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Abstract—An easy-to-implement electron mobility model that
accurately predicts low-field mobility in the channel of bulk
MOSFETs and UTB-SOI FETs fabricated on different crystal
orientations is developed. The model accounts for the influence of
surface orientation and in-plane current-flow direction on effective
masses, subband repopulation, and scattering rates. The paper is
divided into two parts. In Part I, the general features of the model
are presented, taking into account phonon, Coulomb, and surface
roughness scattering. Band and repopulation effects are addressed
based on the solution of the Schrödinger–Poisson equations. The
effects of interface states and ultrathin body are treated in Part II.

Index Terms—Crystal orientation, mobility model, SOI
MOSFETs, ultrathin silicon.

I. INTRODUCTION

THE AGGRESSIVE downscaling of CMOS devices is
reaching intrinsic limitations and needs new technological

solutions. Ultrathin body (UTB) devices with either planar or
vertical architectures such as single-gate silicon-on-insulator
(SG-SOI) FETs, double-gate (DG) FETs, FinFETs, and sili-
con nanowires (SNW) are the most promising candidates for
fabricating sub-50-nm devices [1]. The study of the device
performance requires the development of predictive physical
models for carrier transport. For this purpose, both mobility
models [2] and enhanced drift-diffusion models, which account
for quasi-ballistic transport, have been proposed [3]. To further
improve the device performance for future technology nodes,
attention is being given to the carrier mobility, which has been
proven to play an important role on device performance even
for ultrashort gate lengths [4], [5].

Several techniques to optimize carrier mobility in UTB FETs
such as strain [6] and suitable surface orientations [7] are still
under investigation. Furthermore, structures such as rectangular
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SNW, FinFETs, or Tri-gate FETs usually exhibit sidewall trans-
port on the (110) crystallographic planes [8]–[11]. Thus, a deep
comprehension of the physical details related with the different
crystallographic orientations is required.

In order to scale UTB FETs down to the ultimate technology
nodes, the silicon body needs to be thinned below 5 nm to
suppress short-channel effects, thus raising a concern on device
variability and transport limitations. It has been experimentally
demonstrated that electron mobility is a sensitive function of
the silicon-body thickness, especially when tSi is below 5 nm
[12]–[17].

The carrier mobility of single-gate (SG) and double-gate
(DG) UTB MOSFETs has been extensively investigated, and a
TCAD model has been proposed [2]. However, a TCAD model
for UTB MOSFETs with unconventional surface and current-
flow orientations is missing, and to the author’s knowledge,
only experimental investigations can be found.

The aim of this work is to derive a physically based mobility
model for device simulation tools that accurately predicts the
low-field electron mobility in SG and DG FETs with different
surface and channel orientations and silicon thicknesses as
small as 2.5 nm. The mobility model presented in [2] has been
modified to account for different crystallographic orientations.

The paper is divided into two parts. In Part I, a general
description of the model is provided and its validation against
experiments is illustrated. Starting from a mobility formulation
for bulk MOSFETs as a function of the effective transverse
field, doping density, and surface and channel orientations [18],
a number of improvements have been added to reproduce the
experiments taken on (100), (110)/〈100〉 and (110)/〈110〉 SG
and DG FETs, with a silicon body thicker than 10 nm. In Part II,
important corrections for ultrathin body (thinner than 10 nm)
are considered.

The paper is organized as follows. In Section II, the general-
ized mobility model is discussed. The effective inversion-layer
thickness model for unconventional surface orientations and
ultrathin body is described in Section III, along with the phonon
scattering model. Coulomb and surface-roughness scattering
models for unconventional surface orientations are treated in
Section IV. An accurate analytical description of the energy
subbands, which includes nonparabolicity effects, is reported
in Section V. Finally, conclusions are drawn in Section VI.
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Fig. 1. (a) Orientation of the reference axes. (b) In-plane minima projections
for (100), (110), and (111) surface orientations. The equivalent minima are la-
beled with the same number. The most relevant in-plane current flow directions
are also indicated.

II. GENERALIZED MOBILITY MODEL

Consider a silicon film on a substrate with one of the three
crystallographic orientations shown in Fig. 1(b). The z-axis
is set parallel to the structural confinement direction while
carrier transport occurs along the x-axis, as shown in Fig. 1(a).
The inversion-layer quantization, due to the combined effect of
structural confinement and application of a transverse electric
field, causes the formation of energy ladders. More specifically,
(100)-oriented FETs exhibit two energy ladders: the lower one,
referred to as “unprimed,” is two-fold degenerate and originates
from the valleys labeled “3,” while the upper one, referred to as
“primed,” is four-fold degenerate and is related with valleys “1”
and “2.” In (110) substrates, the “unprimed” ladder is related to
valleys “1” and “2” while the primed one is related to the “3”
valleys. Finally, a single six-fold degenerate ladder is formed
along the (111) orientation.

In order to calculate the effective masses along the quantiza-
tion (mz), the transport (mx), and the width (my) directions
for each valley in an arbitrary-oriented device, the generalized
effective mass approach by [11] is followed. Starting from the
ellipsoidal coordinate system (ECS), it is possible to determine
the effective mass tensor in the device coordinate system (DCS)
through the appropriate rotation of the ECS, followed by a
rediagonalization process. Two different channel directions are
analyzed for (110)-oriented samples, namely the 〈100〉 and
〈110〉 (see Fig. 1). The effective masses corresponding to the
analyzed cases are reported in Table I.

The quantization leads to unequal relative populations of the
different valley pairs. Therefore, in-plane transport is generally
described by a 2-D tensorial effective mobility, which retains
the anisotropy of the single-valley effective mobilities

μ̂eff =
3∑

v=1

pvμ̂v (1)

where μ̂v and pv are the mobility tensor and relative popula-
tion of the vth valley, respectively. A similar formulation is

already available in 3-D drift-diffusion transport simulation
tools, which handle bulk piezoresistivity and in general, ma-
terial anysotropy (see, e.g., [19] and [20]). Such tools can also
be directly used in this case since the out-of-plane (normal to
the interface) mobility component plays no role and provided
that the in-plane effective mobility model (1) is implemented.
Unfortunately, this approach is unpopular in commercial TCAD
tools because the effective-mobility dependence on integral
(non-local) electron concentration and electric field may lead to
numerical problems. As an alternative, a local mobility tensor μ̂
that depends on the local normal electric field E⊥(z) and carrier
concentration n(z) can be defined, satisfying the following
equation:

μ̂eff =

tSi∫
o

(n(z) − n0(z)) μ̂(n,E⊥) dz

tSi∫
o

(n(z) − n0(z)) dz

(2)

where n(z) − n0(z) is the excess electron concentration in the
inversion layer. It should be noted that experiments measure
only the xx component of the mobility tensor.

We follow a two-step procedure in the model development.
In the first step, we define an analytical model for the effective
mobility (1) as a function of the effective electric field Eeff and
the inversion-charge concentration per unit area, calibrating the
parameters on the experiments. Eeff is calculated as

Eeff =

tSi∫
o

(n(z) − n0(z)) E⊥(z) dz

tSi∫
o

(n(z) − n0(z)) dz

. (3)

In the second step, a local mobility model, which depends
on E⊥(z) and n(z), is provided as described in Section V of
Part II.

The relative populations are calculated by assuming
Boltzmann statistics as

pv =
mdv

exp(−ECv
/kBT )∑3

v=1 mdv
exp(−ECv

/kBT )
(4)

where mdv
= √

mxv
myv

is the density-of-states effective mass
of the 2DEG in the vth valley, ECv

is the valley bottom energy,
kB is the Boltzmann constant, and T is the lattice temperature.
In Section V, it will be shown that the subband bottom energies
are calculated analytically, accurately reproducing the solution
of the Schrödinger–Poisson problem in the cross section normal
to the transport direction. Following [21], the single-valley
mobility tensor is modeled as

μ̂v = μvm̂−1
v , m̂−1

v =
(

m0/mxv
0

0 m0/myv

)
(5)

where m0 is the free-electron mass and m̂−1
v is the inverse

scaled mass tensor of a 2DEG, defined for each valley v to
account for the anisotropy effects induced by different in-plane
crystal directions. This is especially needed when considering



SILVESTRI et al.: MOBILITY MODEL FOR BULK, ULTRATHIN BODY SOI AND DOUBLE-GATE n-MOSFETs 1569

TABLE I
PRINCIPAL EFFECTIVE MASSES FOR A 2DEG IN (100)-, (110)-, AND (111)-ORIENTED SAMPLES (ml = 0.916 m0 AND mt = 0.19 m0)

the unprimed 4-fold valleys in (110) samples. Finally, μv is
calculated accounting for the different scattering mechanisms
combined via Matthiessen’s rule

μv =
q

m0

∑
j τ−1

vj

. (6)

In (6), q is the elementary charge and τvj
is the average

momentum relaxation time (MRT) due to the jth scattering
mechanism for the vth valley, as discussed in the next sections.

III. PHONON SCATTERING

Following the approach of [2], the phonon-limited inverse
MRT relative to the vth valley is defined as

1
τPS,v

=
Cvmdv

Wv
(7)

where Wv is the effective width of the electron distribution in
the vth valley and Cv is a constant related to the intravalley
acoustic-phonon scattering parameters. Intervalley scattering is
not considered in view of the low-field regime, which is close
to equilibrium. By considering that the largest fraction of the
electron population of each subband occupies the subband’s
bottom, we define the average effective width as

Wv =

∑
i pi,v

(∑
j≤i F v

i,j

)−1

∑
i pi,v

(8)

where indexes i, j identify the subbands of the vth valley; pi,v is
the vth subband population, and F v

i,j is the form factor relative
to the (i, j) subband couple, which is defined as

F v
i,j =

tSi∫
0

|Ψi,v(z)|2 |Ψj,v(z)|2 dz (9)

where Ψi,v(z) are the electron eigenfunctions.
The numerical computation of the effective widths for (110)

and (111) surface orientations has been carried out by means
of our Schrödinger–Poisson solver [22] generalized to single-
gate and double-gate SOI MOSFETs with different crystal
orientations. The eigenfunctions are zero at the Si/SiO2 inter-
faces. Neumann boundary conditions are applied to the bottom
edge of the buried oxide in SG-SOI FETs. The calculated Wv

are shown in Figs. 2 and 3 versus the effective field Eeff for

Fig. 2. Effective widths for the unprimed and primed subband ladders as a
function of the effective field at tSi = 10 nm. Symbols: numerical computa-
tions. Solid lines: (10).

Fig. 3. Effective widths for the unprimed and primed subband ladders as a
function of the effective field at tSi = 6 nm. Symbols: numerical computations.
Solid lines: (10).

different surface orientations in SG-SOI FETs with tSi = 10
and 6 nm, respectively. According to [2], the average effective
width is modeled as

Wv =
WTv

[1 + (WTv/WEv)4]1/4
(10)

where

WTv =
2
3
tSi + WT0v

(
tSi

tSi0

)4 (
Eeff

Eeff0

)
(11)

WEv =WE0v

(
Eeff

Eeff0

)−γ

. (12)
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WTv represents the effective width of the confined electron
gas at low effective fields and small silicon thicknesses; WEv

is the effective width at large normal fields and thick SOI
films. In (11) and (12), tSi0 = 10−7 cm, Eeff0 = 106 V/cm,
WT0v , and WE0v are fitting parameters calibrated on numerical
results (see the solid lines of Figs. 2 and 3 ). By comparing the
average widths of the primed and unprimed subband ladders,
a slighter dependence on the electric field is observed due to
the higher energy levels, which are less sensitive to it. γ, whose
theoretically predicted value is 1/3 [23], is found to be equal
to 0.29 for the (111) orientation and for the unprimed ladders
of (100) and (110) while the values of 0.17 and 0.2 have been
found for the primed ladders of (100) and (110), respectively.
As shown in Figs. 2 and 3, the difference between the unprimed
and primed effective widths is more pronounced in (100) than in
(110) samples. This effect can be due to the smaller difference
between the quantization masses of the unprimed and primed
valleys in the (110) case, leading to closer primed and unprimed
energy levels.

IV. COULOMB AND SURFACE ROUGHNESS SCATTERING

The Coulomb scattering term is modeled as

1
τCS,v

= CCS0

(
Ninv0

Ninv

)(
NA

NA0

)σ

(13)

where NA is the substrate doping density and NA0 =
1017 cm−3, Ninv0 = 1013 cm−2, CCS0 , and σ are the fitting
parameters, which are extracted by comparing the analytical
model with experiments for bulk MOSFETs [23] with different
NA [18]. The inversion-layer electron density Ninv for the bulk
MOSFETs with uniform NA measured in [23] can be calculated
by inverting the usual expression

Eeff = (q/εSi)(ηNinv + Ndepl) (14)

with Ndepl as the depletion charge per unit area, εSi as the
silicon permittivity, and η as a constant equal to 1/2 for (100)
and 1/3 for (110) and (111) substrates, as shown in [23]. In (14).
Ndepl is calculated as

Ndepl =
√

4εSiΦBNA/q (15)

with ΦB = kBT log(NA/Ni) as the Fermi potential and Ni =
8.765 × 109 cm−3 as the intrinsic carrier concentration at
300 K. It is worth noting that when implementing the mobility
model in a TCAD tool like, e.g., the 1-D quantum drift-
diffusion solver for SOI MOSFETs described in [24], Eeff and
Ninv are directly obtained from the numerical results.

The empirical formulation of surface roughness scattering
under the assumption of single subband occupation reads

1
τSR,v

= CSR0mdv

(
Eeff

Eeff0

)δ

(16)

where CSR0 is a constant and δ = 2 [23]. We use here the same
expression, with CSR0 as a fitting parameter and δ = 2.7 for
(100), 1.5 for (110), and 1 for (111) orientations as found from
the experiments. The different effects on mobility of Coulomb

and surface roughness scattering for different orientations was
predicted by Monte Carlo simulations [25], and was ascribed
to the different energy quantization and interface properties.
This result is not surprising since the density of surface atoms
and avaiable bonds strongly depend on the crystal orientation
[26], [27].

V. BAND STRUCTURES AND REPOPULATION EFFECTS

In order to compute the relative populations of the unprimed
and primed ladders in (100)- and (110)-oriented samples and
their dependence on the silicon film thickness and the effective
field, we develop an analytical formulation based on physical
considerations. In (111) samples, a single six-fold degenerate
ladder is present; hence, no repopulation occurs. For zero
normal electric field (quantum well), the analytical solution of
the Schrödinger equation provides the expression for the energy
levels. The relative distance between the primed and unprimed
subband edges reads

ΔECT = E ′
CT − ECT =

(�π)2

2t2Si

(
1

mpr
z

− 1
munpr

z

)
. (17)

From (17), the separation between the energy minima of the two
ladders increases with the reduction of tSi, and electrons mostly
populate the unprimed ladder. At large electric fields, on the
other hand, the energy minima can be theoretically calculated
assuming a triangular potential well [28] as

ECEv
=

(
3

√
9

32
+ 3

√
9
4

)
3

√
�2q2

mzv

E
2/3
eff

=ECE0v
3

√
m0

mzv

(
Eeff

Eeff0

)ζ

. (18)

We adopt the last expression and use ECE0v
and ζ as fitting

parameters to accuratly reproduce the energy minima of bulk
MOSFETs on (100) and (110) substrates, as computed by
the Schrödinger–Poisson solver. Indicating with ΔECE, the
difference between the ladder minima at high electric fields, the
behavior of ΔEC can be expressed as

ΔEC = ΔECT

[
1 + (ΔECE/ΔECT)β

]1/β
(19)

where β = 3.5. Figs. 4 and 5 compare (19) with numerical
simulation results provided by our Schrödinger–Poisson solver
for different silicon thicknesses, effective fields, and substrate
orientations. The above model for the energy difference be-
tween the subband edges of the primed and unprimed ladders
allows us to compute the relative valley populations from (4),
which are shown in Fig. 6 versus tSi for (100)-oriented samples.
According to previous works [17], [29], a clear repopulation
effect occurs at about tSi = 7 nm. The unprimed ladder, which
exhibits the lower transport effective mass (see Table I), turns
out to be fully populated for tSi ≤ 4 nm, with a beneficial effect
on mobility.



SILVESTRI et al.: MOBILITY MODEL FOR BULK, ULTRATHIN BODY SOI AND DOUBLE-GATE n-MOSFETs 1571

Fig. 4. Difference between the conduction subband edges of the 2-fold and
4-fold valleys in (100) samples versus the effective normal field for SG-SOI
FETs with different silicon thicknesses. Symbols: numerical values; solid
lines: (19).

Fig. 5. Difference between the conduction subband edges of the 2-fold and
4-fold valleys in (110) samples versus the effective normal field for SG-SOI
FETs with different silicon thicknesses. Symbols: numerical values; solid
lines: (19).

Fig. 6. Relative occupancy of the unprimed and primed subband ladders in
(100)-oriented SG-SOI samples versus the silicon thickness for two different
effective fields from (4). Symbols: numerically calculated relative populations;
lines: this model. Inset: energy shift between primed and unprimed ladders
from (19).

A. Anisotropy and Nonparabolicity in the (110) Orientation

Further band-structure analyses are required for (110) sub-
strates. As already pointed out, the effective mobility in (110)
samples exhibits a strong in-plane anisotropy. Consider, for
example, a 〈100〉-oriented FET channel on a (110) substrate. As
shown in Fig. 1(b), the unprimed ladder is the most populated
one and it exhibits a higher mobility due to the low transport
effective mass (see Table I). On the contrary, if the FET channel
is 〈110〉-oriented, the transport effective mass of the four-fold
ladder is higher. This clarifies the experimental mobility reduc-
tion with respect to that of the 〈100〉-oriented FET channel [30].

An additional effect has been outlined in the experimental
analysis carried out by Uchida in [30]. The strong nonparabol-
icity of the conduction band in the [110] crystalline direction,
i.e., the quantization direction for the (110) orientation, leads
to a smaller subband-edge difference than predicted by (19) be-
tween the unprimed and primed ladders for energies exceeding
100 meV. In order to account for this effect, (17) and (19) have
been modified. We assume that nonparabolicity effects play a
relevant role in the 2-fold primed ladder, mainly because of the
high energy minimum. At zero field, the lowest energy of the
primed ladder in the parabolic-band approximation is

E′
CT =

(�π)2

2t2Sim
pr
z

. (20)

According to [31], a nonparabolic energy dispersion relation-
ship for the conduction band minimum can be expressed as

E ′NP
CT

(
1 + αE′NP

CT

)
=

(�kz)2

2mpr
z

(21)

where α is the nonparabolicity factor and kz is the wave vector
component in the quantization direction. When kz = π/tSi and
using (20), (21) yealds

E ′NP
CT =

−1 +
√

1 + 4αE′
CT

2α
. (22)

The α value has been fitted on Uchida’s nonparabolic energy
dispersion relationship [30] shown in the inset of Fig. 7, and
has been fixed at 3.4 eV−1.

A second correction is made in order to account for non-
parabolicity effects at high electric fields. From (18) the
energy minima have an increasing trend with Eeff due to the
parabolic-band approximation. In order to avoid an overestima-
tion of ΔEC , we modify (19) as follows:

ΔENP
C = ΔEC

[
1 − log

(
1 +

Ninv

9 × 1012

)]
(23)

and reproduce the difference of the subband edges of the
primed and unprimed ladders calculated in [30], as shown in
Fig. 7. At low Ninv ΔENP

C increases by decreasing tSi up to
about 4 nm, decreases for tSi between 4 and 2.5 nm, where
it becomes zero and unprimed and primed ladders cross each
other (see Fig. 7). The effects of anisotropy and nonparabolicity
on experimental mobilities for (110)/〈100〉 and (110)/〈110〉
devices are shown in Fig. 8. The enhancement of the 4-fold
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Fig. 7. Difference of conduction-subband edges between the 2-fold and 4-fold
valleys of (110)-oriented substrates versus the inversion charge concentration
for SG-SOI FETs with different silicon thicknesses after nonparabolic correc-
tions (22) and (23). The parabolic and nonparabolic bands of a bulk MOSFET
calculated in [30] are also shown. Inset: E(k) relationship of energy ellipsoids
“3” in Fig. 1 along [110] crystal orientation calculated in [30] (symbols) and
from (22) (solid line).

Fig. 8. Electron mobility in bulk and SG-SOI MOSFETs on (110) substrates
versus the effective field for 〈100〉 and 〈110〉 channel directions. Symbols:
experiments from [16] and [30]. Solid lines: this model with nonparabolic
corrections. Dashed lines: this model with parabolic bands. Arrows highlight
the different impact on mobility of the two nonparabolic corrections in (22) and
(23) for small tSi and high electric fields, respectively.

ladder population, which is favorable for the 〈100〉 and unfa-
vorable for the 〈110〉 channel directions, has a strong impact
on mobility if a parabolic band model is used (dashed lines).
The nonparabolic corrections to ΔEC (solid lines) make the
subband repopulation less effective.

As shown in Fig. 8, the application of the nonparabolic
corrections to ΔEC is required to reproduce the experimental
results. It is worth noting that the effective width in (8) is
still based on a parabolic-band approximation, but in the low-
medium Eeff range and for tSi > 5 nm, the nonparabolicity
effects on carrier mobility are negligible.

The physical effects considered so far allow us to reproduce
the experimental mobilities in [13] and [16] with tSi as small as
about 5 nm, as shown in Fig. 9. However, to further improve the
fitting of the (110) experiments, the scattering induced by inter-
face states in SG-SOI FETs has to be included, as explained
in Part II. Unfortunately, no experimental investigations are

Fig. 9. Electron mobility in (100), (110)/〈100〉, and (110)/〈110〉 SG-SOI
FETs versus effective field for various silicon thicknesses. Symbols: experi-
ments in [13] and [16]. μ versus Ninv curves in [16] have been converted in μ
versus Eeff curves assuming NA = 5 × 1015 cm−3.

available in the literature to validate the mobility model in the
(111) SOI case.

VI. CONCLUSION

A low-field electron mobility model suitable for device-
simulation tools in (100) and (110) UTB-SOI MOSFETs has
been developed and calibrated on a wide set of experimental
data. The model accounts for the main physical effects related
to the quantum–mechanical structural confinement such as
valley repopulation, in-plane anisotropy, and nonparabolicity,
and transposes them into simple analytical formulations. The
correct description of the band structure (energy levels and
effective masses) is shown to be fundamental to predict mo-
bility in UTB devices for any arbitrary in-plane current-flow
direction.
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