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Stefania Rombolà

We apply to locally finite partially ordered sets a construction which associates a complete lattice
to a given poset; the elements of the lattice are the closed subsets of a closure operator, defined
starting from the concurrency relation. We show that, if the partially ordered set satisfies a property
of local density, i.e.: N-density, then the associated lattice is also orthomodular. We then consider
occurrence nets, introduced by C.A. Petri as models of concurrent computations, and define a family
of subsets of the elements of an occurrence net; we call those subsets causally closed because they
can be seen as subprocesses of the whole net which are, intuitively, closed with respect to the forward
and backward local state changes. We show that, when the net is K-dense, the causally closed sets
coincide with the closed sets induced by the closure operator defined starting from the concurrency
relation. K-density is a property of partially ordered sets introduced by Petri, on the basis of former
axiomatizations of special relativity theory.

1 Introduction

We consider models of concurrent behaviours based on partial orders, and in particular occurrence nets.
Occurrence nets were introduced by C.A. Petri ([8]) as a model of non sequential processes which are
physically realizable. They are a special kind of Petri nets, where occurrences of local states (also
called conditions) and of events are partially ordered. The partial order is interpreted as a kind of causal
dependence relation (for background on partial orders and occurrence nets, see [4]).

Any partially ordered set (or poset for short) induces a concurrency relation, defined as the comple-
ment of the partial order. This relation is symmetric but in general non transitive.

By applying known techniques of lattice theory, one can derive, from such a relation, a complete,
orthocomplemented lattice of subsets of the underlying set.

In a recent paper ([2]) we showed that this technique, applied to an occurrence net, always gives an
orthomodular lattice.

In the present paper, we consider N-density and K-density, properties defined by Petri, inspired by
former axiomatizations of special relativity theory (see, for example, [6]). A partial order is K-dense if
any line (namely, a maximal subset of pairwise ordered elements) intersects any cut (a maximal subset
of pairwise incomparable elements). This corresponds to the intuitive idea that in a given global state
(represented by a cut) any sequential subprocess is in some state, given by a point along the subprocess.
N-density is a sort of local, and weaker, form of K-density.

We show that N-density, together with two local finiteness properties, of a poset is sufficient to
produce an orthomodular lattice. This generalizes one of the main results of [2].

We then restrict attention to degree-finite and interval-finite occurrence nets. On these nets we intro-
duce the notion of causally closed set, which corresponds to a set of elements of the net which identifies
a sort of causally closed subprocess, i.e.: a subprocess uniquely constructible starting from a set of con-
current conditions. We show that closed sets, as defined in [2], are causally closed and prove that, in the
case of K-dense occurrence nets, closed sets and causally closed sets coincide.

http://dx.doi.org/10.4204/EPTCS.9.2
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Figure 1: A finite orthomodular lattice.

The next section collects some definitions and results to be used later. In Section 3, we show that N-
density and interval-finiteness suffice to grant the orthomodularity of the lattice of closed sets generated
starting from the concurrency relation. Section 4 introduces the notion of causally closed set, and shows
that in K-dense occurrence nets, closed sets and causally closed sets coincide.

Proofs are omitted, but can be found in [3].

2 Preliminary Definitions

2.1 Orthomodular Posets and Lattices

In this section we recall the basic definitions related to orthomodular posets and lattices.

Definition 1 An orthocomplemented poset P = 〈P,≤,0,1,( .)′〉 is a partially ordered set (P,≤), equipped
with a minimum and a maximum element, respectively denoted by 0 and 1, and with a map ( .)′ : P→ P,
such that the following conditions are verified (where ∨ and ∧ denote, respectively, the least upper bound
and the greatest lower bound with respect to ≤, when they exist): ∀x,y ∈ P

(i) (x′)′ = x;

(ii) x≤ y⇒ y′ ≤ x′;

(iii) x∧ x′ = 0 and x∨ x′ = 1.

The map ( .)′ : P→ P is called an orthocomplementation in P. In an orthocomplemented poset, ∧ and
∨, when they exist, are not independent: in fact, the so-called De Morgan laws hold: (x∨ y)′ = x′ ∧ y′,
(x∧y)′ = x′∨y′. In the following, we will sometimes use meet and join to denote, respectively, ∧ and ∨.
Meet and join can be extended to families of elements in the obvious way, denoted by

∧
and

∨
.

A poset (P,≤) is called orthocomplete when it is orthocomplemented and every countable subset of
pairwise orthogonal elements of P has a least upper bound.

A lattice L is a poset in which for any pair of elements meet and join always exist. A lattice L is
complete when the meet and the join of any subset of L always exist.
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Definition 2 [1] An orthomodular poset P = 〈P,≤,0,1,( .)′〉 is an orthocomplete poset which satisfies
the condition:

x≤ y⇒ y = x∨ (y∧ x′)

which is usually referred to as the orthomodular law.
The orthomodular law is weaker than the distributive law. A lattice L is called distributive if and

only if ∀x,y,z ∈L the equalities x∧ (y∨ z) = (x∧ y)∨ (x∧ z), x∨ (y∧ z) = (x∨ y)∧ (x∨ z) hold. Or-
thocomplemented distributive lattices are called Boolean algebras. Orthomodular posets and lattices
can therefore be considered as a generalization of Boolean algebras and have been studied as algebraic
models for quantum logic [10].

Any orthomodular lattice can be seen as a family of partially overlapping Boolean algebras. Figure 1
shows a finite orthomodular lattice.

2.2 Closure Operators

Definition 3 Let X be a set and P(X) the powerset of X. A map C : P(X)→ P(X) is a closure operator
on X if, for all A,B⊆ X,

(i) A⊆ C (A),
(ii) A⊆ B⇒ C (A)⊆ C (B),
(iii) C (C (A)) = C (A).

A subset A of X is called closed with respect to C if C (A) = A. If C is a closure operator on a set X , the
family {A⊆ X | C (A) = A} of closed subsets of X forms a complete lattice, when ordered by inclusion,
in which ∧

{Ai : i ∈ I}=
⋂
i∈I

Ai,
∨
{Ai : i ∈ I}= C (

⋃
i∈I

Ai).

The proof of this statement can be found in [5].
We now describe a well-known construction from binary relations to closure operators (see, for

example, [5]). Let X be a set, and α ⊆ X ×X be a symmetric relation. Define an operator (.)⊥ on the
powerset of X : given A⊆ X

A⊥ = {x ∈ X | ∀y ∈ A : (x,y) ∈ α}.

By applying twice the operator ( .)⊥, we get a new operator C( .) = ( .)⊥⊥. The map C on the
powerset of X is a closure operator on X . A subset A of X is called closed with respect to ( .)⊥⊥ if
A = A⊥⊥. The family L(X) of all closed sets of X , ordered by set inclusion, is a complete lattice.

When α is also irreflexive, the operator ( .)⊥ applied to elements of L(X) is an orthocomplementa-
tion; the structure L (X) = 〈L(X),⊆, /0,X ,( .)⊥〉 then forms an orthocomplemented complete lattice.

2.3 Occurrence Nets

Definition 4 A net is a triple N = (B,E,F), where B and E are countable sets, F ⊆ (B×E)∪ (E×B),
and

(i) B∩E = /0

(ii) ∀e ∈ E ∃x,y ∈ B : (x,e) ∈ F and (e,y) ∈ F.
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The elements of B are called local states or conditions, the elements of E local changes of state or events,
and F is called the flow relation. Note that we allow isolated conditions but not isolated events.

Local states correspond to properties which can be true or false in a given global state of the system;
potential global states of the system modeled by N are subsets of local states.

For each x ∈ B∪E, define •x = {y ∈ B∪E | (y,x) ∈ F}, x• = {y ∈ B∪E | (x,y) ∈ F}. For e ∈ E, an
element b ∈ B is a precondition of e if b ∈ •e; it is a postcondition of e if b ∈ e•.

Occurrences of events are in accord with the following firing rule: an event may occur if its precon-
ditions are true and its postconditions are false; when the event occurs its preconditions become false,
while its postconditions become true. In this way the occurrence of an event changes the current global
state by only changing the local states directly connected to the event itself.

Occurrence nets are a special class of nets used to model non-sequential processes ([8], [4]) by
recording the partial order of the validity of conditions and of the event occurrences in the evolution of
the system behaviour.

Definition 5 A net N = (B,E,F) is an occurrence net iff

(i) ∀b ∈ B : |•b| ≤ 1 ∧ |b•| ≤ 1 and

(ii) ∀x,y ∈ B∪E : (x,y) ∈ F+⇒ (y,x) /∈ F+,

where F+ denotes the transitive closure of F.

Definition 5(i) means that an occurrence net does not contain non-deterministic choices, the idea being
that all conflicts are resolved at the behavioural level. Definition 5(ii) means that an occurrence net
contains no cycles, the idea being that all loops are unfolded at the behavioural level.

Because of Definition 5(ii), the structure (X ,v) derived from an occurrence net N by putting X =
B∪E and v= F∗ (F∗ denotes the reflexive and transitive closure of F) is a partially ordered set (shortly
poset). We will use @ to denote the associated strict partial order.

Given a partial order relation ≤ on a set P, we can derive the relations li = ≤ ∪ ≥, and co = (P×
P)\ li. We will be interested in such relations derived from (X ,v). In such case, intuitively, x li y means
that x and y are connected by a causal relation, and x co y means that x and y are causally independent.
The relations li and co are symmetric and not transitive. Note that li is a reflexive relation, while co is
irreflexive. Given an element x ∈ X and a set S ⊆ X , we write x co S if ∀y ∈ S : x co y. Moreover, given
two sets S1 ⊆ X and S2 ⊆ X , we write S1 co S2 if ∀x ∈ S1,∀y ∈ S2 : x co y. In the following we will use
xcoy or (x,y) ∈ co indifferently, and similarly for li.

On the basis of the flow relation F and its transitive closure F+, to each x ∈ X we associate the
elements in its past and in its future, denoted by:

F−(x) = {y ∈ X | y @ x} and

F+(x) = {z ∈ X | x @ z}

respectively. By generalizing to subsets S of X , we denote the past and the future of S by

F−(S) = {x ∈ X | x /∈ S,∃y ∈ S : x ∈ F−(y)} and

F+(S) = {x ∈ X | x /∈ S,∃y ∈ S : x ∈ F+(y)}.

From the definition, it follows that an element x belongs neither to its future nor to its past.
A clique of a binary relation is a set of pairwise related elements. From the co and li relations one

can define cuts and lines of a poset P = (P,≤) as maximal cliques of co and li, respectively:
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Figure 2: Illustration of N-density.

Cuts(P) = {c⊆ P | c is a maximal clique of co∪ idP};
Lines(P) = { l ⊆ P | l is a maximal clique of li}.

Given an occurrence net N = (B,E,F), we will denote by Cuts(N) and Lines(N), respectively, the set of
cuts and the set of lines of the poset associated to N. We will always assume the Axiom of Choice, so
that any clique of co and of li can be extended to a maximal clique. In particular, we will denote cliques
and maximal cliques of co which contain only conditions by B-cosets and B-cuts, respectively.

C.A. Petri formalized some properties which intuitively should hold for posets corresponding to
non-sequential processes which are actually feasible [9], see also [4]. In particular, we will consider
interval-finiteness, degree-finiteness, a sort of local density called N-density, and K-density.

Definition 6 P = (P,≤) is interval-finite⇔∀x,y ∈ P : |[x,y]|< ∞, where [x,y] = {z ∈ P | x≤ z≤ y}.

For x,y ∈ P, we write x l y if x < y and, for all z ∈ P, x < z ≤ y⇒ z = y. Let •x = {y |y l x}, and
x• = {y |x l y}.
Definition 7 P = (P,≤) is degree-finite⇔∀x ∈ P : |•x|< ∞ and |x•|< ∞.

Definition 8 P =(P,≤) is N-dense⇔∀ x,y,v,w∈P: (y < v and y < x and w < v and (y co w co x co v))⇒
∃z ∈ P : (y < z < v and (w co z co x)).

For a graphical representation of N-density condition see Figure 2.

Proposition 1 [4] Let (X ,v) be the poset associated to an occurrence net N = (B,E,F), X = (B∪E).
Then (X ,v) is N-dense.

K-density is based on the idea of interpreting cuts as (global) states and lines as sequential subpro-
cesses. K-density postulates that every occurrence of a subprocess must be in some state.

Definition 9 P = (P,≤) is K-dense⇔∀c ∈ Cuts(P),∀l ∈ Lines(P) : c∩ l 6= /0.

Obviously, in general |c∩ l| ≤ 1. An occurrence net N is K-dense if its associated poset is K-dense.

3 Closed Sets Induced by the Concurrency Relation

In this section we apply the construction recalled at the end of Section 2.2 to the co relation in partially
ordered sets, and study the resulting algebraic structure of closed sets.

Let P = (P,≤) be a poset. We can define an operator on subsets of P, which corresponds to an
orthocomplementation, since co is irreflexive, and by this operator we define closed sets.
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Figure 3: A closed set S and its orthocomplement S⊥.

Definition 10 Let S⊆ P, then

(i) S⊥ = {x ∈ P | ∀y ∈ S : x co y} is the orthocomplement of S;

(ii) if S = (S⊥)⊥, then S is a closed set of P.

The set S⊥ contains the elements of P which are not in causal relation with any element of S. Ob-
viously, S∩ S⊥ = /0 for any S ⊆ P. In the following, we sometimes denote (S⊥)⊥ by S⊥⊥. Note that:
∀c ∈Cuts(P), c⊥ = /0 and c⊥⊥ = P.

Example 1 Figure 3 shows a closed set S and its orthocomplement S⊥ on the poset associated to an
occurrence net.

A closed set S and its orthocomplement S⊥ share the past and the future.

Proposition 2 [2] Let S = S⊥⊥. Then F−(S) = F−(S⊥) and F+(S) = F+(S⊥).

Now we study the algebraic structure induced by the closure operator defined above. We call L(P)
the collection of closed sets of P = (P,≤). By the results on closure operators recalled in Section 2.2,
we know that

L (P) = 〈L(P),⊆, /0,P,( .)⊥〉

is an orthocomplemented complete lattice, in which the meet is just set intersection, while the join of a
family of elements is given by set union followed by closure.

In general, the structure L (P) is not orthomodular and a fortiori non distributive, as can be seen in
the following example.

Example 2 Let us consider the poset P = (P,≤) shown in the left side of Fig. 2 and the closed sets {w}
and {v,w}; {w}⊥ = {x,y}. The orthomodular law is not valid since {w} ⊂ {v,w},({x,y}∧{v,w}) = /0
and hence ({w}∨ /0) is not equal to {v,w}.

The poset considered in the previous example is not N-dense. It is natural to investigate if there is a
relation between N-density of a poset P and the orthomodularity of the associated structure of closed sets
L (P). It turns out that N-density of an interval-finite poset is a sufficient condition even if not necessary
for orthomodularity.

Theorem 1 Let P = (P,≤) be an N-dense, interval-finite poset. Then L (P) is an orthomodular lattice.
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Figure 4: A non N-dense poset generating an orthomodular lattice.

The reverse implication is not true, as can be seen in the following example.

Example 3 Figure 4 shows a poset P = (P,≤) which is not N-dense. The family of closed sets L(P)
forms a Boolean, hence orthomodular, lattice, whose atoms are {z},{x},{w},{u}.

From Theorem 1 and Proposition 1 it follows that the family L(N) of closed sets of the poset (X ,v)
associated to an interval-finite occurrence net N = (B,E,F), with X = (B∪E), forms an orthomodular
lattice L (N) = 〈L(N),⊆, /0,X ,( .)⊥〉. This result constitutes a generalization and a different proof of a
theorem in [2], where interval-finite and degree-finite occurrence nets have been considered and where
closed sets have been called “causally closed sets”.

4 Causally Closed Sets in Occurrence Nets

In this section we consider only interval-finite and degree-finite occurrence nets. We introduce particular
subsets of elements of such an occurrence net N = (B,E,F), which we call “causally closed sets”, since
they can be interpreted as subprocesses which can be uniquely obtained by a particular B-coset.

We show that, for K-dense occurrence nets, “causally closed sets” coincide with closed sets of the
poset associated to the occurrence net, as defined in the previous section.

Definition 11 Let N = (B,E,F) be an occurrence net. C ⊆ B∪E is a causally closed set iff

(i) ∀e ∈ E, •e⊆C⇒ e ∈C,

(ii) ∀e ∈ E, e• ⊆C⇒ e ∈C,

(iii) ∀e ∈ E, e ∈C⇒ •e∪ e• ⊆C,

(iv) ∀x,y ∈C, x li y⇒ [x,y]⊆C.

A causally closed set is therefore a convex set which, intuitively, is closed with respect to the firing
rule, i.e.: if it contains an event then it contains also all its preconditions and postconditions, and, more-
over, if it contains all the preconditions or all the postconditions of an event then it contains the event
itself.

Example 4 The set S in Figure 3 is causally closed. The set of grayed elements on the left side of
Figure 5 is causally closed. On the contrary, the set of grayed elements on the right side of Figure 5 is
not causally closed because, for example, it contains the preconditions of an event but it does not contain
the event itself.

We call CC(N) the family of causally closed sets of N. It is easy to prove that CC(N) is closed by
intersection, /0 ∈CC(N), B∪E ∈CC(N). Hence the family CC(N) forms a complete lattice, where meet
is given by set intersection. In general this lattice is not orthocomplemented.
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Figure 5: Examples illustrating that in general φ(A) 6= A⊥⊥.

Definition 12 Let N = (B,E,F) be an occurrence net, X = B∪E, and P(X) be the powerset of X. Define
φ : P(X)→ P(X) as follows: ∀A⊆ X, φ(A) =

⋂
{Ci |Ci ∈CC(N) and A⊆Ci}.

Note that φ is a closure operator, A⊆ φ(A) and the frontier of φ(A) is a subset of conditions, where the
frontier of a subset A of X is the set {x ∈ A | ∃y ∈ X \A such that: xFy or yFx}.

Closed sets, as defined in Section 3, are causally closed sets, and this directly follows from a charac-
terization of closed sets given in [2]. However, in general a causally closed set is not a closed set, in fact
the following example shows two cases in which φ(A) 6= A⊥⊥.

Example 5 Figure 5 shows a non K-dense occurrence net. Remember that ∀c ∈ Cuts(N),c⊥ = /0 and
c⊥⊥ = X. Consider now the B-cut c1 formed by the gray conditions on the left side of the figure; φ(c1) =
c1. For the B-cut c2 on the right side of the figure, c2 ⊂ φ(c2)⊂ X.

When A is a B-coset of N = (B,E,F), φ(A) can be inductively constructed, as shown in the following.

Definition 13 Given Ai ⊆ B∪E, define Ai+1 = Ai ∪{Int(e) | e ∈ E, •e ⊆ Ai ∨ e• ⊆ Ai}, where for e ∈
E, Int(e) = {e}∪ •e∪ e•.

Note that Ai ⊆ Ai+1 for every i.

Proposition 3 Let A be a B-coset of N. Then
⋃

i∈N Ai = φ(A), where A0 = A.

The inductive construction of a causally closed set from a B-coset is shown in Figure 6. This
motivates the name of causally closed sets and suggests an interpretation of these as non sequential
subprocesses, which are causally closed in the sense that are uniquely constructed starting by a B-coset
of the whole process. The construction, in fact, simulates the forward and backward run of the system
starting from a B-coset: it adds all the events such that either all their preconditions or all their postcon-
ditions belong to the starting B-coset, and then it proceeds by adding to the set all the post/preconditions
of the added events, and so on until no other event may be added.

Now we show that for K-dense occurrence nets, CC(N) coincides with the collection L(N) of closed
sets of N generated by the co relation.

Let N = (B,E,F) be a K-dense, interval-finite and degree-finite occurrence net.

Theorem 2 Let Y ⊆ B∪E. Then Y ∈CC(N) ⇐⇒ Y ∈ L(N)

The theorem is an immediate consequence of the following propositions.
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Figure 6: Inductive construction of a causally closed set.

Proposition 4 Let A be a B-coset of N. Then φ(A) = A⊥⊥.

Proposition 5 Let Y ∈CC(N), and A⊆ Y be a B-cut of the subposet induced by Y . Then φ(A) = Y .

Therefore, in the case of K-dense, interval-finite and degree-finite occurrence nets, the families of
causally closed sets and of closed sets coincide. In particular, any closed set can be uniquely obtained
starting from a B-coset by applying to it the inductive construction as in Definition 13.

5 Conclusion

The main contribution of this paper is twofold. On one hand, we have applied to locally finite partially
ordered sets a construction which associates a complete lattice to a given poset; the elements of the lattice
are certain subsets of the poset, precisely the closed subsets of a closure operator, defined starting from
the co relation. We have shown that, if the partially ordered set satisfies a property of local density, i.e.:
N-density, then the associated lattice is also orthomodular. Orthomodular posets are studied in the frame
of quantum logic (see, for example, [7]). This suggests to interpret closed sets as propositions in a logical
language.

On the other hand, we have focused attention on occurrence nets as models of concurrent computa-
tions, and defined a family of subsets of the elements of an occurrence net; we call those subsets causally
closed because they can be seen as subprocesses of the whole net which are, intuitively, closed with re-
spect to the (forward and backward) firing rule of the net. We have shown that, when the net is K-dense,
the causally closed sets coincide with the closed sets induced by the closure operator defined starting
from the co relation.

Starting from these first results, we intend to pursue the investigation of lattices of subprocesses in
different directions. On one hand, we will study further properties of such lattices, and their relations
with domain theory. On the other hand, we will extend the construction to cyclic Petri nets, in which a
sensible concurrency relation can be defined even in the absence of a global partial order.
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