proposal to solve the current open issues related
to the modeling and execution of adaptive service-based
applications. Its aim is to provide a complete solution for
services management and exploitation, while considering
the evolving nature of the environments in which they
operate. Thanks to this general approach, we can facili-
tate services integration and interoperability, via service-
based adaptive applications, thus better exploiting their
functionalities and meeting users needs. By applying our
approach, a novel ecosystem of customizable services
that are easily personalized in different contexts can be
designed, deployed, adapted and made available to the
interested stakeholders. Indeed, it offers a lightweight-
model, with respect to the existing languages for service
modeling and adaptation, and it can be implemented with
every object-oriented languages.
As already anticipated, different tasks represent our

future work agenda, that are: (i) studying the usability of
our approach by exposing the defined models and tools
to users with different levels of experience; (ii) experi-
menting the approach on real applications coming from
industrial experiences; and (iii) introducing automation in
the initial activity of the design for adaptation process,
by devising a technique to wrap-up services/things into
domain objects.

Abbreviations
IoS: Internet of services; IoT: Internet of things; IoP: Internet of people; APFL:
Adaptive pervasive flow language; STS: State transition systems; AI: Artificial
intelligence; HOAA: Higher order abstract activity; ATLAS: A world-wide
personAlized TraveL AssiStant; DSPL: Dynamic software product lines

Acknowledgments
Not applicable.

Authors’ contributions
This manuscript is a contribution that originates from the doctoral thesis of
M.D.S. All the authors contributed to the definition of the design for
adaptation model for adaptive service-based applications. M.D.S. and A.B.
carried out the implementation of the framework and of the travel assistant
described in the case study. M.D.S. and A.B. wrote the manuscript with input
from all authors. All authors read and approved the final manuscript.

Funding
Not applicable.

Availability of data andmaterials
The implementation of the ATLAS travel assistant framework is available at
https://github.com/das-fbk/ATLAS-Personalized-Travel-Assistant. A

https://github.com/das-fbk/ATLAS-Personalized-Travel-Assistant

Sanctis et al. Journal of Internet Services and Applications (2020) 11:2 Page 28 of 29

supporting video illustrating the main features and its live demonstration can
be found at: https://vimeo.com/357367106.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Gran Sasso Science Institute, Computer Science department, Viale Francesco
Crispi, 67100 L’Aquila, Italy. 2Fondazione Bruno Kessler, Via Sommarive, 18,
38123 Trento, Italy.

Received: 15 October 2019 Accepted: 13 March 2020

References
1. Pallis G. Cloud computing: The new frontier of internet computing. IEEE

Internet Comput. 2010;14(5):70–73.
2. Moreno-Vozmediano R, Montero RS, Llorente IM. Key challenges in

cloud computing: Enabling the future internet of services. IEEE Internet
Comput. 2013;17(4):18–25.

3. Commission E. Next Generation Internet initiative. 2016. https://ec.
europa.eu/digital-single-market/en/policies/next-generation-internet.
Accessed 19 Mar 2020.

4. Group C-ETPX-E. Future Internet Strategic Research Agenda, Ver. 1.1.
2010. https://ec.europa.eu/programmes/horizon2020/en/h2020-section/
future-internet. Accessed 19 Mar 2020.

5. Bouguettaya A, Singh MP, Huhns MN, Sheng QZ, Dong H, Yu Q, Neiat
AG, Mistry S, Benatallah B, Medjahed B, Ouzzani M, Casati F, Liu X,
Wang H, Georgakopoulos D, Chen L, Nepal S, Malik Z, Erradi A, Wang Y,
Blake MB, Dustdar S, Leymann F, Papazoglou MP. A service computing
manifesto: the next 10 years. Commun ACM. 2017;60(4):64–72.

6. Baresi L, Nitto ED, Ghezzi C. Toward open-world software: Issue and
challenges. IEEE Comput. 2006;39(10):36–43.

7. Issarny V, Georgantas N, Hachem S, Zarras AV, Vassiliadis P, Autili M,
Gerosa MA, Hamida AB. Service-oriented middleware for the future
internet: state of the art and research directions. J Internet Serv Appl.
2011;2(1):23–45.

8. Lewis J, Fowler M. Microservices in a Nutshell. 2014. https://www.
thoughtworks.com/insights/blog/microservices-nutshell. Accessed 19
Mar 2020.

9. Newman S. Building Microservices – Designing Fine-Grained Systems:
O’Reilly Media; 2015. Accessed 19 Mar 2020.

10. Taibi D, Lenarduzzi V, Pahl C. Continuous architecting with microservices
and devops: A systematic mapping study. In: Cloud Computing and
Services Science - 8th International Conference, CLOSER 2018, Revised
Selected Papers. Springer; 2018. p. 126–51.

11. Hinchey M, Park S, Schmid K. Building dynamic software product lines.
IEEE Comput. 2012;45(10):22–26.

12. Bucchiarone A, De Sanctis M, Marconi A, Pistore M, Traverso P. Design
for adaptation of distributed service-based systems. In: Service-Oriented
Computing - 13th International Conference, ICSOC 2015, Proceedings;
2015. p. 383–93. https://doi.org/10.1007/978-3-662-48616-0_27.

13. Bucchiarone A, De Sanctis M, Marconi A, Pistore M, Traverso P.
Incremental composition for adaptive by-design service based systems.
In: IEEE International Conference on Web Services, ICWS 2016; 2016. p.
236–43. https://doi.org/10.1109/icws.2016.38.

14. Marchau V, Walker W, van Duin R. An adaptive approach to implementing
innovative urban transport solutions. Transp Policy. 2008;15(6):405–12.

15. Bucchiarone A, Cappiello C, Nitto ED, Kazhamiakin R, Mazza V, Pistore
M. Design for adaptation of service-based applications: Main issues and
requirements. In: Service-Oriented Computing. ICSOC/ServiceWave 2009
Workshops - International Workshops, ICSOC/ServiceWave 2009, Revised
Selected Papers; 2009. p. 467–76. https://doi.org/10.1007/978-3-642-
16132-2_44.

16. Alkhabbas F, De Sanctis M, Spalazzese R, Bucchiarone A, Davidsson P,
Marconi A. Enacting emergent configurations in the iot through domain
objects. In: Service-Oriented Computing - 16th International Conference,
ICSOC, Proceedings; 2018. p. 279–94. https://doi.org/10.1007/978-3-030-
03596-9_19.

17. Eberle H, Unger T, Leymann F. Process fragments. In: On the Move to
Meaningful Internet Systems: OTM 2009, Confederated International
Conferences, CoopIS, DOA, IS, and ODBASE 2009, Vilamoura, Portugal,
November 1-6, 2009, Proceedings, Part I. Springer; 2009. p. 398–405.

18. Sirbu A, Marconi A, Pistore M, Eberle H, Leymann F, Unger T. Dynamic
composition of pervasive process fragments. In: IEEE International
Conference on Web Services, ICWS 2011, Washington, DC, USA, July 4-9,
2011; 2011. p. 73–80. https://doi.org/10.1109/icws.2011.70.

19. Bucchiarone A, Lluch-Lafuente A, Marconi A, Pistore M. A formalisation
of adaptable pervasive flows. In: Web Services and Formal Methods, 6th
International Workshop, WS-FM, Revised Selected Papers; 2009. p. 61–75.
https://doi.org/10.1007/978-3-642-14458-5_4.

20. Saralaya S, D’Souza R. A review of monitoring techniques for service
based applications. In: 2nd International Conference on Advanced
Computing, Networking and Security, Mangalore, India, December 15-17;
2013. p. 96–101. https://doi.org/10.1109/adcons.2013.18.

21. Guermah H, Fissaa T, Hafiddi H, Nassar M, Kriouile A. Context modeling
and reasoning for building context aware services. In: ACS International
Conference on Computer Systems and Applications, AICCSA 2013; 2013.
p. 1–7. https://doi.org/10.1109/aiccsa.2013.6616439.

22. Bucchiarone A, Marconi A, Pistore M, Raik H. A context-aware framework
for dynamic composition of process fragments in the internet of services.
J Internet Serv Appl. 2017;8(1):6–1623.

23. Bertoli P, Pistore M, Traverso P. Automated composition of web services
via planning in asynchronous domains. Artif Intell. 2010;174(3-4):316–61.

24. Raik H, Bucchiarone A, Khurshid N, Marconi A, Pistore M. Astro-captevo:
Dynamic context-aware adaptation for service-based systems. In: Eighth
IEEE World Congress on Services, SERVICES 2012, Honolulu, HI, USA, June
24-29, 2012; 2012. p. 385–92. https://doi.org/10.1109/services.2012.14.

25. Marconi A, Pistore M, Traverso P. Automated composition of web
services: the ASTRO approach. IEEE Data Eng Bull. 2008;31(3):23–26.

26. Bucchiarone A, Marconi A, Mezzina CA, Pistore M, Raik H. On-the-fly
adaptation of dynamic service-based systems: Incrementality, reduction
and reuse. In: Service-Oriented Computing - 11th International
Conference, ICSOC, Proceedings; 2013. p. 146–61. https://doi.org/10.
1007/978-3-642-45005-1_11.

27. Bucchiarone A, De Sanctis M, Marconi A. ATLAS: A world-wide travel
assistant exploiting service-based adaptive technologies. In:
Service-Oriented Computing - 15th International Conference, ICSOC
2017, Proceedings; 2017. p. 561–70. https://doi.org/10.1007/978-3-319-
69035-3_41.

28. Deck M, Strom M. Model of co-development emerges. Res-Technol
Manag. 2002;45(3):47–53.

29. Estellés-Arolas E, González-Ladrón-de-Guevara F. Towards an integrated
crowdsourcing definition. J Inf Sci. 2012;38(2):189–200.

30. Shahin M, Babar MA, Zhu L. Continuous integration, delivery and
deployment: A systematic review on approaches, tools, challenges and
practices. IEEE Access. 2017;5:3909–43.

31. Chen L. Microservices: Architecting for continuous delivery and devops.
In: IEEE International Conference on Software Architecture, ICSA 2018;
2018. p. 39–46. https://doi.org/10.1109/icsa.2018.00013.

32. In: Cheng BHC, de Lemos R, Giese H, Inverardi P, Magee J, editors.
Software Engineering for Self-Adaptive Systems [outcome of a Dagstuhl
Seminar]. Lecture Notes in Computer Science, vol. 5525: Springer; 2009.

33. de Lemos R, Giese H, Müller HA, Shaw M, (eds). Software Engineering for
Self-Adaptive Systems, 24.10. - 29.10.2010. Dagstuhl Seminar
Proceedings, vol. 10431. Germany: Schloss Dagstuhl - Leibniz-Zentrum für
Informatik; 2010.

34. Bass L, Weber I, Zhu L. DevOps: A Software Architect’s Perspective:
Addison-Wesley; 2015.

35. Cubo J, Gámez N, Fuentes L, Pimentel E. Composition and
self-adaptation of service-based systems with feature models. In: Safe and
Secure Software Reuse - 13th International Conference on Software
Reuse, ICSR 2013, Proceedings; 2013. p. 326–42. https://doi.org/10.1007/
978-3-642-38977-1_25.

https://vimeo.com/357367106
https://ec.europa.eu/digital-single-market/en/policies/next-generation-internet
https://ec.europa.eu/digital-single-market/en/policies/next-generation-internet
https://ec.europa.eu/programmes/horizon2020/en/h2020-section/future-internet
https://ec.europa.eu/programmes/horizon2020/en/h2020-section/future-internet
https://www.thoughtworks.com/insights/blog/microservices-nutshell
https://www.thoughtworks.com/insights/blog/microservices-nutshell
https://doi.org/10.1007/978-3-662-48616-0_27
https://doi.org/10.1109/icws.2016.38
https://doi.org/10.1007/978-3-642-16132-2_44
https://doi.org/10.1007/978-3-642-16132-2_44
https://doi.org/10.1007/978-3-030-03596-9_19
https://doi.org/10.1007/978-3-030-03596-9_19
https://doi.org/10.1109/icws.2011.70
https://doi.org/10.1007/978-3-642-14458-5_4
https://doi.org/10.1109/adcons.2013.18
https://doi.org/10.1109/aiccsa.2013.6616439
https://doi.org/10.1109/services.2012.14
https://doi.org/10.1007/978-3-642-45005-1_11
https://doi.org/10.1007/978-3-642-45005-1_11
https://doi.org/10.1007/978-3-319-69035-3_41
https://doi.org/10.1007/978-3-319-69035-3_41
https://doi.org/10.1109/icsa.2018.00013
https://doi.org/10.1007/978-3-642-38977-1_25
https://doi.org/10.1007/978-3-642-38977-1_25

Sanctis et al. Journal of Internet Services and Applications (2020) 11:2 Page 29 of 29

36. Murguzur A, Trujillo S, Truong HL, Dustdar S, Ortiz Ó,., Sagardui G.
Run-time variability for context-aware smart workflows. IEEE Softw.
2015;32(3):52–60.

37. Popovici A, Alonso G, Gross TR. Just-in-time aspects: efficient dynamic
weaving for java. In: AOSD; 2003. https://doi.org/10.1145/643603.643614.

38. Parra C, Romero D, Mosser S, Rouvoy R, Duchien L, Seinturier L. Using
constraint-based optimization and variability to support continuous
self-adaptation. In: Proceedings of the ACM Symposium on Applied
Computing, SAC 2012; 2012. p. 486–91. https://doi.org/10.1145/2245276.
2245370.

39. Ehrig H, Ermel C, Runge O, Bucchiarone A, Pelliccione P. Formal analysis
and verification of self-healing systems. In: Fundamental Approaches to
Software Engineering, 13th International Conference, FASE 2010, Held as
Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2010, Proceedings; 2010. p. 139–53. https://doi.org/10.
1007/978-3-642-12029-9_10.

40. Yu J, Sheng QZ, Swee JKY. Model-driven development of adaptive
service-based systems with aspects and rules. In: Web Information
Systems Engineering - WISE 2010 - 11th International Conference, Hong
Kong, China, December 12-14, 2010. Proceedings; 2010. p. 548–63.
https://doi.org/10.1007/978-3-642-17616-6_48.

41. Hussein M, Han J, Yu J, Colman A. Enabling runtime evolution of
context-aware adaptive services. In: 2013 IEEE International Conference
on Services Computing; 2013. p. 248–55. https://doi.org/10.1109/scc.
2013.77.

42. Hirschfeld R, Costanza P, Nierstrasz O. Context-oriented programming. J
Object Technol. 2008;7(3):125–51.

43. Maraninchi F, Rémond Y. Mode-automata: About modes and states for
reactive systems. In: Programming Languages and Systems - ESOP’98, 7th
European Symposium on Programming, Held as Part of the European
Joint Conferences on the Theory and Practice of Software, ETAPS’98,
Proceedings; 1998. p. 185–99. https://doi.org/10.1007/bfb0053571.

44. Cordy M, Classen A, Heymans P, Legay A, Schobbens P. Model checking
adaptive software with featured transition systems. In: Assurances for
Self-Adaptive Systems - Principles, Models, and Techniques; 2013. p.
1–29. https://doi.org/10.1007/978-3-642-36249-1_1.

45. Schaefer I, Poetzsch-Heffter A. Using abstraction in modular verification
of synchronous adaptive systems. In: Workshop “Trustworthy Software”
2006, May 18-19, 2006, Saarland University, Saarbrücken, Germany.
Germany: Internationales Begegnungs- und Forschungszentrum fuer
Informatik (IBFI), Schloss Dagstuhl; 2006.

46. Zhang J, Cheng BHC. Using temporal logic to specify adaptive program
semantics. J Syst Softw. 2006;79(10):1361–9.

47. Marrella A. Automated planning for business process management. J
Data Semant. 2019;8(2):79–98.

48. Autili M, Salle AD, Gallo F, Pompilio C, Tivoli M. A choreography-based
and collaborative road mobility system for l’aquila city. Futur Internet.
2019;11(6):132.

49. Autili M, Salle AD, Gallo F, Pompilio C, Tivoli M. Chorevolution:
Automating the realization of highly-collaborative distributed
applications. In: Coordination Models and Languages - 21st IFIP WG 6.1
International Conference, COORDINATION 2019, Proceedings; 2019. p.
92–108. https://doi.org/10.1007/978-3-030-22397-7_6.

50. Bucchiarone A, Dragoni N, Dustdar S, Larsen ST, Mazzara M. From
monolithic to microservices: An experience report from the banking
domain. IEEE Softw. 2018;35(3):50–55.

51. Francesco PD, Lago P, Malavolta I. Architecting with microservices: A
systematic mapping study. Journal of Systems and Software. 2019;150:
77–97.

52. Sampaio AR, Rubin J, Beschastnikh I, Rosa NS. Improving
microservice-based applications with runtime placement adaptation. J
Internet Serv Appl. 2019;10(1):4–1430.

53. De Sanctis M, Spalazzese R, Trubiani C. Qos-based formation of software
architectures in the internet of things. In: Software Architecture - 13th
European Conference, ECSA 2019, Proceedings; 2019. p. 178–94.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1145/643603.643614
https://doi.org/10.1145/2245276.2245370
https://doi.org/10.1145/2245276.2245370
https://doi.org/10.1007/978-3-642-12029-9_10
https://doi.org/10.1007/978-3-642-12029-9_10
https://doi.org/10.1007/978-3-642-17616-6_48
https://doi.org/10.1109/scc.2013.77
https://doi.org/10.1109/scc.2013.77
https://doi.org/10.1007/bfb0053571
https://doi.org/10.1007/978-3-642-36249-1_1
https://doi.org/10.1007/978-3-030-22397-7_6

	Abstract
	Keywords

	Introduction
	Motivating scenario and research challenges
	Travel assistant scenario
	Research challenges

	Overview of the approach
	Adaptive service-based applications: modeling
	The design for adaptation approach
	Models formalization
	Domain model
	Domain objects model

	Adaptive service-based applications: execution
	Adaptation mechanisms and strategies
	Enablers of the design for adaptation approach
	Travel assistant: running scenario
	Dynamic knowledge extension

	Execution model formalization
	Automated refinement via AI planning

	Prototype implementation and validation
	Design for adaptation architecture
	Case study: ATLAS, a smart travel assistant
	ATLAS evaluation

	Lifecycle of the design for adaptation of service-based applications
	The modeling perspective
	The adaptation perspective
	The interaction perspective

	Related work
	Critical discussion
	Threats to validity

	Conclusion and future work
	Abbreviations
	Acknowledgments
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher's Note

