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This paper presents the first release of an Informational System (IS) devoted to the systematic collection
of all available data relating to PlioceneeQuaternary faults in southern East Siberia, their critical analysis
and their seismotectonic parameterization. The final goal of this project is to form a new base for
improving the assessment of seismic hazard and other natural processes associated with crustal defor-
mation. The presented IS has been exploited to create a relational database of active and conditionally
active faults in southern East Siberia (between 100�e114� E and 50�e57� N) whose central sector is
characterized by the highly seismic Baikal rift zone. The information within the database for each fault
segment is organized as distinct but intercorrelated sections (tables, texts and pictures, etc.) and can be
easily visualized as HTML pages in offline browsing. The preliminary version of the database distributed
free on disk already highlights the general fault pattern showing that the Holocene and historical activity
is quite uniform and dominated by NEeSW and nearly EeW trending faults; the former with a prevailing
dip-slip normal kinematics, while the latter structures are left-lateral strike-slip and oblique-slip (with
different proportion of left-lateral and normal fault slip components). These faults are mainly concen-
trated along the borders of the rift basins and are the main sources of moderate-to-strong (M � 5.5)
earthquakes on the southern sectors of East Siberia in recent times. As a whole, based on analyzing the
diverse fault kinematics and their variable spatial distribution with respect to the overall pattern of the
tectonic structures formed and/or activated during the late PlioceneeQuaternary, we conclude they were
generated under a regional stress field mainly characterized by a relatively uniform NWeSE tension, but
strongly influenced by the irregular hard boundary of the old Siberian craton. The obtained inferences are
in an agreement with the existing models of the development of the Baikal region.

� 2014, China University of Geosciences (Beijing) and Peking University. Production and hosting by
Elsevier B.V. All rights reserved.
1. Introduction

The study of PlioceneeQuaternary faults is crucial for a better
assessment of the seismic hazard and other natural processes
associated with crustal deformation. Moreover, a better knowledge
about faults promotes the development of geodynamic conceptions
on the general formation mechanisms and the evolution of specific
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structural elements in mobile belts. In order to effectively use this
knowledge, specific databases containing active or conditionally
active faults have been created in several countries (Valensise and
Pantosti, 2001; GNS Science Ltd, 2004; U.S.G.S, 2006; A.I.S.T,
2007; Basili et al., 2008, 2009, 2013; Caputo et al., 2012, 2013;
Yu et al., 2012). In Russia, the first experience devoted to the
elaboration of a digital map and a database of active faults
was carried out by Ioffe et al. (1993), Trifonov and Machette (1993),
Ioffe and Kozhurin (1996), Trifonov (1997, 2004), Trifonov et al.
(2002).

It is worth to note that an active fault is defined as onewhich has
moved in recent geological time and is considered likely to move
again in the future (GNS Science Ltd, 2004). Although there are
different opinion on the definition of “recent geological time”
(Allen, 1975; Vita-Finzi, 1986; Nikonov, 1995; Trifonov, 2004), we
believe it is corresponding to the Quaternary period followed by the
eking University. Production and hosting by Elsevier B.V. All rights reserved.
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Figure 1. Topography and principal tectonic elements of the Asia (a e faults after Petit and Deverchere, 2006) and southern sector of East Siberia (b e faults after Khrenov, 1982).
Roman numbers refer to the segments of marginal suture zones of the Siberian platform (I: Main Sayan, II: Pribaikalsky, III: Akitkan-Dzherbin, IV: Zhuin, V: Kalar, VI: Stanovoy),
other structural sutures (VII: Baikal-Taymyr, VIII: Kalarsk-Karengsky, IX: Dzhida-Vitim, X: Mongol-Okhotsk, XI: Baikal-Muya, XII: Sayan-Tuva, XIII: Tunkinsko-Khamar-Daban) and
major crustal faults (XIV: Prisayan-Enisey, XV: Torey). Numbers in circle refer to the major basins within the Baikal rift zone (1: South Baikal, 2: North Baikal, 3: Khubsugul, 4: Tunka,
5: Barguzin, 6: Kichera, 7: Upper Angara, 8: Muyakan, 9: Ulan-Makit, 10: Muya, 11: Chara).
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Research Group for Active Faults of Japan (1992). Some Quaternary
faults with an obscure displacement history and pre-Quaternary
faults which can reasonably have attributes consistent with the
current tectonic regime refer to conditionally active faults (Fraser,
2001).

According to a nowadays well established approach to seismic
hazard assessment (SHA), mainly based on the construction of
specific databases, the collection of geological information, its
critical analysis and the intercorrelation of all data by means of a
dedicated software have become a standard (Haller and Basili,
2011). Indeed, SHA analyses are impelling especially in densely
inhabited zones like the southern sector of East Siberia, whose
central part is characterized by the highly seismic Baikal rift zone. A
huge amount of geological and geophysical data on Plioce-
neeQuaternary faults and recent earthquakes, which represent the
core information for seismotectonic and geodynamic analyses, has
been collected in the past years by many researchers (Sherman
et al., 1973, 2004; Solonenko, 1981; Khrenov, 1982; Solonenko
et al., 1985; McCalpin and Khromovskikh, 1995; Levi et al., 1996,
1997; Delouis et al., 2002; Lunina and Gladkov, 2002, 2004, 2007,
2008; Lunina et al., 2009; Smekalin et al., 2010; references
therein). However, the problem for their representation as well as
for a systematic analysis was not solved. A relational database
allowing to keep the information in several sections intercorrelated
with field data, keywords or identifiers could certainly represent a
step forward. Eventually a relational database gives the possibility
of a simple and quick access using structured query language (SQL)
reports and provides an increased reliability and integrity of data
whose analysis could allow to get new results.

The aim of this paper is to present the first version of an Infor-
mational System devoted to the systematic collection of all
available data relative to PlioceneeQuaternary faults, their critical
analysis and their seismotectonic parameterization of the included
structures. The IS has been exploited to create a first regional
database of neotectonic faults in southern East Siberia and there-
fore includes both active (late Quaternary, 10 ka, 130 ka, 0.5e2 Ma
by different authors) and conditionally active (up to late Pliocene)
faults. This IS represents the first such attempt for the whole Russia
and it could represent an important scientific tool for many re-
searchers as well as for improving seismic hazard maps of the
region.

2. Geological background

The southern sector of East Siberia includes two large structural
elements: the Siberian platform and the central Asia mobile fold-
belt containing both Caledonian and Baikalian folding and
thrusting phases (Solonenko, 1981; Belichenko et al., 2003). In this
region, the West-Transbaikal and Baikal rift zones (Fig. 1) formed
during the late Mesozoic and Cenozoic, respectively. This poly-
phased crustal deformation is the principal cause of the complex
and quite heterogenous geological setting of southern East Siberia,
which includes pre-Cambrian, Paleozoic, Mesozoic and Cenozoic
rocks from different geodynamic environments and undergoing
different deformational events (Malich, 1999).

The late Mesozoic West-Transbaikal rift zone (Yarmoluk et al.,
1995) consists of NEeSW trending basins bounded by normal
faults and controlling the volcanic fields during the late Mesozoic
and Cenozoic. The general extent of the zone from the head of the
Selenga River to the Vitim plateau is ca. 1000 kmwhile its width is
200 km. The first grabens started forming at the end of the early
Jurassic, but the main rifting stage occurred 130e140 Ma. At



Figure 2. Input information in the active fault database (for Delta Fault, see location in Fig. 9). Letters indicate its seven sections.
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present, the area is characterized by a weak seismic activity;
however, in historical times some moderate earthquakes are
documented (Radziminovich, 2007; Radziminovich and
Shchetnikov, 2010).

The Baikal rift zone is geographically adjoined to the West-
Transbaikal zone (Fig. 1) and located along a 2200 km-long
curved belt. A rough morphology, NeogeneeQuaternary volcanism
along the flanks of the rift zone, several geophysical anomalies and
almost ubiquitous thinning of the Earth’s crust are general features
characterizing the Baikal rift (Solonenko, 1981), similar to other rift
basins worldwide (Logatchev and Florensov, 1978). Minimum
Moho depth, encountered over the central Baikal, is 32 � 5 km
(Petit and Deverchere, 2006) in striking contrast with the thicker
Siberian Platform (ca. 40e43 km; Pavlenkova et al., 2002) and
central Asia mobile fold-belt (ca. 45e50 km; Petit and Deverchere,
2006), northwest and southeast respectively.

The basin subsidence within the Baikal rift started in the
southern sector near the delta of the Selenga River at the end of the
KeT boundary (Logatchev, 2003; Lunina et al., 2009; Jolivet et al.,
2009; Mats and Perepelova, 2011) and it still continues. Recent
and historical earthquakes with magnitude M > 7 and evidence of
strong palaeoevents are known in the broader zone (Solonenko,
1981; Solonenko et al., 1985; Ruzhich, 1997; Smekalin et al., 2010).

The southern sector of the Siberian platform (Fig. 1) bordering
on the Baikal rift zone from the west consists of a crystalline
basement and a sedimentary cover, where the volumetric distri-
bution of both detachments and sub-vertical faults affecting lith-
ological units played a basic role in the evolution of the area
(Gladkov et al., 2000). To the southwest, the platform is bordered
by the Main Sayan left-lateral strike-slip (with some reverse
component) crustal shear zone (Chipizubov and Smekalin, 1999;
Malich, 1999; Lunina and Gladkov, 2002). Evidence of morphotec-
tonic lineaments and earthquake distribution within this area
suggest that the southern part of the craton is still undergoing some
convergence along the Sayan-Baikal segment of the central Asia
mobile fold belt (Seminsky et al., 2008).

3. Rationale of the database

Whereas the major rifting activity within the Baikal region
accelerated in the last ca. 3e5 Ma according to various estimates
(Logatchev, 2003; Lunina et al., 2009; Mats and Perepelova, 2011),
we decided to include in the database all tectonic structures whose
movements are documented or suspect for the PlioceneeQuater-
nary period after the last noticeable compressional stage (ibid). In
fact, it is important for estimating natural hazards because an
earthquake on an active fault creates seismogravitational phe-
nomena, liquefaction cases and etc. while the location and geom-
etry of surrounding neotectonic faults affect their distribution in
the pleistoseist area.

The conception and general scheme of the proposed IS were
approached similar to countries which already faced the problem of
seismic and geodynamic hazard estimations, a geologically-based
seismic zonation and the creation of specific databases
(Solonenko, 1981; Wesnousky et al., 1984; Matsuda, 1990; Reiter,
1990; Levi et al., 1996; Ulomov and Shumilina, 1999; Valensise
and Pantosti, 2001; Trifonov et al., 2002; Koravos et al., 2006;
Basili et al., 2008, 2009; Petersen et al., 2008; Caputo et al., 2012,
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2013; Stirling et al., 2012; Basili et al., 2013; GEM, 2013) and
recently published (Lunina et al., 2012).

The relational database of the PlioceneeQuaternary faults of
southern East Siberia presented in this paper focuses on an area
included between 100�e114� E and 50�e57� N (Fig. 1). It was built
based on morphotectonic analysis of SRTM-90 digital elevation
models and topographicmaps at 1:200,000 scale,field structural and
geological data as well as the collection and critical analysis of all
available geological and geophysical information relative to neo-
tectonic structures. A significant part of our data on structural map-
ping was published previously (Lunina and Gladkov, 2002, 2004,
2007, 2008; Lunina et al., 2009; references therein). Based on this
systematic approach, the included structures have been primarily
distinguished between ‘seismogenic’ and ‘non-seismogenic’ faults. In
principle all faults within the uppermost brittle crust produce
earthquakes and hence should be considered seismogenic; however,
for the sake of simplicity and for the aims of seismic hazard assess-
ment, we distinguish a class of ‘non-seismogenic’ faults including
structures not capable of generating events with Mmax � 5.5. The
recognition and characterization of the latter structures, and hence
their inclusion into the database, are also important steps for better
evaluating the geohazard of the region, because even small and/or
slow movements on such structures may lead to emergency situa-
tions at industrial facilities located in aseismic and low-seismic areas
(Kuz’min and Zhukov, 2004; Schenk et al., 2007).

4. Database structure and software

The software for operating the IS of database has been elabo-
rated by authors of the present paper in the Institute of the Earth’s
Crust, Siberian Branch of Russian Academy of Sciences that is
confirmed by a certificate (Lunina and Gladkov, 2013). It works in
the MapInfo environment and it exploits its GIS software package.
For each identified tectonic structure, the information is distributed
in seven principal sections whose user interfaces are represented
by different windows (Fig. 2). The first and second sections
(Fig. 2a,b) contain the general fault information and the principal
geometric, kinematic and seismotectonic parameters. The third
section (Fig. 2c) includes data relative to the seismic behavior.

The fourth section (Fig. 2d) includes nine groups of direct and
indirect fault activity features, like geomorphic (linear and areal
morphological expression), geophysical (local release of radon or
other geophysical anomalies), geo-engineering (occurrence of large
land-slides), hydrogeological (aligned hot-springs, anomalies of
Table 1
Features of fault activity to distinguish the time periods.

Timing of last activity Fault activity features

Pliocene Scarps; linear valleys; deformations
of valleys; deformation of Pliocene
sediments (including fractured,
crushed and schistosity zones,
fractures with displacements,
seismites, striations and impacts
on pebbles, clastic dykes).

Pleistocene Open gashes in surface topography;
deformation of benches;
palaeoseismic deformation of
Pleistocene sediments.

Holocene Palaeoseismic deformation of
Holocene sediments.

Historical (since 1700 to
present-day, according
to first known seismic
event occurred in the
East Siberia)

Fault associated with a historical or
instrumental earthquake with
M � 5.5; movements established
by geodetic methods; seismogenic or
creep deformations of old and recent
buildings as well as sediments within
the fault damage zone.
piezometric and chemical changes), meteorological (periodic linear
clouds along faults), structural (fractures in PlioceneeQuaternary
sediments and seismites), paleoseismic (fresh and prominent fault
scarps), seismological (number and magnitude of instrumental
events) and geological and geodetic slip rate estimation. Different
scores have been assigned to each feature, following the procedure
proposed by Lunina (2010). The sum of all scores associated with a
specific fault enables to quantify the activity index and the software
calculates it automatically (Fig. 3). According to the total score, the
index of fault activity is classified as low (1e5), medium (6e10),
relatively high (11e20), high (21e30) or very high (more than 30).
Faults in the database are also classified based on the timing of their
last activity and they are consequently grouped in Pliocene, Pleis-
tocene, Holocene and historical ones (Table 1).

Detail description of the above input information is given in
Appendix A.

The fifth section (Fig. 2e) could contain all possible comments
added by the compiler(s) relative to specific choices on the param-
eters, annotations of used publications, summaries of the results
from the selected papers, speculative matters and open problems.

The sixth section (Fig. 2f) includes illustrative materials about
faults, like photos, schemes and diagrams, while the seventh sec-
tion (Fig. 2g) contains cartographic and literature sources of infor-
mation, both used when filling in the database as well as the
relative references and reports.

The compilation procedure in the frame of the database is
assisted by the software tool “ActiveTectonics”, which allows to
associate all data (Fig. 2) once a fault has been drawn on a geore-
ferenced map (or DEM) using the MapInfo GIS software. The same
tool allows to calculate automatically some parameters and
generating several client outputs as HTML pages (Figs. 3e5).

5. Analysis of the PlioceneeQuaternary faults

Based on (i) the previously described tools and software, (ii)
abundant geological and geophysical literature information aswell as
(iii) original geological and structuraldata, itwaspossible to construct
the map of PlioceneeQuaternary faults of southern East Siberia
shown in Fig. 6. The faultswithinMongolia aremissing aswemapped
them only on the Russian area. For the included structures we also
compiled the 7-sections database containing parametric tables, text
and pictures fully interconnected via a fault identifier (ID). Anyone
may request full version of database that is distributed on DVD-disc
together with the software tool till there is no URL-address. At pre-
sent, the whole database consists of 797 ‘reliable’ and 1004 ‘possible’
fault segments (Appendix A), which are mainly defined by one strike
or spatial separation of a fault. All of themwith a few exceptions are
expressed in relief and/or hydrographic network. Reliable class is
assigned to structures which are confirmed by at least one of the
following direct evidence: fractured zones or well-defined fracture
systems of relevant direction in rocks of any type and age; seismo-
genic deformations; linear alignment ofM � 5.5 earthquake epicen-
ters along the fault; fault planes observed from underwater vehicles;
seismoacoustic data about displacements of sediments. Other faults
evident only morphologically and/or from geophysical and hydro-
logical anomalies are referred to possible ones.

Many PlioceneeQuaternary faults in southern East Siberia have
no parameters and sufficient description; nevertheless, it is prac-
ticable to analysis the information from the first version of the
database. It is possible to extract selected details by area or by
parameter and therefore to construct different thematic maps and
investigate specific datasets. As an example, in this chapter, we
describe and analyze some important parameters, like fault kine-
matics, orientation, pattern, age and seismogenic potential, as well
as their areal distribution.



Figure 3. Output from the active fault database in HTML pages: “fault info” section (for Delta Fault, see location in Fig. 9).
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Figure 4. Output from the active fault database in HTML pages: “comments” and “illustration” sections (for Delta Fault, see location in Fig. 9).
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5.1. Fault kinematics and orientation

Differentiation of the data based on kinematics shows that dip-
slip normal faults dominate the southern sector of East Siberia
(Fig. 7). Oblique-slip faults with different combinations of normal
and left-lateral component of motion are also well represented,
while reverse faults, right-lateral strike-slip faults, normal right-
lateral strike-slip faults and reverse left-lateral strike-slip faults
are much less developed.

Also, as concerns the azimuthal orientation of the faults a spe-
cific query of the database shows a clustering of strikes when
combined with their kinematics (Fig. 7). Indeed, the large majority



Figure 5. Output from the active fault database in HTML pages: “references” section (for Delta Fault, see location in Fig. 9).
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of the dip-slip normal faults has a prevailing NEeSW strike. The
left-lateral strike-slip faults and normal left-lateral strike-slip faults
are nearly EeW. Reverse faults aremainly NWeSE and partly nearly
NeS; right-lateral strike-slip faults range between NNWeSSE and
NNEeSSW. The normal right-lateral (311�e330� and 0�e20�) and
the reverse left-lateral strike-slip faults (301�e320� and 50�e80�)
are of minor statistical importance, both showing two directions.

If we consider geometry and kinematics together, the tectonic
framework within the investigated region shows a general agree-
ment in terms of mechanical compatibility (Fig. 7). Therefore, this
suggests a common origin of most structures, associated with a
unique regional stress-field, which was statistically uniform in
space and time and characterized by prevail NWeSE tension.

Also as concerns the spatial distribution of faults, it is possible to
observe some regional patterns (Fig. 7). Indeed, the normal faults
and strike-slip-normal faults (with either some right-lateral and
left-lateral components) are developed everywhere across south-
ern East Siberia. They are particularly concentrated in the central
sector of the Baikal rift, where they form an almost continuous fault
belt, and in the West-Transbaikal rift zones.

Although less numerous, also the left-lateral strike-slip faults
and the normal left-lateral strike-slip faults are present in all the



Figure 6. Map of the active faults of the southern sectors of East Siberia.
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investigated area (Fig. 7). They are in general shorter than the faults
of the former group, with the notable exception of the Zhigalovsky
fault affecting the Siberian platform. These sinistral structures show
a relative concentration along the southwestern flank of the Baikal
rift zone and this pattern likely reflects the development of a
transtensional tectonic regime.

The right-lateral strike-slip faults and the normal right-lateral
strike-slip faults certainly represent local and minor structures, of
limited dimensions and likely associated with second-order stress
fields. The few reverse faults have been recognized along the
margins of the Siberian platform at the transition with the Baikal
rift zone. Finally, the few reverse right-lateral strike-slip, left-lateral
reverse and reverse left-lateral strike-slip faults occur at the
northeastern limits of the investigated area and along the East
Sayan mountains.

5.2. Fault age

By querying the fault database using the criterion of timing of
the last activity (Pliocene, Pleistocene, Holocene, Historical; Fig. 8),
it is clear that many faults have been active during the Quaternary.
If we do not take into account Zhigalovsky and Khandinsky faults
within the Siberian platform, the zone is narrowest, 60e140 km-
wide, between the Angara River head and the Barguzin Gulf (Fig. 8).
It runs along the NEeSW trending segment of the crustal suture
bordering the Siberian platform. Towards the WSW and NE, the
width of the recently activated zone widens up to 360 km and this
mechanical behavior is likely due to a lateral inherited variation in
geological and tectonic setting along the boundary of the old
craton. The influence of the latter on the development of the Baikal
rift zone, repeatedly discussed earlier (Logatchev and Florensov,
1978; Zorin et al., 2003; Petit and Deverchere, 2006).

The map shows that the area affected by faulting has progres-
sively narrowed since Pliocene and this tendency seems to
continue in Holocene and historical times. In particular, co-seismic
displacement in the southern part of the Lake Baikal and along the
eastern lake side from the Selenga River delta to Saint Nose
peninsula an almost continuous fault belt has been activated in
historical times that is in the last centuries (Fig. 8). These most
recent faults seem to continue northeastwards into the Barguzin
basin (no. 5 in Fig. 1) and correspond with a zone of the recent
fracturing of the lithosphere identified using seismological data



Figure 7. Spatial distribution of the faults according to their sense of slip.
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(Sherman et al., 2004). In the same historical time some faults
selectively re-activated on the northeastern and southwestern
flanks of the Baikal rift zone.

It is worth to note that both in Holocene and recent times the
NEeSW and nearly EeW trending faults have been reactivated
being characterized by normal, left-lateral normal, left-lateral
strike-slip and normal left-lateral strike-slip kinematics as previ-
ously discussed (Fig. 7).

5.3. Seismogenic potential

Among all PlioceneeQuaternary faults affecting the southern
sector of East Siberia, the seismogenic structures capable of
generatingM� 5.5 earthquakes are of utmost interest. Indeed, such
seismic events are the most hazardous ones, which generally
produce surface ruptures in extensional environments (Pavlides
and Caputo, 2004), diffuse slope processes (landslides, rockfall
and etc.), liquefaction phenomena (Papathanassiou and Pavlides,
2011) and sometimes sinkholes (Clifton and Einarsson, 2005) and
anomalous waves.

Faults within the database are referred to as ‘seismogenic’ only
when the likelihood of generating M � 5.5 earthquakes is not
negligible. This is obvious for the causative faults of historical and
instrumental events and in all cases paleoseismological features are
correlated to the specific fault, therefore documenting the occur-
rence of superficial co-seismic displacements associated with
‘linear morphogenic events’ (Caputo, 2005).

Faults are also marked as ‘seismogenic’ when belonging to a
Composite Seismogenic Source (Basili et al., 2008) containing
another seismogenic segment. When a fault is marked as



Figure 8. Spatial distribution of the faults according to the timing of their last activation in the southern sectors of East Siberia. Rose-diagrams of strikes for faults re-activated in
historical and Holocene times are in the upper left corner.
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seismogenic this appears in the window containing the general
information of the structure (Fig. 3).

From the database and following the approach proposed by
Lunina (2010), two classes of seismogenic faults could be extracted
and plotted on a map (Fig. 9): faults characterised by activity esti-
mation index >10, which are the most hazardous ones, and faults
with lower activity estimation index (�10). The latter class of faults
has a low likelihood of generating earthquakes withM> 6. In some
cases a low value could be due to insufficient data for correctly
estimating the real seismogenic potential.

The most hazardous seismogenic faults are concentrated
along the Baikal rift zone and East Sayan mountain system
(Fig. 9). Faults with a lower seismic hazard generally affect the
northwestern borders of the several depressions characterizing
the West-Transbaikal rift zone. Secondarily, they also occur in-
side the basins of the Baikal rift zone and in the transition zone
from Sayan-Baikal mobile belt to the Siberian platform. Two
seismogenic faults (Khandinsky and Zhigalovsky) affect the old
craton (Fig. 9).

A detailed analysis of the seismological parameters (such as
focal mechanisms, hypocenter depths, earthquake epicenters) for
M � 5.5 earthquakes occurred during the instrumental period
(1950e2011) (Solonenko et al., 1993; Melnikova and
Radziminovich, 1998, 2003, 2004, Global CMT Catalog) allowed to
associate most seismic events with their causative fault. These
structures are marked as ‘recent seismogenic faults’ (Fig. 9). Some
earthquakes have not been assigned to the faults that can be due to
the existence of blind seismogenic structures. The dominating
NEeSW and nearly EeW strikes of the recent seismogenic faults fit
well with the trends observed in the rose-diagrams for all sets of
the seismogenic structures (Fig. 9) as well as with our observations
showing that the tectonic deformation in PlioceneeQuaternary soft
and poorly consolidated sediments in the Baikal and West-
Transbaikal rift zones are concentrated along the NEeSW and
nearly EeW trending fault zones documenting their more recent
activity in comparison with other faults (Lunina et al., 2009).

6. Discussion

The overall tectonic pattern affecting the southern sectors of
East Siberia and particularly the fault geometry, kinematics and the
timing of the deformation, could be interpreted and explained as a
consequence of the NWeSE (310�e330� average) trending litho-
spheric stretching affecting the Baikal rift zone and the curved



Figure 9. Map of the seismogenic faults capable of generating moderate-to-strong (M � 5.5) earthquakes. Rose-diagrams of strikes of all seismogenic faults shown in the map and
recent seismogenic faults, with which M � 5.5 instrumental earthquakes for the period of 1950e2011 are associated, are in the upper left corner.
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geometry of the border of the Siberian platform suture. Primarily
the marginal Siberian platform suture hampered the westwards
advancing of the rifting process and its curved geometry governed
the kinematic behavior of pre-existing faults with non-ideal
orientation in the frame of the neotectonic stress regime, which
was characterized by a horizontal NWeSE trending tension caused
by upwelling of anomalous mantle (Petit et al., 1998; Tiberi et al.,
2003; Zorin et al., 2003; Lebedev et al., 2006; Kulakov, 2008;
Mats and Perepelova, 2011) or effect from the India-Eurasia colli-
sion (Molnar and Tapponnier, 1975; Petit and Deverchere, 2006;
San’kov et al., 2011). In such structural and geodynamic condi-
tions, major crustal discontinuities and weakness zones parallel to
the northeastern sector of the old lithospheric boundary were
mainly re-activated as normal faults (Levi et al., 1996, 1997; Lunina
et al., 2009). This general behavior favored the development of
several extensional basins trending in this direction.
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The southwestern sector of the marginal Siberian platform su-
ture, which was bounded by the Main Sayan reverse left-lateral
strike-slip fault, behaved similar to a transform fault (Zonenshain
et al., 1995). Indeed, the average strike is 305� which is at low
angle with the mean direction of regional tension. Deformation
within a fault zone under such combination of (i) geometrical
setting and (ii) distribution of tectonic forces (NWeSE tension and
NEeSW compression) commonly generate a transpressional
regime, which is typical indeed of the Main Sayan fault (Chipizubov
and Smekalin, 1999; Lunina and Gladkov, 2002).

The occurrence and relatively spread diffusion of nearly EeW
left-lateral strike-slip faults, often with normal component of
motion, in southern East Siberia can be explained by left-lateral
displacement of blocks that is considered as a main factor of
evolution of basins and faults in the Baikal rift zone from
analog experiments (Seminsky, 2009) and supported in some
regional models (Sherman and Levi, 1978; Jolivet et al., 2013).
The EeW trending faulting is particularly developed in the
Tunka rift basin (southwestern sector of the Baikal rift zone; no.
4 in Fig. 1) as the initiating processes are overlapped on the old
Tunkinsko-Khamar-Daban suture (no. XIII in Fig. 1) due to the
collision of two terrains in early Paleozoic (Belichenko et al.,
2003).

The above discussion shows that the inferences from the data-
base analysis correspond to the prevailing representations about
tectonics and geodynamics of southern East Siberia and therefore it
is important to develop the IS continuously. Now it is in progress in
order to include additional layers, like coseismic effects, composite
and individual seismogenic sources, as well as new structural,
geological and geophysical information and a software application
for the overall management and its exploitation by an end-user on-
line. The active fault map and database will be an essential support
to create this.

It should be recalled that maps of active faults were compiled
before (Levi et al., 1996, 1997) for the study area, including in a
digital form (Trifonov et al., 2002; Sherman, 2009). Thus, one of
them (Levi et al., 1997) illustrates active tectonic elements of the
Baikal basin and adjacent areas established by geomorphologic,
seismoacoustic and structural data collected on the shores of the
lake Baikal. Another map (Levi et al., 1996) reflects only the main
fault zones in eastern Siberia and Mongolia activated in the Ceno-
zoic. Active fault map of Sherman (2009) contains a summary of all
known faults separated by a quantitative index of seismicity based
on seismic data for 1960e2000. Major faults of southern East
Siberia have been shown on the map of active faults for the whole
Eurasia (Trifonov et al., 2002).

The principal difference between the electronic map of the
active faults of southern East Siberia submitted in this article and
previous works is its comprehensive framework, in which
important place belongs to the direct geological and structural
evidence of the faults and associated deformations in rocks of
different ages (Lunina and Gladkov, 2002, 2004, 2007, 2008;
Lunina et al., 2009; among). In addition, it has been performed
based on the 1:200,000 scale with using the latest achievements
of GIS-technologies. Thanks to the detailed design of a variety of
materials, it has been reasonably succeeded to show the faults
within the rift basins and at the same time to critically examine
the structural network that was previously allocated for the entire
territory of the Baikal region.

Thus, the electronic map of the PlioceneeQuaternary faults
accompanied by the relational database containing both previous
and new information is principally innovative development for
southern East Siberia and can be used for seismotectonic and
geodynamic construction, including a prediction of the seismic and
other geologic hazards.
7. Concluding remarks

In order to improve the capacity of the authorities in performing
realistic seismic hazard assessment analyzes, in several countries it
has been proved of utmost importance the systematic study of
active faults, the application of GIS-technologies and the imple-
mentation of dedicated software, but especially the integration of
all available information. Such approach has been applied for the
first time to the southern sectors of East Siberia and consequently
the following results have been produced:

� The first modulus of the IS referred to as “ActiveTectonics” has
been fully realized. The software application works in a GIS
environment (MapInfo package) and allows input of georefer-
enced object, to add and associate numerous data using dedi-
cated windows and automatically calculate some parameters.
The software enables the exploitation of the information con-
tained in the database and generates several output clients as
HTML pages in offline browsing. For example, it is possible to
create digital maps of PlioceneeQuaternary faults or make a
query of all data associated with a specific seismogenic fault,
including the several seismotectonic parameters as well as
their degree of uncertainty and the reasons for their choices.

� For the southern sector of East Siberia included between
100�e114� E and 50�e57� N, the relational database of Plioce-
neeQuaternary faults has been completed. All available infor-
mation, both literature and original data, for each fault segment
is contained and organized in the database as tables, texts and
pictures intercorrelated through a fault identifier.

� Based on the created database, we have analyzed the diverse
fault kinematics and their variable spatial distribution with
respect to the overall pattern of the tectonic structures formed
and/or activated during the late PlioceneeQuaternary in the
broader Baikal zone. We conclude they were generated under a
regional stress field mainly characterized by a relatively uni-
form NWeSE tension, but strongly influenced by the irregular
hard boundary of the old Siberian craton.

� The general fault pattern with the most recent activity (Holo-
cene and historical time) is quite uniform and dominated by
NEeSW and nearly EeW trending faults. A dip-slip normal
sense of slip prevails in the former, while the latter are mainly
characterized by left-lateral strike-slip and oblique-slip (with
different proportion of left-lateral and normal fault slip com-
ponents) motion. Faults are concentrated along the borders of
the rift or within it. The only exception to this regional pattern
is represented by the WNWeESE trending Main Sayan fault,
whose recent activity is confirmed by Holocene co-seismic
deformation (Chipizubov and Smekalin, 1999), and the
Angara fault, showing small but recent co-seismic
displacements.

� In historical times, the co-seismic re-activation of the tectonic
structures in the southern sector of East Siberia mainly
occurred in a narrow bend extending from the southern end of
the Lake Baikal through the Selenga River delta and further
northeastwards along the eastern side of the lake to Saint Nose
peninsula as well as along the broader flanks of the Baikal rift
zone.

� The NEeSW trending normal faults and the nearly EeW
trending faults with an important left-lateral component of
motion are the main sources of moderate-to-strong (M � 5.5)
earthquakes on the southern sectors of East Siberia in recent
times.

The inferences from the database analysis of the Plioce-
neeQuaternary faults are in an agreement with the existing models
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of the development of the Baikal region. Nevertheless, the database
should be constantly replenished with new data that will come
from future studies of faults.
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