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1 Introduction

Higgs branches of theories with eight supercharges are interesting and highly adaptive
geometric objects to study. Interesting, because they are immune to quantum corrections.1
Adaptive, because they do not change under dimensional reduction, which means that one
can study them in any dimension compatible with eight supercharges.

Having a Lagrangian formulation of a theory allows one to at least in principle construct
its Higgs branch as a hyper-Kähler quotient. Often, however, this is not possible to do
directly. For instance, a 5d N = 1 Lagrangian theory may have a UV fixed point that
is infinitely strongly coupled. In that case, one cannot trust the construction at weak
coupling. This issue has been studied in many papers, such as [1].

M-theory on non-compact singular Calabi-Yau threefolds is a well-known arena for
constructing five-dimensional SCFT’s. This subject was initiated in the nineties in the
two seminal papers [4, 5]. In the past five years, the subject has seen a revival, with
more thorough systematic studies of such theories, their global symmetries, their moduli
spaces, their prepotentials, and various methods for constructing them. It is difficult at
this point to reference all works, some key works include [6–15]. From that perspective,
the Higgs branch will be realized by the complex structure moduli and the Wilson lines of
the supergravity C3-form.

1Some caveats apply, such as the possibility of dimension jumps when a gauge coupling is strictly infinite,
see [1] for a seminal reference on the subject. Also, the possibility of quantum splitting can spoil this picture,
we thank Julius Grimminger for pointing out counterexamples to this creed, [2, 3].
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Mostly, the literature focuses on toric threefolds. Those are particularly nice for several
reasons: they can be constructed by drawing a two-dimensional diagram, the effective field
theory data can be read off such a diagram, the prepotential can be understood in terms
of the topological vertex, and one can directly relate it to 5-brane webs in IIB via a chain
of dualities, [16].

However, the toric realm is but a tiny subset of all possible interesting geometries one
can build. Indeed, even if we just restrict to the hypersurface case, the toric realm misses
the majority of situations. It is the purpose of this paper to initiate the study of non-
toric affine threefolds. We will focus on the case of rank-zero theories, and derive Higgs
branches for several classes of threefolds. We will find that they behave like free hypers
with discrete gauging.

We will focus on threefolds that admit C∗-fibrations, allowing for reductions to IIA
string theory with D6-branes and O6-planes. This class of examples admits a straightfor-
ward relation between IIA and M-theory as follows. Given a stack of N D6-branes, there
are three adjoint scalars. Pairing up two of them into a complex Higgs field Φ, the relation
between IIA and M-theory is given by the following:

uv = det
(
z · 1N − 〈Φ〉

)
. (1.1)

So the M-theory geometry follows the spectral data of the worldvolume Higgs field. With
this viewpoint, the Higgs branch of the D6-theory, which is defined by the fluctuations of
Φ, immediately translates into geometric data in M-theory.

In this paper, we will study threefolds that are one-parameter families of A-type and
D-type that admit simple flops. ‘Simple flops’ means that these threefolds admit small
resolutions such that only one exceptional P1 is produced. We recast the problem of
parametrizing complex structure deformations in terms of switching on open string vev’s
in IIA string theory with D6-branes and O6-planes.

For the A-series, we will tackle the so-called family of Reid’s pagodas. These are a
class of conifold-like threefolds, which, despite being simple flops, can have Higgs branches
of arbitrarily high dimensions. We will fiberwise reduce M-theory on such threefolds to
IIA on C2 with intersecting D6-branes, and capture these hypermultiplets through Ext1

computations of open string spectra. We will confirm and extend the results of [17], and
will find that the Higgs branches are given by

MRPk
= Hk/Zk , (1.2)

where k is a positive integer parametrizing the family of Reid’s Pagoda threefolds and Zk
acts by multiplying each H factor by the same phase, as detailed in section 4. The flavor
group of the theory turns out to be Gfl = U(1)/Zk.2

2In general, the CY threefold geometry only manifests a U(1) subgroup of the expected symplectic group,
even in cases where it seems that we are seeing k free hypermultiplets. However, since we are dealing with
simple flops, as opposed to multiple flops, the background geometry only admits one independent real mass
parameter. This explains why we do not see bigger flavor groups such as Sp(k). Ultimately, such questions
must be answered by knowing the details of the metric on the moduli space of the CY plus Wilson lines.
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The presence of a single Abelian factor means that only one real mass can be switched
on, which matches the fact that Reid’s pagodas only admit simple flops.

For the D-series, we will study two families of threefolds: the so-called Brown-Wemyss
family [18], and the family of Laufer’s examples [19]. These are the so-called ‘flops of length
two’. The ‘length two’ here means that, even though the threefold admits only a simple
flop, the exceptional P1 will allow for bound states of two M2-branes to wrap it, a curious
property conferred by the O(−3)⊕O(1) normal bundle. We will recast this information in
terms of IIA string theory with D6-branes and O6-planes. The orientifolding will allow for
charge-two open string states. We will find that the Higgs branch for the Brown-Wemyss
case is given by

MHB = H× H4/Z2 × H/Z2 (1.3)

whereas for Laufer’s examples one has

MHB = Hk × H2k+2/Z2 × H/Z2 (1.4)

where k is a positive integer parametrizing the family of Laufer’s threefolds. The Z2 groups
act on the corresponding factor by reflection. Here the flavor group is GF = U(1). Again,
this matches the fact that these spaces only admit simple flops.

2 The conifold

In this section, we will introduce the simplest possible example: the Higgs branch of a free
hypermultiplet, seen in terms of the moduli space of M-theory on the conifold. We define
the conifold as the following hypersurface in C4:

uv = z2 − w2 ⊂ C4〈u, v, z, w〉 . (2.1)

This space admits two inequivalent small resolutions:(
u z − w

z + w v

)
·
(
s

t

)
= 0 and

(
u z + w

z − w v

)
·
(
s

t

)
= 0 , (2.2)

where [s : t] are the homogeneous coordinates of a P1. These small resolutions replace
the singularity with a P1, on which an M2-brane can be wrapped. This sphere has a
normal bundle O(−1) ⊕ O(−1). From the five-dimensional perspective, this implies that
this M2-brane will correspond to a hypermultiplet, as explained by Witten [20].

This conifold admits one normalizable deformation

uv = z2 − w2 + µ , with µ ∈ C . (2.3)

This mode sits in H3(X3,C), where X3 is the threefold defined in (2.3). After deforming,
a 3-sphere A is created, and the dual non-compact 3-cycle B intersects A at a point. In
terms of the holomorphic 3-form Ω3, we can think of the value of µ as the period

µ :=
∫
A

Ω3 . (2.4)

– 3 –



J
H
E
P
1
0
(
2
0
2
1
)
0
1
8

In terms of Poincaré dual 3-forms α and β, we have that∫
X3
α ∧ β = 1 (2.5)

The supergravity C3-field can thus be ‘dimensionally reduced’ along these forms as

C3 = aα+ bβ , (2.6)

where (a, b) form a pair of real Wilson lines for the 3-form. We can now combine all four
real degrees of freedom (µ, a, b) into a single five-dimensional hypermultiplet. The Higgs
branch for this theory is a single-centered Taub-Nut space, of quaternionic dimension one:

H = TN1 ∼= H . (2.7)

In this paper, we will study such Higgs branches by exploiting the duality between M-
theory on C∗-fibered threefolds and IIA string theory in the presence of D6-branes. In this
case, the uv = . . . form of our hypersurface shows us that the conifold is indeed C∗-fibered,
and that the circle in C∗ ∼= R × S1 collapses wherever the r.h.s. vanishes, i.e. over the
reducible locus

D6− locus : (z − w)(z + w) = 0 . (2.8)

The link between M-theory geometry and IIA D6-configurations is established as follows:
let there be a stack of N coincident D6-branes in C2〈z, w〉, located on the divisor z = 0.
This stack gives rise to N = 1, d = 7 SYM with SU(N) gauge group. There are three real
adjoint scalars in the vector multiplet: φi=1,2,3. One pairs up two of these into a complex
field Φ := φ1 + iφ2. In this case, we begin with two parallel D6-branes, at the origin of
the Higgs branch, i.e. 〈Φ〉 = 0. Then, the M-theory uplift is given by a C∗-fibration that
collapses over the spectral curve of Φ as follows:

uv = det
(
z12 − 〈Φ〉

)
= z2 . (2.9)

In this case, the geometry is that of a local K3 with an A1-singularity times a complex
plane generated by w. This describes 7d N = 1 SYM. Now consider switching on the
following position-dependent vev

〈Φ〉 =
(
w 0
0 −w

)
. (2.10)

This breaks SU(2) 7→ U(1), although the group enhances back to SU(2) at the origin
(w, z) = (0, 0). Now we have two intersecting branes, and the M-theory geometry is given
by the threefold:

uv = z2 − w2 ⊂ C4 . (2.11)

Supersymmetry is broken to eight supercharges. We expect there to be a free 5d hypermul-
tiplet. In order to see this in IIA, we use the linearized equations of motion in holomorphic
gauge for the fluctuation field ϕ of the Higgs, as explained in the seven-brane case in [21]:

∂ϕ = 0 ϕ ∼ ϕ+ [〈Φ〉, g] , (2.12)

– 4 –
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where g are complexified su(2) matrices, i.e. g ∈ sl(2). Note, that this is a localized version
of the standard string-theoretic Ext1 computations one would perform for more general
objects of the derived category of coherent sheaves.

Parametrizing both the fluctuation and gauge parameter as follows:

ϕ =
(
ϕ0 ϕ+
ϕ− −ϕ0

)
, g = 1

2

(
g0 g+
g− −g0

)
, (2.13)

we deduce that
ϕ ∼ ϕ+ w

(
0 g+
−g− 0

)
. (2.14)

This tells us a few things. First, that we can have 7d fluctuations given by ϕ0. Most impor-
tantly, that the fluctuations ϕ± are defined up to any multiple of w. This means that they
are localized on the (w, z) = (0, 0) locus, and are therefore genuinely 5d dynamical fields:

ϕ± ∈ C[w]/(w) ∼= C . (2.15)

The pair (ϕ+, ϕ−) forms a free hypermultiplet, as expected. If we switch on a vev for this
pair, the M-theory geometry deforms as follows:

uv = z2 − w2 − ϕ+ϕ− . (2.16)

Therefore, we see that there is a projection from the full hypermultiplet moduli space onto
the complex structure moduli space of the conifold

π : (ϕ+, ϕ−) −→ µ := ϕ+ϕ− . (2.17)

This map defines the Higgs branch as a C∗-fibration over the complex structure moduli
space, whereby the fibers contain the data about the C3 Wilson lines. From the brane
perspective this is understood from the fact that there is an action

(ϕ+, ϕ−) 7→ (λϕ+, λ
−1ϕ−) , (2.18)

where λ is a parameter in the complexified flavor group U(1)C ∼= C∗. So, if we recombine
the two D6-branes, we will get a single brane in the shape of a throat (diffeomorphic to
a cylinder), as it can be seen from the right hand side of (2.16). One can then define
two Wilson lines for the worldvolume gauge field: one along the compact 1-cycle, and one
along the non-compact 1-cycle. This uplifts in M-theory to the two Wilson lines of the
supergravity C3 form on the S3, and its dual non-compact 3-cycle.

3 ADE families and IIA Higgs field

The conifold presented in the previous section is a particular example of a family of A-type
ALE spaces, parametrized by the parameter w. At w = 0 the equation (2.1) describes an
ALE surface with a A1 singularity at the origin; at generic value of w the singularity is
deformed.

– 5 –
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Let us generalize it to an An−1 type ALE family. This machinery is well-developed
in [22]. The An−1 singularity has the form

uv = zn . (3.1)

Its versal deformation is
uv = zn +

n∑
i=2

(−1)iσizn−i . (3.2)

This space is a fibration with fiber given by the (deformed) An−1 surface and base the
space t/W of gauge invariant coordinates σi (i = 2, . . . , n)3 on the Lie algebra sl(n), where
t is the Cartan torus and W the Weyl group. The space (3.2) is non-singular. However by
making a base change, one can obtain a singular space whose resolution blows up a subset
of the roots of the central ALE fiber. Coming back to the conifold: the defining equation
is obtained by the non-singular family

uv = z2 + σ2 (3.3)

with the base change σ2 = w2. The small resolution of the conifold blows up the simple
root of A1 in the central fiber. This is called a simultaneous resolution. The family is now
fibered over the base t.

For generic n, making such a base change resolves all the simple roots of An in the
central fiber. One can also make a partial simultaneous resolution in which the base change
maps the base t/W to t/W ′, where W ′ ⊂ W . In this case, the resolution of the family
blows up the roots that are left invariant by W ′, in the central fiber. The base of the
fibration is now parametrized by the n− 1 W ′ invariants, that we call σ̃i (i = 1, . . . , n− 1).

In order to construct varieties with a simple flop (i.e. the small resolution blows up a
single P1), one chooses a Weyl subgroup W ′ that leaves only one simple root invariant.

The M-theory threefolds are obtained from these families by making the invariant
coordinates σ̃i depend (linearly)4 on the parameter w.

From the IIA perspective, one starts with a stack of n D6-branes in flat space, that
is dual to M-theory on a An−1 singularity. As seen before, this gives rise to a N = 1,
d = 7 SU(n) gauge theory with three adjoint scalars φi (i = 1, 2, 3). Now we fiber this
background over the w-plane. We do this by switching on a non-zero w-dependent vev
for the complex adjoint scalar Φ = φ1 + iφ2. This corresponds to giving angles to the
D6-branes, while in M-theory one is deforming the An−1 singularity. The vev 〈Φ〉 ∈ sl(n)
breaks the SU(n) gauge group on the branes to the commutant of 〈Φ〉. In the N = 1 d = 5
theory, the surviving massless gauge bosons live in a background vector multiplet together
with the modes of the φ3 fields. A vev for φ3, with [〈φ3〉, 〈Φ〉] = 0, corresponds to the
resolution of the singularity of the family in M-theory, that is the resolution of the roots
of the ALE fiber left invariant by W ′. Hence, the generic field Φ corresponding to a given

3The invariant σi is the i-th elementary symmetric polynomial in the eigenvalues of an element of the
Lie algebra.

4Other dependences are indeed possible. However, we will stick to linear in order to avoid creating
further singularities in the resulting threefolds.
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partial simultaneous resolution is an element of the Lie algebra that commutes with the
Cartan generators dual to the resolvable roots of the central fiber.

Let us consider the Dynkin diagram of An−1, and say that we want a simultaneous
resolution of the simple root α` (1 ≤ ` ≤ n− 1). Then φ3 must live along the Cartan

φ3 ∝
(

1
`1` 0
0 − 1

n−`1n−`

)
(3.4)

and the generic Φ relative to the simultaneous resolution of α` will be

Φ =
(

Φ`×` 0
0 Φ(n−`)×(n−`)

)
∈ sl(n) (3.5)

The Casimirs of such Higgs field are the σ̃i (i = 1, . . . , n − 1) W ′-invariant coordinates,
where W ′ is the Weyl subgroup that leaves the simple root α` invariant. Each block is
a reconstructible Higgs that can be written (up to a gauge transformation) in a canonical
form that depends directly on the ‘partial’ Casimirs σ̃i [21]. In particular, for a U(m) block
we have [21]

Φm×m =



0 1 0 · · · 0
0 0 1 0 0
... 0 . . . . . . 0
0 0 0 0 1

(−1)m−1σ̂m (−1)m−2σ̂m−1 · · · −σ̂2 σ̂1


(3.6)

with σ̂j (j = 1, . . . ,m) the Casimirs of Φm×m. The Casimirs σ̃i (i = 1, . . . , n − 1) of the
block-diagonal total Φ are given by the collection of σ̂j ’s of each block (with the constraint
that the trace of Φ vanishes). The Casimirs σi’s can be written as functions of the σ̃i’s.

Given the total Φ, whose entries depend on the Casimirs σi, the family equation (3.2)
is obtained by

uv = det (z1n − 〈Φ〉) . (3.7)

When we make the choice σi = σi(w), we obtain the equation of a threefold. It is of the
form of a C∗ fibration. The D6-brane locus is then given by

∆D6 ≡ det (z1n − 〈Φ(w)〉) = 0 . (3.8)

The generalization to the other ADE algebras is straightforward. Given the Dynkin
diagram, a simultaneous resolution corresponds to a choice of simple roots. This selects, on
one side the subspace where φ3 lives, on the other side theW ′Weyl subgroup that gives the
base of the family. The commutant of φ3 tells us what is the form of a generic Φ producing
the wanted family. The M-theory threefold is obtained by choosing the w-dependence of
the invariants σ̃i’s. This gives the map from threefolds that are 1-parameter families of
deformed ADE singularities and setups of D6-branes. As for the conifold example, we will
use this map to compute the HB of M-theory on such threefolds, by making computations
in the dual IIA setup.
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4 Reid’s pagoda

Reid’s pagoda is a class of singular CY threefolds that admit simple flops, meaning that
only one exceptional P1 is produced. It is defined as the following hypersurface:

uv = z2k − w2 ⊂ C4〈u, v, z, w〉 . (4.1)

This geometry admits k normalizable deformations, and hence we expect the Higgs branch
to be quaternionic k-dimensional. However, it is very difficult to explicitly construct the
Higgs branch starting from this 3-fold data. We know from the supergravity analysis, that
it is given by a (C∗)k-fibration over Ck, whereby the base corresponds to complex structure
moduli deformations, and the fiber corresponds to periods of C3 on the various 3-cycles cre-
ated by the deformations. But getting the global data of this variety is not straightforward.

Let us apply what we have seen in section 3. The threefold (4.1) is an ALE family that
is singular at the origin, where the ALE fiber develops an A2k−1 singularity. Resolving
the singularity blows up one exceptional P1, i.e. we have a simple flop. The root of the
singular central fiber that is simultaneously resolved is5 αk. This M-theory background is
reduced in IIA to a system of 2k D6-branes Higgsed by a Φ of the form (3.5) with n = 2k
and ` = k. The W ′-invariant Casimirs are σ̃i = σ̂

(1)
i and σ̃i+k = σ̂

(2)
i with i = 1, . . . , k (and

σ̂
(1)
1 + σ̂

(2)
1 = 0). Moreover, to obtain (4.1) one makes the choice

σ̂
(1)
j = σ̂

(2)
j = 0 for j = 1, . . . , k − 1 and σ̂

(1)
k = −σ̂(2)

k = w

Hence

〈Φ〉 =
(
J+ 0
0 J−

)
, where J± :=


0 1

. . .
1

±w . . . 0


k

. (4.2)

J± is the k × k Jordan block plus (±w) in the (k, 1)-entry.
The D6-branes live on a divisor in C2 given by:

det(z · 12k − 〈Φ〉) ≡ z2k − w2 = 0 . (4.3)

Notice, that this is again reducible, like for the conifold. However, the two components do
not intersect transversely, so the open string spectrum will not be obvious.

The first thing we want to study is the effective gauge group in five dimensions. We will
see that it is a discrete group. Our background vev breaks the original seven-dimensional
worldvolume6 SU(2k) gauge symmetry to a subgroup given by the following 2k×2k matrices(

eiα1 1k 0
0 eiα2 1k

)
∈ U(1)1×U(1)2 with α1 +α2 = 2πn

k
n = 0, 1, . . . , k−1 . (4.4)

5In the convention that α1 is the left root in the Dynkin diagram of A2k−1, α2 is the next one and so on.
6Here we assume that before switching on the vev (4.2), the M-theory background is a A2k−1 ALE space,

leading to a seven-dimensional gauge theory with SU(2k) group. In other words the dual type IIA string
coupling has been sent to infinity. With a different choice of discrete data one may start with the gauge
group SU(2k)/Z2k; we do not make this choice here. See [23, 24] for a clear exposition of these choices,
and [25, 26] for the seminal work.

– 8 –



J
H
E
P
1
0
(
2
0
2
1
)
0
1
8

Therefore, our background Higgses as follows:

SU(2k) −→ U(1)× Zk . (4.5)

It is generated by a continuous U(1) subgroup (n = 0) and a Zk subgroup, that we can
take to be

Zk :
(
e2πin/k · 1k

1k

)
, n = 0, . . . , k − 1 . (4.6)

So far, we have discussed the seven-dimensional perspective, and this product is the gauge
group. In order to deduce the five-dimensional flavor and gauge symmetries, we proceed in
two steps: first we compactify all directions transverse to the matter locus on a torus. This
yields a 5d theory with gauge group U(1) × Zk. Now we take a decompactification limit.
This will ungauge the continuous U(1) factor as the volume tends to infinity. The discrete
part, however, having no gauge coupling, will remain gauged from the 5d perspective. To
summarize:

U(1)gauge × (Zk)gauge −→ U(1)flavor × (Zk)gauge . (4.7)

Here, one might wonder, whether the full flavor group could be bigger. However, since the
IIA setup is built entirely with D-branes, where all flavor (ungauged) groups are derived
from the open string picture, we claim that the above group captures the full flavor group
(up to the subtlety of possible symplectic completions of the unitary group). Now we
wish to understand the Higgs branch. This consists in all possible deformations of the
background Higgs field: Φ = 〈Φ〉+ ϕ, modulo linearized gauge transformations

ϕ ∼ ϕ+ [〈Φ〉, g] , (4.8)

for any broken generator g ∈ sl(2k). Let us write g and ϕ in the block form

g =
(
α β

γ δ

)
, ϕ =

(
ϕα ϕβ

ϕγ ϕδ

)
(4.9)

where each block is a k × k matrix and Trα = Trδ = 0. Then

[〈Φ〉, g] =
(

[J+, α] J+β − βJ−
J−γ − γJ+ [J−, δ]

)
. (4.10)

We see that, due to the block-diagonal form of the Higgs vev, α only affects the ϕα block
of ϕ, β only ϕβ , etc. This means that, in the computation of the deformations, we can
work out each block individually.

Let us do it explicitly for k = 1. We have

ϕα ∼ ϕα +
(
α21 − α12w −2α11

2α11w −α21 + α12w

)
. (4.11)

We can use α11, α21 to fix the first line to zero:

ϕα ∼
(

0 0
ϕα21 ϕ

α
22

)
+
(

0 0
ϕα12w ϕα11

)
. (4.12)
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We see that we do not have further freedom to localize the second line, hence we do not
obtain localized modes from this block. The same is true for the block related to δ. Instead,
localized modes come from the off-diagonal blocks. Let us consider the block ϕβ and let
us define its entries in the following convenient way

ϕβ =
(
ϕβL + ϕβR ϕβ12
ϕβ21 −ϕβL + ϕβR

)
. (4.13)

Let us see how much we can gauge fix

ϕβ ∼
(
ϕβL + ϕβR ϕβ12
ϕβ21 −ϕβL + ϕβR

)
+
(
β21 + β12w β22 − β11

(β22 + β11)w −β21 + β12w

)
. (4.14)

We see that we can fix to zero ϕβ12 and ϕβL by respectively choosing (β22 − β11) and β21,
obtaining

ϕβ ∼
(
ϕβR 0
ϕβ21 ϕ

β
R

)
+
(

β12w 0
(β22 + β11)w β12w

)
. (4.15)

We then obtain the two modes localized on the ideal (w), i.e.

ϕβR, ϕ
β
21 ∈ C[w]/(w) ∼= C . (4.16)

These modes have charge +1 with respect to the U(1) flavor symmetry. Analogously we
obtain two modes with U(1) charge −1 from the block ϕγ .7

For generic k we have the same pattern. After gauge fixing we are left with k constant
modes in the charge +1 block ϕβ

ϕβ ∼



ϕβk 0 0 0 0 0
...

...
ϕβ3 . . . . . . ϕβk 0 0
ϕβ2 ϕβ3 . . . . . . ϕβk 0
ϕβ1 ϕβ2 ϕβ3 . . . . . . ϕβk


(4.17)

with entries ϕβj ∈ C[w]/(w) ∼= C (j = 1, . . . , k). Analogously, we get k constant modes in
the charge −1 block ϕγ . This gives a total of k hypermultiplets.

One can also follow a different path to get the same result. We will shift our paradigm,
by relying on a physical argument put forward in [21]. First, note that the blocks J+ and
J− are what are called reconstructible Higgs backgrounds in that paper. This means that
their characteristic polynomials describe smooth hypersurfaces:

PJ±(z) := det(z · 1k − J±) = zk ∓ w . (4.18)

Physically, each block is describing a single smooth recombined brane, with a U(1) gauge
group on it, let’s call them B±, sitting on the hypersurfaces:

B± : w ∓ zk = 0 . (4.19)
7As done for the conifold, one can switch on a vev for the localized modes. The deformed threefold is

then uv = det (z14 + 〈Φ〉+ ϕ). This provides the projection map from the Higgs branch to the deformation
space of the Pagoda with k = 2.
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Now, we can turn things around, and regard this as a Higgsed background for a starting
SU(2) system as follows:

〈Φ̃〉 =
(
zk 0
0 −zk

)
. (4.20)

Here, we have reinterpreted this as an initial U(2) stack on w = 0, Higgsed to Φ̃.
Once we have this background, we can study the fluctuations as we did before, by

modding out by complexified gauge transformations. It is similar to the conifold analysis,
with one important major difference, as we will see. Let us again parametrize fluctuations
and gauge parameters as follows:

ϕ =
(
ϕ0 ϕ+
ϕ− −ϕ0

)
, g = 1

2

(
g0 g+
g− −g0

)
. (4.21)

Now, we see that fluctuations are defined up to

ϕ ∼ ϕ+ zk
(

0 g+
−g− 0

)
. (4.22)

From this, we deduce two things: just as for the conifold, localized modes live only in the
off-diagonal part of ϕ. This is as expected, since we are looking at a pair of intersecting
branes, albeit with a non-transversal intersection. Second and most importantly, there are
now several bifundamental open string modes. Naïvely, the modes live in the following ring:

ϕ± ∈ C[z]/(zk) ∼= Ck . (4.23)

So the (ϕ+, ϕ−) pairs can give rise to k distinct hypermultiplets. This makes intuitive sense,
since the two branes intersect at a fat point of multiplicity k: in terms of ideals, we have

(w + zk, w − zk) = (w, zk) . (4.24)

What is remarkable about this background is that the M-theory geometry sees only one
vanishing P1. Nevertheless, there are k distinct membrane states that give rise to separate
hypers. This point is emphasized in our companion paper [27], where the Gopakumar-Vafa
invariants corroborate this statement.

In order to really know the structure of the Higgs branch, however, we have to take
into account the discrete gauge group we found in (4.5). More specifically, let us see how
the Zk discrete gauge group acts on our zero-modes:

Zk :
(

0 ϕβ

ϕγ 0

)
7→

(
0 e2πni/kϕβ

e−2πni/kϕγ 0

)
(4.25)

We can conclude that RPk has a k-dimensional Higgs branch with the following orbifold
geometry:

H(RPk) = Hk/Zk . (4.26)
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This generalizes the result found in [17].8 The flavor symmetry of this theory will be the
7d gauge symmetry modulo the discrete 5d gauge group, so in this case:

GF = U(1)/Zk . (4.27)

Note, that even though there are k hypermultiplets, the flavor symmetry is of rank one.
This implies that we can only switch on one real mass, if we are to think of real masses as
background vev’s in the usual way. The fact that only one real mass is available perfectly
matches the fact that the corresponding M-theory threefold only admits a simple flop, as
opposed to a reducible one.

5 Flops of length two

5.1 Families of Dn-surfaces

In this section we discuss threefolds that are one-parameter families of Dn-type ALE sur-
faces. As before, we call this parameter w. At the origin of the parameter space the surface
develops a Dn singularity, while on generic points this singularity is fully deformed. These
examples were developed from the matrix factorizations viewpoint in [28] and from the
NCCR viewpoint in [29].

In order to have a flop of length two, such family should have a point-like singularity
at w = 0. The resolution of such a singularity restricted to the central fiber should be the
standard resolution of the trivalent node in the Dynkin diagram of Dn.

To construct these threefolds explicitly one proceeds as explained in section 3: one
starts with the complete family of Dn-type ALE surfaces over the space t/W. This (n +
2)-dimensional family (n-dimensional base plus 2-dimensional fiber) is non-singular even
though the fiber at the origin has a Dn-singularity.

We now want to simultaneously resolve only the trivalent node of the Dynkin diagram
of Dn, in order to generate a flop of length two [28]. To do this, one takes W ′ the Weyl
subgroup corresponding to all the other simple roots [22, 30]. These generate a An−3 ⊕
A1 ⊕ A1 subalgebra of Dn and the corresponding Weyl subgroup is Sn−2 × Z2 × Z2. This
subalgebra corresponds to the breaking of SO(2n) to U(n − 2) × SO(4), that would be
produced by a Higgs φ3 along the Cartan generator dual to the trivalent root. The Weyl
invariant coordinates are the Casimirs σi (i = 1, . . . , n − 2) of U(n − 2) and the Casimirs
$1 and $2 of SO(4).

Now, to obtain a threefold with a flop of length two one just needs to take the W ′
invariants to depend (linearly) on the parameter w, in such a way that at w = 0 all of
them vanish, i.e., now σi = σi(w) and $1,2 = $1,2(w).

The IIA setups that engineer these flops of length two involve not only D6-branes, but
also O6−-planes. These are defined such that a stack of n D6/image-D6 pairs lie on top of
the O-plane and carry an SO(2n) gauge group. The adjoint scalar fields φi (i = 1, 2, 3) are

8Notice that this happens only when we send the string coupling to infinity (ALE fibration in M-theory)
and we make a specific choice for the discrete data at the boundary.
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therefore anti-symmetric 2n × 2n matrices. It will be more convenient, however, to work
in a basis of SO such that the Higgs has the following block diagonal structure:

φi =
(
A B

C −At

)
, with Bt = −B ,Ct = −C . (5.1)

In this basis the matrices G of SO(2n) are such that

G · Q ·Gt = Q where Q =
(

0 1n
1n 0

)
. (5.2)

The M-theory threefold is an ALE fibration, where the fibration is generated by w-
dependent deformations of the fiber. The (simultaneous) resolution is given by a constant
vev for φ3 along the Cartan dual to the (simultaneously) resolved roots. Since [Φ, φ3] = 0,
Φ should live in the adjoint representation of U(n− 2)× SO(4) ⊂ SO(2n). The Higgs field
is then the following 2n× 2n matrix (in the basis (5.1))

Φ =


ΦU(n−2)

a b

−Φt
U(n−2)

c −at

 (5.3)

where the block ΦSO(4) =
(
a b

c −at

)
, with b, c antisymmetric 2× 2 matrices, is a field in the

adjoint of SO(4), while ΦU(n−2) is in the adjoint of U(n− 2).
The fields ΦSO(4) and ΦU(n−2) depend on the Casimirs of the corresponding groups; in

particular $2 =
√

det(ΦSO(4)) and $1 = 1
2TrΦ2

SO(4) + 2$2. There is an analogous relation
to (3.7) that gives the M-theory threefold in terms of the IIA Higgs field [30]:

x2 + zy2 −
√

det(z1 + Φ2)−$2
2σ

2
n−2

z
+ 2$2σn−2y = 0 (5.4)

This is a C∗ fibration. The C∗ fiber degenerates over the D6-brane locus (given by the
discriminant of the quadric in y):

∆D6 ≡
√

det(z1 + Φ2) = 0 (5.5)

The O6-plane locus is at z = 0 (where the coefficient of y2 vanishes). The type IIA target
space is a double cover of the base of the C∗ fibration, that can be given by the equation
ξ2 = z (see [27] for more details).

For the following, it is more convenient to exchange rows and columns to bring Φ into
the form

Φ =

 ΦU(n−2)
−Φt

U(n−2)
0

ΦSO(4)

 . (5.6)
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In this basis, the elements g of the algebra so(2n) satisfy:

gQ+Qgt = 0, with Q =


0 1n−2

1n−2 0
0 12
12 0

 . (5.7)

Each block can be written (by a gauge transformation) in a canonical form, where the
entries directly depend on the Casimirs. In particular, for the U(n− 2) block we have the
form (3.6). For the SO(4) block, one can use that so(4) = su(2) ⊕ su(2) to obtain the
canonical form

ΦSO(4) =


0 1 0 −$1

4
$1
4 −$2 0 $1

4 0
0 1 0 $2 − $1

4
−1 0 −1 0

 , (5.8)

where the Casimirs of the two SU(2) are $1
4 and $2 − $1

4 .

5.2 Brown-Wemyss threefold

In this section we study a one-parameter family of deformed D4 singularities, i.e. n = 4.
Moreover we will set $2 = 0. When this happens the family takes the simple form

x2 + zy2 −
(
zσ2

1 + (z − σ2)2
)

(z +$1) = 0 . (5.9)

The threefold is defined by the following w-dependence of the Casimirs of U(2)×SO(4):

σ1 = −w , σ2 = w , $1 = −w , $2 = 0 . (5.10)

Plugging these into (5.9), one obtains the hypersurface

x2 + zy2 − (z − w)
(
zw2 + (z − w)2

)
= 0 . (5.11)

This threefold was introduced in [18]. It is singular at the origin, where the ALE fiber
develops a D4 singularity. The total space admits a small resolution with a flop of length
two. This threefold has Milnor number 11 and the number of normalizable deformations is
6, hence we expect a 6-dimensional Higgs Branch. Moreover, the threefold admits a small
resolution, leading to a U(1) flavor symmetry.9

In IIA we start with an O(8) stack at the orientifold location z = 0 and we switch on
a background Higgs

Φ =



0 1 0 0 0 0 0 0
−w −w 0 0 0 0 0 0
0 0 0 w 0 0 0 0
0 0 −1 w 0 0 0 0
0 0 0 0 0 1 0 w

4
0 0 0 0 −w

4 0 −w
4 0

0 0 0 0 0 1 0 w
4

0 0 0 0 −1 0 −1 0


. (5.12)

9See [31, 32] for an explicit resolution of these geometries by quiver techniques with a focus on the U(1)
symmetry and its charges.
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The group that commutes with the Higgs field Φ is isomorphic10 to U(1)× Z2 × Z2:

eiα 0 0 0 0 0 0 0
0 eiα 0 0 0 0 0 0
0 0 e−iα 0 0 0 0 0
0 0 0 e−iα 0 0 0 0
0 0 0 0
0 0 0 0 %

0 0 0 0
0 0 0 0


(5.13)

where α is a phase and % live in the Z2 × Z2 ⊂ O(4) generated by

ζ1 =


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

 and ζ2 =


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (5.14)

We then have a continuous abelian group, that is seen as a flavor group in the 5d theory,
times a discrete gauge group.

We now consider the Higgs branch. As for the examples in section 4, this consists in the
deformations ϕ of the background Higgs, modulo linearized O(8) gauge transformations:

ϕ ∼ ϕ+ [Φ, g] . (5.15)

The commutator [Φ, g] can be written in the block form

[Φ, g] =



B2×2 Au2×2 C2×4

Ad2×2 −Bt
2×2 D2×4

D4×2 C4×2 −B4×4


(5.16)

where C2×4 is completely determined by C4×2 (analogously for the D-blocks). Due to the
block-diagonal form of the Higgs (5.12), each block of [Φ, g] depends only on the entries of
g in the same block.

Let us proceed now block by block. We start with

B2×2 =
(

g21 + g12w −g11 + g22 + g12w

−(g11 + g21 − g22)w −g21 − g12w

)
.

10Note, that if we assume a starting SO(8) gauge group, then the residual group is U(1)× Z2.
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Using g21 and the combination g11 − g22 we can fix to zero the corresponding entries ϕ11
and ϕ12 in the fluctuation of the Higgs. We are then left with:

ϕ2×2 ∼
(

0 0
ϕ21 ϕ22

)
︸ ︷︷ ︸

ϕ2×2

+
(

0 0
−w(ϕ12 − ϕ11) ϕ11

)
︸ ︷︷ ︸

B2×2

. (5.17)

As a result we see that ϕ21 and ϕ22 are not constrained, and so they are not dynamical in 5d.
The other relevant diagonal block

B4×4 =


g58+g65+ 1

4(g56−g76)w g66−g55 0 −1
4(g55+g66)w

1
4(g66−g55)w g58−g65+ 1

4(−g56−g76)w 1
4(g55+g66)w 0

0 g55+g66 −g58−g65+ 1
4(g76−g56)w 1

4(g55−g66)w
−g55−g66 0 g55−g66 −g58+g65+ 1

4(g56+g76)w


does not generate localized modes as well. In fact, using the combinations (g66 − g55),
(g66 + g55), (g58− g65) and (g58 + g65) we can set to zero, for example, the entries ϕ55, ϕ56,
ϕ66 and ϕ76, remaining with:

ϕ4×4 ∼


0 0 0 ϕ58
ϕ65 0 −ϕ58 0
0 0 0 ϕ78
0 0 0 0


︸ ︷︷ ︸

ϕ4×4

+


0 0 0 −wϕ76

4
wϕ56

4 0 wϕ76
4 0

0 0 0 −wϕ56
4

0 0 0 0


︸ ︷︷ ︸

B4×4

. (5.18)

The first localized mode comes when we consider Au2×2. The gauge equivalence is

ϕu2×2 ∼
(

0 ϕ14
−ϕ14 0

)
︸ ︷︷ ︸

ϕu
2×2

+
(

0 −wg14
wg14 0

)
︸ ︷︷ ︸

Au
2×2

. (5.19)

We immediately see that ϕ14 is localized on the ideal (w), giving:

ϕ14 ∈ C[w]/(w) ∼= C (5.20)

and so it corresponds to 1 localized 5d mode. We note that this mode has charge +2 with
respect to the flavor U(1) in (5.13).

The block Ad2×2 acts analogously to Au2×2 and it yields a localized mode with charge −2
with respect to the flavor U(1).

Let us come to the block C4×2. The gauge equivalence is:

ϕ4×2 ∼


ϕ53 ϕ54
ϕ63 ϕ64
ϕ73 ϕ74
ϕ83 ϕ84


︸ ︷︷ ︸

ϕ4×2

+


−g18 − g27 − g16w

4
(
g17 + g27 − g26

4
)
w − g28

1
4(g15 + g17)w − g28

1
4(4g18 + g25 + g27 + 4g28)w

−g18 − g25 − g16w
4

(
g15 + g25 − g26

4
)
w − g28

g15 + g17 − g26 g25 + g27 + (g16 + g26)w


︸ ︷︷ ︸

C4×2

. (5.21)
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Almost all the entries in ϕ corresponding to this block can be gauge-fixed to zero, except
ϕ64 and two linear combinations of ϕ54, ϕ63, ϕ64. After having fixed all the other entries
to zero, we have:

ϕ54 ∼ ϕ54 + w2
(
−g16

2 −
g26
2

)
+ w

(
g17 −

g26
4 + ϕ53

2 − ϕ73
2 − ϕ84

2

)
− g28

ϕ63 ∼ ϕ63 + 1
4w(g26 − ϕ83)− g28

ϕ64 ∼ ϕ64 + g26w
2

4 + 1
4w(4g28 + 2ϕ53 + 2ϕ73 + ϕ84)

ϕ74 ∼ ϕ74 + w2
(
−g16

2 −
g26
2

)
+ w

(
−g17 + 3g26

4 − ϕ53
2 + ϕ73

2 − ϕ83 −
ϕ84
2

)
− g28

To make the computation easier and without loss of generality, we redefine ϕ54, ϕ63 and
ϕ74 as

ϕ54 = ψ1 − ψ2 , ϕ63 = ψ3 , ϕ74 = ψ1 + ψ2 . (5.22)

Using the gauge freedom given by g28 we can set ψ3 to zero, remaining with:11

ϕ64 ∼ ϕ64 + g26w
2

2
ψ1 ∼ ψ1 + 1

4w
2(−2g16 − 2g26)

ψ2 ∼ ψ2 + 1
4w(2g26 − 4g17)

(5.23)

We immediately see that ϕ64 is localized on the ideal (w2), yielding:

ϕ64 ∈ C[w]/(w2) ∼= C2 . (5.24)

On the other hand, we see that:

ψ1 ∈ C[w]/(w2) ∼= C2

ψ2 ∈ C[w]/(w) ∼= C
(5.25)

We then have a total of 5 localized modes with charge +1 under the U(1) in (5.13).
The block D4×2 works like C4×2 and gives 5 localized modes with charge −1 with

respect to the U(1) in (5.13).
Summing up, we obtain a 5d N = 1 theory with six hypermultiplets (the modes with

opposite charge pair up into a hyper):

• 1 hyper of charge 2:12 (
Q0
Q̃0

)
=
(
ϕ14
ϕ41

)
11And discarding the dependence on the other ϕij , that are not free parameters.
12The existence of a charge-2 state localized at the origin of threefolds admitting flops of length two was

already predicted in [31].

– 17 –



J
H
E
P
1
0
(
2
0
2
1
)
0
1
8

• 5 hypers of charge 1:

(
Q1
Q̃1

)
=
(
ϕ

(1)
64

ϕ
(1)
28

)
,

(
Q2
Q̃2

)
=
(
ϕ

(2)
64

ϕ
(2)
28

)
,

(
Q3
Q̃3

)
=
(
ψ

(1)
1

ψ̃
(1)
1

)
,

(
Q4
Q̃4

)
=
(
ψ

(2)
1

ψ̃
(2)
1

)
,

(
Q5
Q̃5

)
=
(
ψ2
ψ̃2

)
.

The Higgs branch will then be H6 modded out by the discrete gauge symmetry Z2×Z2.
Let us analyze the action of the generators ζ1 and ζ2 of Z2×Z2 on the zero modes we

have just found.

• The charge-2 hyper (Q0, Q̃0) is unaffected by the Z2 × Z2.

• The non-trivial action occurs on the charge-1 hypers. The gauge fixed ϕ4×2 block is

ϕ4×2 =


0 ψ1 − ψ2
0 ϕ64
0 ψ1 + ψ2
0 0

 . (5.26)

The generator ζ2 changes sign to all the modes, thus

ζ2 :
(
Qi
Q̃i

)
7→ −

(
Qi
Q̃i

)
i = 1, . . . , 5 .

On the other hand, ζ1 swaps the first and the third row, thus giving: ϕ64 7→ ϕ64,
ψ1 7→ ψ1, ψ2 7→ −ψ2, i.e.

ζ1 :
(
Qi
Q̃i

)
7→
(
Qi
Q̃i

)
i = 1, . . . , 4 and

(
Q5
Q̃5

)
7→ −

(
Q5
Q̃5

)
.

We finally claim that M-theory on the threefold (5.11) leads to a 5d theory with Higgs
branch

MHB = H×
(
H4 × H/Z2

)
/Z2 = H× H4/Z2 × H/Z2 (5.27)

where the Z2 inverts the coordinates. The flavor symmetry is the 7d gauge symmetry, i.e.

GF = U(1) . (5.28)

In this case, we do not have to mod the U(1) by the discrete symmetry, since Z2×Z2 acts
differently on the U(1)-charged zero modes (there is no element of U(1) that acts on all
the modes equally to an element of Z2 × Z2).
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5.3 Laufer threefold

We now generalize the computation done in the previous section to a famous flop of length
two, first discovered by Laufer [19]. It is given by the following hypersurface:

x2 + zy2 − t
(
t2 + z2k+1

)
= 0 with k ≥ 1 . (5.29)

By making the change of variable t = w − z, one can put this threefold in the form of a
D2k+3 family with13

σ2k+1 = w, σ2k−1 = 1, σi 6=2k±1 = 0, $1 = −w, $2 = 0 . (5.30)

The form of the Higgs field is like in (5.6) with n = 2k+ 3. The SO(4) block is identical to
the one for the Brown-Wemyss threefold (see (5.12)). The U(2k+1) block is given by (3.6)
with the Casimirs defined in (5.30).

The preserved group is again the diagonal U(1) of the U(2k+1) block times the Z2×Z2
generated by (5.14).

The computation of the zero modes proceeds analogous to what done in section 5.2.
Now the linearized gauge variation of the deformation ϕ is

[Φ, g] =



B(2k+1)×(2k+1) Au(2k+1)×(2k+1) C(2k+1)×4

Ad(2k+1)×(2k+1) −Bt
(2k+1)×(2k+1) D(2k+1)×4

D4×(2k+1) C4×(2k+1) −B4×4



. (5.31)

For the zero modes, one again checks if the various blocks of [Φ, g] localize any mode in 5d.
We find:

. B(2k+1)×(2k+1) and B4×4 do not localize any modes.

. Au(2k+1)×(2k+1) localizes one entry ϕ2 as:

ϕ2 ∈ C[w]/(wk) ∼= Ck, (5.32)

thus yielding k charge 2 localized modes. The same goes for Ad(2k+1)×(2k+1), from
which we obtain k modes ϕ̃2 of charge −2.

. C4×(2k+1) localizes three entries with the same pattern as in the Brown-Wemyss case,
namely:

ϕ1 ∈ C[w]/(wk+1) ∼= Ck+1

ψ1 ∈ C[w]/(wk+1) ∼= Ck+1

ψ2 ∈ C[w]/(w) ∼= C

, (5.33)

13The fact that σ2k−1 = 1 makes the singularity of the ALE fiber at the origin be D2k+2.
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obtaining a total of 2k+3 charge 1 localized modes. D4×(2k+1) gives the same matter
content as C4×(2k+1), but with charge −1.

Summarizing, the spectrum is given as follows:

• k hypers of charge 2: (
Qi
Q̃i

)
=
(
ϕ

(i)
2

ϕ̃
(i)
2

)
i = 1, . . . , k ;

• 2k + 3 hypers of charge 1:(
Qi+k
Q̃i+k

)
=
(
ϕ

(i)
1

ϕ̃
(i)
1

)
,

(
Qi+2k+1
Q̃i+2k+1

)
=
(
ψ

(i)
1

ψ̃
(i)
1

)
i = 1, . . . , k+ 1 , and

(
Q3k+3
Q̃3k+3

)
=
(
ψ2
ψ̃2

)
.

Like for the Brown-Wemyss’ case the discrete group in (5.14) acts in the following way:

• The charge 2 hypers are unaffected by the Z2 × Z2 discrete symmetry.

• The charge 1 hypers transform under ζ2 as

ζ2 :
(
Qi
Q̃i

)
7→ −

(
Qi
Q̃i

)
i = k + 1, . . . , 3k + 3 .

The generator ζ1 acts as

ζ1 :
(
Qi
Q̃i

)
7→
(
Qi
Q̃i

)
i = k + 1, . . . , 3k + 2 and

(
Q3k+3
Q̃3k+3

)
7→ −

(
Q3k+3
Q̃3k+3

)
.

The Higgs branch of M-theory on Laufer’s threefold is then

MHB = Hk ×
(
H2k+2 × H/Z2

)
/Z2 = Hk × H2k+2/Z2 × H/Z2 (5.34)

where the Z2 inverts the coordinates. Like in the previous example, the flavor group is
GF = U(1).

6 Non-simple flops

In this section we present an easy example of non-simple flop, i.e. an isolated singularity
whose exceptional locus is a collection of P1’s. This threefold is given by the equation

uv = z3 − w2z (6.1)

and was dubbed ‘generalized conifold’ in [33]. Since it is a A2-family, the corresponding
IIA Higgs field lives in the adjoint of SU(3). It is given by

Φ =

 0 0 0
0 −w 0
0 0 w

 . (6.2)
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As for the Reid’s pagodas (that were also An-families) we recover the hypersurface (6.1)
computing:

uv = det(z1− Φ) = z3 − w2z . (6.3)

The group preserving the above Higgs is:

U =

 e
iα 0 0
0 eiβ 0
0 0 eiγ

 with α+ β + γ = 0 mod 2π , (6.4)

where we have decoupled the diagonal center of mass U(1).
In order to find the possible zero modes we must mod the fluctuations ϕ of the Higgs

by:
ϕ ∼ ϕ+ [Φ, g] (6.5)

with g a generic element of sl(3).
A direct computation shows that:

ϕ ∼

ϕ11 ϕ12 ϕ13
ϕ21 ϕ22 ϕ23
ϕ31 ϕ32 ϕ33


︸ ︷︷ ︸

ϕ

+

 0 g12w −g13w

−g21w 0 −2g23w

g31w 2g32w 0


︸ ︷︷ ︸

[Φ,g]

. (6.6)

We then see that ϕ11, ϕ22 and ϕ33 cannot be fixed, and so do not give rise to localized
modes in 5d. On the other hand, we note that using the gauge freedom we can set:

ϕ12, ϕ13, ϕ23 ∈ C[w]/(w) ∼= C (6.7)

so that we obtain 3 localized modes. The same goes for ϕ21, ϕ31 and ϕ32, that give rise to
other 3 modes.

It is immediate to obtain the charges of the modes under the three dependent U(1)s
in (6.4):

UϕU−1 =

 0 ei(α−β)ϕ12 ei(α−γ)ϕ13
e−i(α−β)ϕ21 0 ei(β−γ)ϕ23
e−i(α−γ)ϕ31 e

−i(β−γ)ϕ32 0

 . (6.8)

There is no discrete gauge symmetry and then the Higgs branch is simply given by three
free hypermultiplets. Hence, the Higgs branch is simply:

MHB = H3 , (6.9)

with flavor symmetry
GF = U(1)2 . (6.10)

7 Non-resolvable threefolds

In this last section we study a couple of simple examples of threefolds that have terminal
singularities, i.e. singularities that cannot be crepantly resolved.
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7.1 T-brane data

We start with the class of threefolds given by the equation

uv = z2k+1 − w2 (7.1)

These are A2k-families and then admit a description in IIA in terms of a non-zero vev for
a Higgs field living on a SU(2k + 1) stack of D6-branes.

Let us describe in more detail the simplest case, i.e. k = 1:

uv = z3 − w2 . (7.2)

This manifold was studied in [34] in the context of F-theory, where the authors showed
that there is matter localized at the singularity, even though such isolated singularity
does not admit a crepant small resolution. It admits however a non-Kähler resolution, as
anticipated in [35].

Here we confirm the existence of one localized hyper. The characteristic polynomial
is now singular, hence the field Φ does not take the form (3.6) of a reconstructible Higgs.
However we can work out the form of Φ that deforms the SU(3) stack to (7.2):

Φ =

 0 w 0
0 0 w

1 0 0

 . (7.3)

In order to find the zero-modes in the fluctuation matrix ϕ we have to mod out by gauge
equivalences:

ϕ ∼ ϕ+ [Φ, g] (7.4)

where g ∈ gl(3).
Doing so, we find that all the entries in ϕ can be fixed to zero or are not localized on

any ideal, except for:

ϕ12 ∼ ϕ12 + w(g22 − g33) ϕ23 ∼ ϕ23 − w(g22 − g33)
ϕ22 ∼ ϕ22 + w(g32 − g21) ϕ33 ∼ ϕ33 − w(g32 − g21)

(7.5)

We note that ϕ12 and ϕ23 depend on the same parameter, as ϕ22 and ϕ33 do. As a
consequence, we can choose to localize the first two (say ϕ12 and ϕ22) in 5d, while the
other stay non-dynamical. Acting in this way we get:

ϕ12, ϕ22 ∈ C[w]/(w) ∼= C (7.6)

thus giving us 1+1 = 2 modes in total. Since there is no discrete gauge symmetry left by
the Higgs vev, the Higgs branch is given by one free hypermultiplet.

This computation is easily generalized to a generic k. The Higgs field is now

Φ =

 w 0
0 w

12k−1

 . (7.7)
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The computation of the localized zero modes proceeds with the same steps done with k = 1.
The Higgs branch is now given by k free hypermultiplets. This result confirms what found
with different method in [17].

uv = z2k+1 − w2 ←→ k free hypers (7.8)

As noted in [27], different choices of the Higgs field can be made, corresponding to in-
equivalent T-brane backgrounds (putting the 1’s and w’s in different entries) that would
generate a smaller spectrum, and therefore a lower-dimensional Higgs branch.

Let us examine a simple example of a geometry that admits three possible Higgs
branches, depending on the choice of T-brane data. Take the hypersurface given by

uv = z5 − w2 . (7.9)

Again, this is a singular hypersurface that does not admit a crepant Kähler resolution.
Nevertheless, it does admit a fiberwise reduction to IIA string theory with D6-branes,
albeit with D6-branes that wrap singular Riemann surfaces. For the Higgs background,
we see the following three possible choices, each giving rise to a different hypermultiplet
spectrum:

Φ2 =


0 w 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 w
1 0 0 0 0

 ⇒ 2 free hypers

Φ1 =


0 w 0 0 0
0 0 w 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

 ⇒ 1 free hyper

Φ0 =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
w2 0 0 0 0

 ⇒ 0 free hypers

In all three cases, there is no discrete gauging, so we just have free hypermultiplets. We
refer to these different choices as T-brane data, as they consist in inherently non-Abelian
information that does not alter the M-theory geometry, but nevertheless has a severe
impact on the effective physics. It would be interesting to pursue such examples and
compare results with other available methods.

7.2 Partially resolvable singularities

We finally consider a class of threefolds that are a straightforward generalization of (7.2):

uv = z(z2k+1 − w2) . (7.10)
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These spaces can be partially resolved by taking(
u z

z2k+1 − w2 v

)
·
(
s

t

)
= 0 , (7.11)

where [s : t] are the homogeneous coordinates of the exceptional P1. However, the resolution
still possesses a terminal singularity. Hence one expects hypers coming from M2-branes
wrapping the exceptional P1 and hypers coming from the terminal singularity. Moreover,
we expect a continuous U(1) flavor symmetry from the non-Cartier divisor related to the
small resolution (like in all the previous cases where a small resolution was possible).

Again we study in detail only the case k = 1. The Higgs field whose characteristic
polynomial reproduces (7.10) is

Φ =


0

0 w 0
0 0 w

1 0 0

 . (7.12)

The Higgs field fluctuations ϕ are given modulo linearized gauge transformation:

ϕ ∼ ϕ+ [Φ, g] with g ∈ gl(4) . (7.13)

Explicitly we get:

ϕ ∼


ϕ11 ϕ12 ϕ13 ϕ14
ϕ21 ϕ22 ϕ23 ϕ24
ϕ31 ϕ32 ϕ33 ϕ34
ϕ41 ϕ42 ϕ43 ϕ44


︸ ︷︷ ︸

ϕ

+


0 g14 g12w g13w

−g31w g24 − g32w (g22 − g33)w (g23 − g34)w
−g41w g34 − g42w (g32 − g43)w (g33 − g44)w
−g21 g44 − g22 g42w − g23 g43w − g24


︸ ︷︷ ︸

[Φ,g]

.

Using the gauge redundancy we can set ϕ12, ϕ41, ϕ42, ϕ43, ϕ44 and ϕ32 to zero.
We are then left with:

ϕ ∼


ϕ11 0 ϕ13 ϕ14
ϕ21 ϕ22 ϕ23 ϕ24
ϕ31 0 ϕ33 ϕ34
0 0 0 0


︸ ︷︷ ︸

ϕ

+


0 0 g12w g13w

−g31w (g43 − g32)w (g44 − g33)w 0
−g41w 0 −(g43 − g32)w −(g44 − g33)w

0 0 0 0


︸ ︷︷ ︸

[Φ,g]

.

We see that ϕ11 and ϕ24 are unconstrained, and that the pairs (ϕ22, ϕ33) and (ϕ23, ϕ34)
depend on the same parameters, so that we can gauge-fix only a linear combination for
each pair. As a result (making a choice for the gauge-fixing), in total we get 6 modes, or
equivalently 3 hypers:

ϕ13, ϕ14, ϕ21, ϕ31 ∈ C[w]/(w) ∼= C and ϕ22, ϕ23 ∈ C[w]/(w) ∼= C (7.14)

– 24 –



J
H
E
P
1
0
(
2
0
2
1
)
0
1
8

The subgroup of SU(4) preserving Φ as in (7.12) is given by matrices

G =
(
e−3iα 0

0 eiα13

)
. (7.15)

A direct computation shows that the modes ϕ13, ϕ14, ϕ21, ϕ31 are charged under the U(1),
whereas ϕ22, ϕ23 are not. Summing up, we get 2 charged hypers and 1 uncharged hyper.

In the generic k case we still have a U(1) flavor and the modes are organized (as in
k = 1 case) as follows: (

0 charged1×(2k+1)
charged(2k+1)×1 uncharged(2k+1)×(2k+1)

)
(7.16)

We obtain 2 charged hypers along with k uncharged hypers. Since there is no discrete gauge
symmetry, the Higgs Branch is given by k + 2 free hypermultiplets.

uv = z(z2k+1 − w2) . ←→ 2 charged hypers + k uncharged hypers (7.17)

8 Conclusions

In this work we introduced a new way of studying the Higgs branches of rank zero theories
obtained from M-theory on CY threefolds that admit flops, and are either C∗-fibered, or Z2-
orbifolds of such fibrations. Our techniques are based on the M/IIA duality, and readily
reveal discrete gauge groups. The novelty of our approach is that it allows us to leave
the realm of toric examples. It also allows us to study cases that do not admit crepant
resolutions.

Our results can be generalized to theories that admit more complicated flop structures.
More interestingly, such rank zero theories could be coupled to higher rank theories, in
which case the Higgs branch structure will be richer.

It would be important to be able to reproduce our results purely from the monodromy
data of complex structure deformations of the threefolds, and Wilson lines of the C3-field.
At the very least, it should be possible to connect that M-theory data to the deformation
theory of D6-branes on Riemann surfaces and the corresponding Wilson lines of the DBI
gauge fields. This is rather convoluted, and has not even been done in a clear cut way for
the noncompact conifold, despite the pioneering work of [36].
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