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ABSTRACT

Knowledge of the molecular mechanisms underlying the interactions between nanomaterials and living systems is
fundamental for providing more effective products for nanomedicine and drug delivery. Controlling the response of
cells/bacteria (such as activation of inflammatory processes or apoptosis/necrosis in tumor cells or pathogenic bacteria)
by tuning specific properties of the nanomaterials is ultimately the challenging goal. Notably, this may also provide
crucial information in the assessment of any toxic risks induced by nanoparticles on humans. However, in studying the
nano-biointeractions, it is imperative to take into account the dynamic evolutions of nanoparticles in the biological
environments (in terms of protein corona formation, size and charge changes) in synergy with the dynamic events
occurring in cells, including signal transduction, metabolic processes, homeostasis and membrane trafficking. In this
context, we discuss the impact of analytical technologies, especially in the field of proteomics, which can provide major
insights into the processes affecting the NPs surface as well as the cells and bacteria functionalities. In particular, we
show that a precise control of the chemical-physical characteristics of the interacting nanoparticles or nanostructures may
impact the cells by inducing changes in the proteomic profiles with direct consequences on their viability.
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INTRODUCTION

Since its definition', proteomics has been recognized as the new post genomic science with great impact in life
science, biology and medicine. Although the lack of a stoichiometric correspondence between the encoding gene and its
protein product (due to the numerous and, in some cases, still unknown protein post-translational modifications), ideally,
proteomics allows to the identification of the entire set of proteins expressed by genes at a precise temporal cell state,
revealing precious information on specific biological processes (e.g., disease processes or drug induced effects),
molecular mechanisms for genes regulation, proteins activities, protein-protein interactions, and large scale mapping of
subcellular and tissue protein distributions’. As such, proteomics has been demonstrated to be an effective tool for
toxicology, providing insights in the toxic molecular mechanisms induced by drugs or toxicants in cells or specific
tissues (toxicoproteomics).” Moreover, by applying one and two dimensional gel electrophoresis techniques (1- and 2-
DE) coupled to mass spectrometry (MS), significant differences between control and treated samples (e.g., differential
display proteomics) can be quantified, giving information on the different protein expression profiles of cancer cells with
respect to normal cells, and on the molecular mechanisms inducing cancerogenicity at protein levels.* Finally, whole
protein mapping and biodistribution in diseased or normal tissues as well as protein biomarkers discovery may be also
explored by using highly advanced proteomic tools such as LC-MS/MS and quantification methods such as iTRAQ™,
SILAC and others®. From a technological point of view, a plethora of technologies and analytical instrumentations, in the
field of electrophoresis, mass spectrometry and sensors (e.g., 2-PAGE, 2-DIGE, MALDI-TOF, LC-Q-TOF, SELDI,
antibody microarray, etc.) have been developed and improved to address proteomics. Figure 1 reports just some
examples of possible proteomic pipelines. Generally, to be successful, such techniques must fit, at least, two principal
conditions: separation of complex protein mixtures (for example, whole cellular or tissue lysates, specific cellular
components, etc.) and quantification and identification, with the help of bioinformatics tools, of the protein of interest,
along with the related biological functionality (if known) associated to its gene.
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However, all the techniques mentioned in Figure 1 present advantages and limits. In our study, we mainly focused on
the use of 1- and 2-DE techniques coupled to MS analyses. Whereas in the case of 1-DE, proteins are separated on the
basis of their molecular masses, in the second approach, proteins are discriminated according to their isoelectric point
and molecular size. Traditionally, the identification of statistically significant differences between two or more
proteomes by 2D-PAGE (Polyacrylamide gel electrophoresis) requires the running and analyses of many gels. In any
case, the reproducibility of this method is often hindered by technical variations in sample preparation and gels running
conditions that render difficult an appropriate proteins matching between the patterns of treated and control samples
(with a consequent difficult quantification of the identified “up” and “down” regulated proteins). 2D-Differential-In-Gel-
Electrophoresis (2D-DIGE) is an effective approach to reduce gel-to-gel variation, by allowing multiplex analyses (by
staining proteomes with different dyes) (Figure 1) of two distinct proteomes onto the same gel. Protein matching and the
relative comparison are made against a pooled internal standard sample that is used, in all the gels, as an anchor to
achieve a better normalization among the gels.”

Toxicoproteomics applied to nanotechnology is now emerging as an attractive tool to address the still unanswered
questions dealing with nano-biointeractions and NPs-induced toxicity in living systems. For example, it has been
reported that NPs suspended in biological fluids adsorb a set of different proteins (referred to as protein corona),”” whose
composition and affinity kinetics strongly depend on particles surface, size, and concentration. Hence, protein coating,
surrounding and hiding NPs surface, plays a pivotal role in determining the effective size, surface charge, aggregation
state of the newly formed hybrid bio-nanomaterials, influencing biodistribution and, finally, triggering the beneficial or
hazardous biological effect.*” The exposed protein corona may, in turn, activate specific epitopes on the cells surface,
thus allowing the recognition and the activation of specific receptors and cellular functions.'’ Furthermore, it has been
shown that poly (acrylic acid)-conjugated gold nanoparticles, selectively binding fibrinogen contained in the plasma,
induce its unfolding and the subsequent specific activation of Mac-1 integrin receptor. This activation primes the NF-kB
signaling pathway, leading to the release of inflammatory factors.'' Finally, by applying “omic” techniques and in
particular 2D-DIGE, it has been recently demonstrated that AuNPs induce toxicity by a direct damage of the cellular
endoplasmic reticulum (ER)."

In this scenario, we describe herein the application of different proteomic approaches to characterize the protein corona
involved in the interaction of AuNPs with different cellular media and to frame the proteomic response of E. Coli
bacteria upon interaction with nanostructured gold substrate. In particular, we show the application of different
proteomic workflows. In the first case, we applied the 1-DE/MS analyses to characterize the temporal evolution of
protein coronas of differently sized gold NPs and their modulating effects in inducing cellular toxicity. Importantly, in
the second approach, by 2D-DIGE and LC-MS/MS, we demonstrate how nanoscale changes in the nanoroughness of a
gold substrates may impact on the bacteria functionality by triggering changes at post-translational levels, in the bacteria
proteome. Finally, many proteins involved in the molecular mechanisms leading to the loss of bacteria fimbrial structures
are highlighted.
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Figure 1 Examples of analytical platforms for proteomics studies
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RESULT AND DISCUSSIONS

1.1 Characterization of the time-dependent evolution of hard protein corona of AuNPs by proteomics

Many methods have been applied to investigate protein corona ex situ, all showing advantages and limits. Among them,
centrifugation method has been recently recognized to provide useful information on what is usually called “hard protein
corona”.” In general, once the NPs are incubated with serum proteins, the resulting protein pellet is isolated by
centrifugation and accurate washing. Afterwards, the stable protein/NP complexes are analyzed by following the
proteomic workflow reported in Figure 2 that explores the use of SDS-PAGE for proteins separation and MS analyses
for protein identification. In particular, in our study, we aimed at the characterization of hard protein corona obtained
from differently sized AuNPs (15, 40 and 80 nm) in the presence of two cell culture media (DMEM, RPMI) enriched
with FBS, as proteins source. Furthermore, a semi-quantitative description of the temporal evolution of protein coronas
out of cellular medium solution (ex situ) was performed by applying a semi-quantitative approach based on densitometry
analysis (Figure 2). Hence, after centrifugation, we collected pellets at two specific temporal points (namely, 1 h and 48
h) that, on the basis of previously reported spectroscopic measurements of protein coronas in solution,” are known to
correspond to the starting and plateau phases of protein corona formation onto the NPs surfaces. Such procedure likely
reproduces an off-line snapshot of the kinetic of NPs corona in solution. Importantly, in order to compare the different
protein electrophoretic lines, we incubated batches of AuNPs at concentrations giving constant values of the total surface
area of the NPs for all the sizes. Representative gels (Figure 2A) showed rich protein profiles for all the AuNPs sizes in
both the cell culture media. Densitometric analyses indicated that, whereas at 1 h of incubation the total amount of
adsorbed proteins roughly increases as a function of the nanoparticle sizes, with no particular differences between the
two media, after 48 h (plateau phase), DMEM incubated AuNPs produced a higher total amount of hard protein coronas
(as also previously evidenced by TEM images)."* These data are in good agreement with our previous results obtained by
means of in situ characterization (i.e., in medium solutions),® supporting the recent idea that inspection of protein corona
by separation methods may be useful to study the complex dynamics underlying proteins/NP interactions in solution."*
We analyzed the relative distribution of protein classes as a function of NPs size and cellular media. Interestingly, gel
images and densitometric analyses revealed that protein patterns strongly differ with respect to the relative distribution of
serum proteins (data not reported). In particular, bands belonging to 1-9 classes (280-100 KDa) were grouped in the high
molecular weight proteins (H.M.W.), 10-21 classes (100-35 kDa) in the medium molecular weight proteins (M.M.W.),
bands 22-31 (35-10 kDa) in the low molecular weight (L.M.W.) range. On the basis of their electrophoretic mobility and
mass, we can argue that most represented proteins of FBS, such as BSA and Fibrinogen, are in 12-15 classes range. We
can observe that such species are not predominantly represented in the gel lines of protein coronas. This suggest that, in
the serum mixture, complex mechanisms of competition among highly affine protein molecules lead NPs to act as
concentrators of less abundant serum proteins, while BSA and Fibrinogen only partially interact with the NPs surface
(Figure 2).”'5" Such an effect was found to be similar in both the cellular media, with a slight dependence on the NPs
size. Moreover, histograms relative to the band intensity of the three grouped classes (i.e., HM.W, M.M.W and L.M.W)
revealed further differences in the kinetics of proteins distribution in the hard protein corona (Figure 2B). In particular, at
1 h, HM.W. and L.M.W. proteins are strongly up-represented with respect to fetal bovin serum (control), while M.M.W.
proteins are down represented (Figure 2B). After 48 hours, the intensity of M.M.W. protein classes increases at expense
of the L.M.W. proteins (Figure 2B), while layers composed by high molecular weight protein do not show particular
changes over time.'*'®?' This suggests that this latter class is less susceptible than the other groups to the dynamic
protein exchange occurring during the formation of protein corona. Since increasing evidences suggest that the specific
molecular composition of protein corona may play a fundamental role in triggering biological responses,”'*'° the above
characterizations are of particular interest.

The gel bands of interest were excised, digested and analyzed by LC-MS/MS. The main identified protein species
adsorbed onto the metallic NPs surfaces are reported on the Table in Figure 2. We found out important proteins involved
in key biological processes, such as transport and trafficking (Apolipoprotein Al, Transferrin, Vitamin D-binding
protein, etc.), blood coagulation (Protein C inhibitor, antithrombin III, Coagulation factor V, etc.) and tissue development
(Fibulin 1, periostin, Thrombospondin-1, Galectin 3 binding protein, etc.).”'®'*** On the basis of their molecular weight,
such proteins are present especially in the M.M.W. and L.M.W. groups. Hence, they may be susceptible to the exchange
kinetics evidenced in Figure 2B. Such changes, occurring within the experimental temporal windows typical of cell
viability tests, might differently affect the outcomes of nanotoxicity tests, due to the specific biological influence of
protein coronas.
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Figure 2: Proteomic workflow for the “ex situ” characterization of the protein corona onto AuNPs in the presence of the
cell culture media, enriched with FBS as proteins source. A) Representative SDS-PAGE of protein corona
obtained from 15, 40 and 80 nm AuNPs, after incubation with DMEM and RPMI at 37 °C for 1 hour and 48 hours.
(B) Semiquantitative densitometry analyses of gel bands at two different time points of protein corona formation
(1 h and 48 h). Approximately 30 gel bands were experimentally detected as single peaks, whose intensity
percentages were plotted vs band electrophoretic position (data not reported). Classes 1-31 are ranged starting from
high to low molecular weights. Plot of band intensity vs pooled gel bands, which were grouped as reported: 1-9 as
HM.W.,, 10-20 as M.M.W. and 21-31 as L.M.W., according to the experimental position. Data are reported as
mean values of three independent experiments. Identified proteins by LC-MS/MS and their relative biological
functions were reported in the Table.
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1.2 Bacteria proteome is influenced by bacteria/nanorough films interaction

To characterize the nano-biointeractions we explored another proteomic approach using the combination of 2D-DIGE
technique and LC-MS/MS. This proteomic workflow (Figure 3) led us to investigate the entire proteomic profile of E.
coli, upon interaction with substrates at controlled levels of nanoroughness. 2D-DIGE is a well established and powerful
method that allows understanding and clarifying specific metabolic pathways of cells by highlighting up- or down-
expression of proteins.”** Figure 3(top) shows a representative 2D gel (in single channels and overlaid image) in which
~1500 protein spots of E. coli grown on both glass and nanorough gold substrates were identified. We used strips with a
4-7 pH gradient for the first dimension to better resolve the bacterial proteomic profile. The quality of our 2D-DIGE
experiments was demonstrated by a variance below 15% for 1500 spots within the biological replicates;* at the same
time, also the Principal Component Analysis (PCA) (Figure 3bottom) clearly displayed two well resolved populations.
Yellow spots (which represent the population of control proteins pool) are in fact grouped together in the left side of the
Spot Maps and are well separated from the red spots (representing the treated population)*’ (Figure 3 bottom). Among
the ~1500 protein spots in the 2D gel, we identified 15 of them which were differentially expressed (up- or down-
regulated) with significant statistical validity [t-test < 0.02 between glass (control) and nanorough (treated)] (no
significant differences were detected between glass and flat gold surface). These 15 significant spots, representative of
15 proteins, showed up and down trends of regulation, as also quantified by the Extended Data Analysis (EDA) (data not
reported). Protein identification was performed by picking up the 15 significant spots, from the corresponding
preparative gel, and carrying out LC-MS/MS mass spectrometry analyses. We observed that the presence of
nanotopography alone, without chemical or biological external stimuli/surface modifications, induces a different
expression of proteins involved in transcription regulation, transport of oligopeptides and aminoacids, energy
metabolism, stress response, and synthesis and modification of macromolecules (Table II). In particular, we found that
some proteins involved in the general stress response were regulated in the nanorough samples. For instance, the DNA
protection during starvation protein (Dps), that represents one example of defense against oxidative DNA damage in
actively growing cells,”® was up-regulated. At the same time, also the OsmC stress-inducible membrane protein (whose
transcription is typically induced at elevated osmotic pressure) codified by the osmC gene® was up-regulated. Such latter
finding is also confirmed by the down-regulation of the H-NS transcriptional regulator, which is a histone-like protein
able to repress the expression of numerous genes, including osmC.*® We also found that several proteins involved in
general cell processes were regulated; in this frame, the over-expression of the YaeT complex is of particular interest, as
it is required for the Outer Membrane B-barrel Proteins (OMPs) assembly, that is important for a proper maintenance of
the outer membrane, required for cell viability.*' In addition, the NusA protein, involved in transcription termination in
the tryptophan operon of E. coli,** and the Periplasmatic Histidine Binding Protein (HBP), that is an initial receptor in
the process of active transport across cell membranes and/or chemotaxis,”' are both up-regulated in the bacteria
interacting with the nanorough surfaces. On the other side, the Oligopeptide transport OppA,* the Outer Membrane
Protein A (OMPA), that plays a structural role in the integrity of the bacterial cell surface,** and Protein YgiW are down-
expressed. These observations indicate that nanostructured surfaces strongly affect E. coli cells, leading to general stress
processes in bacteria, which activate defense mechanisms against DNA or membrane damage. Moreover, we detected
proteins important for the synthesis and modification of macromolecules. The B-subunit of the Glycyl-tRNA synthetase,
an important enzyme in protein synthesis,” and the Dihydrodipicolinate synthase, a crucial target enzyme of many
antibiotics,’® resulted over-expressed. On the other hand, the Uracil phosphoribosyltransferase, which is the precursor for
all pyrimidine nucleotides (pyrimidine salvage enzyme),’’ is down-regulated. Finally, we found that the energy
metabolism proteins Transketolase 2°* and Pyruvate kinase®® were both up-regulated in treated samples. Overall, such
protein pattern suggests that E. coli undergoes important changes in the metabolic pathways upon interaction with
nanostructured surfaces, confirming that nanoroughness alone causes a general stress condition in the bacteria. A
possible explanation is that the nanotopography causes a significantly reduced contact area of the bacteria with the
underlying substrate, likely perturbing their anchoring mechanisms. This might also lead to damages of the outer
membrane of adherent E. coli, which consequently rearrange its protein expression profile up-regulating enzymes
involved in the protection of DNA, aminoacid synthesis, energy production, regulation and rearrangement of the external
membrane; at the same time, E. coli down-regulates some transport proteins and enzymes related to DNA synthesis,
possibly trying to avoid mistakes and/or damages during base synthesis.
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Figure 3 2-D DIGE and Principal Component Analysis (PCA) of bacteria extracts upon treatment with control and
nanorough gold substrates. Top): overlay of whole proteome of bacteria treated onto flat (Cy3) and rough gold
substrate (Cy5), and pooled internal standard (Cy2). The three samples show overlap based on distinct color of
protein spots; bottom) Clustering analysis of proteins by PCA. A filter including all proteins that were present in
>75% spot maps was applied. Previously, a subset considering those proteins whose expression varied within the
95th confidence level (Student’s t test; p < 0.02) was created.
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1220 | gij1sgo1ess | Osmotically inducible, stress| -y o) g poc7 | g6 20 15.2;5.57
inducible membrane protein

Table II. Summary of protein identification based on peptide mass fingerprinting/peptide sequencing and database
searching approaches using LC-MS/MS analyses. The protein are classified according to their biological function,
with the average ratio and statistical data (obtained by DeCyder software), and the data from Mascot

identifications.

* Average volume ratio (treated/control) and t test p value, quantified by DeCyder BVA module. The average ratio
value indicates the standardized volume ratio between the two groups (indicated as log of the true ratio
measurements). The values are displayed in the range from -co to -1 for decreased expression and from +1 to +oo

for increased expression.

® Score: Mascot search algorithm reports ion scores as -10*log(P), where P is the probability that the observed

match is a random event. Scores > 38 indicate identity or extensive homology (p < 0.05).
¢ Calculated automatically by Mascot.
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