
 
 

 

  

Abstract— This paper aims at stimulating the discussion on 
the future of Intelligent Vehicles. It is a position paper, indicat-
ing converging technologies that, in our opinion, will have to be 
used in future Intelligent Vehicles. We present a vision accord-
ing to which Intelligent Vehicles will evolve into Human-peer 
Robots, here called Co-Drivers. Co-Drivers will be able to “un-
derstand” human drivers and to form symbiotic systems with 
them. The general architecture of Co-Drivers, the building 
blocks and the technologies that are needed to bring them to 
life are discussed, pointing out which parts have been already 
researched and which gaps still remain. We clarify what “un-
derstanding driver” actually means and how a joint system can 
be obtained. The paper will identify research needs and paths, 
and hopefully trigger interest. 

I. INTRODUCTION. THE LOST “HORSE”? 
ANKIND used animals, and especially horses, as 
transportation systems for thousand years. Last centu-

ry they were eventually replaced by motor vehicles because 
of range, speed, capacity and costs. However, something 
was lost: the intelligence of the animals was traded with 
power. In a recent book [1], Norman recalls the interaction 
between a rider and a horse as one example of how future 
intelligent things should work: 

Think of skilled horseback riders. The rider “reads” 
the horse, just as the horse can read its rider. (…). This 
interaction (…) is of special interest because it is an ex-
ample of two sentient systems, horse and rider, both in-
telligent, both interpreting the world and communicating 
their interpretations to each other. 
According to Norman, here the key point is the peer-to-

peer cooperation of two “sentient” systems. In this example, 
a man and an animal, but the animal stands for a future intel-
ligent artificial system. 

Norman was not the only one to point out such a smart 
collaboration. The H-metaphor (i.e., rider-horse metaphor) 
was also proposed by Flemish, originally in the aerospace 
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domain, as a guideline for interactions between vehicle and 
driver [2]. More in general, prospecting for smart collabora-
tion between humans and vehicles has been described by 
other authors too, such as Heide [3] and Inagaki [4]. 

In an even broader sense, the envisioned cooperation falls 
into the category of human-robot interactions [5], [6], and in 
particular in that kind of interaction where the robot behaves 
as a peer or tutor or mentor or companion (etc.). 

The sharing of authority and the mixed initiative are two 
crucial aspects of peer cooperation. Adaptive Automation 
[7], [8] refers to systems in which both the user and the sys-
tem can initiate changes in the level of automation, produc-
ing modes of automation more closely tied to operator needs 
at any given moment. 

II. PATHS TOWARDS HUMAN-PEER CO-DRIVERS 
Let us call “Co-Driver” a robotic artificial system that im-

plements the vision described by Norman, i.e., a robot that is 
smart enough to “understand” the driver and to form with 
the driver a symbiotic system. Of course this includes the 
ability of the robot to adapt the level of automation (e.g., 
from supervision to nearly fully autonomous drive), but the 
robot is much more. The H-metaphor helps us to understand 
how this system could work, and guides us to the develop-
ment (including understanding possible issues), but does not 
tell anything about how this robot has to be engineered. 

In the following, we present ideas that we matured in 
many years working on the design of Advanced Driver As-
sistance Systems, including three European projects (PRe-
VENT, SAFERIDER and interactIVe). We introduce the 
general architecture of co-drivers and discuss building 
blocks that in part have already been developed in many 
projects (including, but not limited to, our own). We discuss 
the technologies that can be used to build co-drivers, and 
especially cognitive systems versus systems engineered by 
design, and point out maturity gaps and research needs. 

The paper, by its nature, will not provide conclusive solu-
tions. It is rather intended to stimulate discussion and sug-
gest research paths. 

III. ARCHITECTURES 

A. What Co-Drivers may be. 
There are several terms that can be used to refer to Co-

Drivers. None of them gives the full picture, but recalling 
these terms is useful to point out the main aspects that form 
a Co-Driver, and link Co-Drivers to the State of the Art. 
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Co-Pilot is a term borrowed from the aviation domain. 
Strictly speaking it indicates the second pilot of an aircraft. 
In a broader sense it may also indicate an automatism (more 
properly referred as Autopilot) that can take care of some 
guidance tasks. Using “co-pilot” to indicate an artificial se-
cond pilot casts some extra light on the H-metaphor.  

An autopilot can be turned on and off on demand, or may 
provide intermediate, dynamically enabled, levels of auto-
mation taking care of some tasks and leaving others to the 
driver.  

As an example, the project HAVEit [9] had, among its ob-
jectives, the study of a joint system formed by a driver and a 
simple artificial co-pilot (see below under “virtual driver” 
for further discussion about co-pilots). In particular HAVEit 
focused on dynamic allocation of tasks between the driver 
and co-pilot and on transitions between levels of automation. 

 
Virtual driver, is a special case of “virtual users” or “dig-

ital human beings”. These are models of human beings that 
can serve various design and simulation purposes [10]. In 
our case a virtual driver is a comprehensive driver model, 
which can be used to predict how a real human would drive 
in a certain situation. In facts, the robot (as was the horse in 
the metaphor) must possess an internal model of human mo-
tion patterns. Below we will discuss the main requirements 
and features that such a model must possess. 

As an example, in PReVENT project we used a virtual 
driver to generate a “reference maneuver” [11] to be com-
pared with the actual behavior of the real driver. Mismatch 
between real driver and virtual driver was the main method 
to assess the situation and derive warnings. 

Another example is the project DIPLECS [12], which 
demonstrated an artificial cognitive system learning to inter-
pret the intentional behavior of a real driver. 

 
Companion Driver. It may indicate a special class of 

companion robots; that is: a friendly artificial companion 
that assists the human (especially for people with limited 
skills and elders). Emphatic links is stressed in companion 
robotics, and in our case means a deep mutual understand-
ing, which can help making the co-driver accepted by the 
human. A “Trip Mate” concept has been presented in [13]. 

 
Driver tutor is a self-explanatory term. Some Driver As-

sistance Systems works like discrete tutors. 
 

B. Co-Drivers architectures. 
Fig1. Introduces the main elements of a symbiotic diver 

co-driver system.  
What the figure shows is that there are two “sentient” en-

tities living on each other side. For the moment we leave the 
driver and co-driver blocks empty. However, since we know 
that the co-driver will have a user model inside, it is indicat-
ed with the nested block named “virtual driver”. The dashed 
arrow shows possible communication between the two, in-

cluding observation of driver preparatory movements [40]. 
 

 
 
Fig.1 is useful to spot two first points: 

1) The perception issue. Both driver and co-driver sense 
the world, but they have different senses and different over-
all perception, which might end up into mismatching repre-
sentations of the world. Without dissecting all the differ-
ences (and technologies) of the two perception systems, the 
important thing is that the two entities might be forced to 
take decisions on disagreeing representations of the world. 

One thing that must be stressed is that there is no way to 
recover incorrect, missing or insufficient information in per-
ception. Machine perception must be reliable and complete.  

Reliability of machine perception system is thus a prereq-
uisite for Co-Drivers. In our opinion this requirement is not 
completely achieved yet (at least for Co-Drivers). 

2) The authority issue. Somewhere driver and co-driver 
must be “fused” together to jointly control the vehicle, which 
is shown in Fig.1 with the question mark. Joint control 
means that driver and co-driver behave like a unity, which 
may be somewhat different than the split control that can be 
achieved by certain autopilot solutions. 

Joint control can be obtained by revising the above archi-
tecture, but first let us have a look at what may be inside 
driver and co-driver blocks. 

IV. CO-DRIVER PURPOSE AND ARCHITECTURES REVISITED 
Consider the example situation of Fig.2 and ask how a 

joint system should work. In other words, how can we make 
a smart, green, safe (etc.) joint system? 

Perhaps the best way to answer this question is to answer 

 
Fig. 1.  A symbiotic Driver and Co-Driver system is formed by two sen-
tient systems that interprets the world with their own perception, ex-
change each other information, and ultimately fuse their control action. 
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first another question: 
 

How would a human driver, expert, attentive, ca-
pable, green aware, knowledgeable (etc.), drive? 

 
This question introduces the idea that a Co-Driver system 

can be built around a properly made virtual user model, 
which explains why the Co-Driver block in Fig.1 includes a 
nested “virtual driver”.  

 

 
 
Fig.2 shows that there may be multiple answers to the 

above question: the way an expert human drives depends on 
what is his/her goal. In the example, there are 4 possible 
alternative short-term (tactical) goals. For any goal, there is a 
different way to drive.  

This in turn introduces the concept that user models are 
hierarchical, with higher levels of the hierarchy being in 
charge of setting goals and lower levels of developing tactics 
and detailed control. Levels further higher could exist too, 
and represent psychological states and long-term strategies, 
which affect the way shorter-term goals are set (e.g., the 
decision whether to follow a or overtake b may stem from 
time pressure). 

Thus, the first feature to be considered for a virtual driver 
model is the existence of several concurrent control, plan-
ning, sensing and cognition tasks, organized in a hierarchy, 
where slow cognitive tasks occur at the top and faster con-
trol loops at the bottom. 

The Michon model [14], in mid ‘80, describes three lay-
ers, referred as strategic, tactical (or maneuvering) and oper-
ational (or control) levels that occur in different time frames, 
from tens/hundreds of seconds to a fraction of second. Fol-
lowing Michon, other psychological studies were proposed. 
For example, Hatakka et. al.  [15] Introduced a fourth level 
on top, which deals with psychological states and was re-
ferred as “goals for life and skills for living”. 

More recently Hollnagel introduced the Extended Control 
Model (ECOM) [16], [17], with four concurrent interacting 

layers called tracking, regulating, monitoring and targeting 
(Fig.3). 

 

 
 
The ECOM explains how the different levels interact. 

Namely the ECOM is a subsumptive architecture [18], mean-
ing that every loop can activate, suspend and deactivate dif-
ferent alternative sub-loops (although Fig.1 does not show, 
there can be many alternative sub-loops). In addition every 
higher loop sets the goals for the active sub-loop.  

For example, in Fig.2 the Monitoring level may set the 
goal (e.g., overtake b) and the regulating level will produce 
the trajectory. 

Hollnagel does not make any claim that the four loops ac-
tually exist and occur in the human mind in that form. Ra-
ther they satisfy a tradeoff between modeling needs and 
complexity, and well reflect the diversity of time frames in 
which vehicle control takes place. From bottom to top: the 
tracking level is related to minute chassis control and dis-
turbance rejection; the regulating level is related to vehicle 
maneuvering (producing space-time trajectories); the moni-
toring level is related to setting short-term goals (e.g., over-
take), which can arise from keeping track of the progress 
towards final destination, signs and indications, traffic con-
ditions etc.; the targeting level means long-term goals like 
route and driving styles (e.g., go home quickly).  

A. Artificial Cognitive Systems approach 
The ECOM architecture has been embodied in project 

DIPLECS [12], except for the highest targeting level loop 
(where to go). 

DIPLECS used an Artificial Cognitive System (ACS) to 
model ECOM loops as Perception-Action (PA) loops [19]–
[21]. This approach is quite promising: Perception-Action 
loops can be learnt from examples of real drivers. Percep-
tion-action approach makes a minimal assumption as regards 
the driver's perceptual system, and is thus less prone to gen-
eralization error from small numbers of training instances. 
Once learnt, PA maps provide the means to translate percep-
tual goals into actions to achieve that goal. For example, 
suppose that the monitoring level sets the goal “b” (overtake 
in Fig.2) to the regulating level. At this level the goal is then 

 
 

Fig. 3.  Hollagel’s Extended Control Model (ECOM) 
  

 
 

Fig. 2.  Multiple ways of driving arise from multiplicity of goals and 
introduces a hierarchy in driver models. 
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translated into actions (space-time trajectory), by the trained 
PA map, which then feeds the tracking level. 

The virtual driver made in this way will “emulate” the real 
driver.  

In principle, one advantage of ACS approach is that the 
system can evolve, thus overcoming the many “hard-to-
predict” and “hard-to-pre-code” issues of traditional pre-
engineered approaches. Another advantage is that perception 
itself is part of the cognitive process. Thus, learnt perception 
can help addressing also the perception issue above men-
tioned. 

B. Receding horizon optimal control approach 
One different approach to map short-term goals (Fig.2: a, 

b, c, d) into space-time trajectories is Optimal Control (OC).  
Optimal Control has been successfully used to explain the 

trajectories that humans produce in general contexts [22]–
[23], and in driving [24]–[26], including our contributions 
[27], [11]. A receding horizon scheme means that plans are 
repeatedly updated during the execution of the movement 
itself [11], [23]. With receding horizon, if a deviation is de-
tected, a new plan is developed to achieve the original target 
from the new state. There is no return to the previously 
computed trajectory but a new trajectory developing from 
the deviated position is produced. This has been stated as 
minimal intervention principle, which states that task-
irrelevant deviations are left uncorrected [23]. In a concur-
rent subsumptive architecture like in Fig.3, receding horizon 
means that a loop (say the regulating loop) continues to tar-
get the set goal, adjusting its own deviations, until a new 
goal is set by the higher loop.  

The following key ideas are emphasized in OC: 

1) Modeling human motor strategies 
A number of studies have been carried out to understand 

which may be the criteria that produce human motion in 
general [22], [23], [28]–[31], and for the specific domain of 
driving [32]–[39].  

Minimum jerk is one of the most important movement 
rules. We can regard minimum jerk as a principle of “lazi-
ness” or maximum “smoothness”. For example, in driving, 
minimum jerk trajectories are those that minimize the root, 
mean square (rms) value of driver control. 

However, minimum jerk is not the only criterion that 
stands at the origin of human motor strategies. Often motor 
strategies arise from a tradeoff of several other criteria (e.g., 
time, energy, thresholds and saturations, etc.) [11], [23], 
[39]. In such cases a composite cost function, weighting 
different criteria together, allows to model a variety of motor 
strategies. For example, a cost function, combining mini-
mum jerk and minimum time, models a variety of human 
behaviors under different time pressure.  

In a subsumptive architecture (Fig.3), many optimal con-
trol problems, based on different cost functions or parame-
terized cost functions, may be turned on and off by the im-
mediately upper level, to model, for example, different prob-
lems and different driving styles. 

2) Driver mental model of the controlled vehicle 
Several studies [25]–[26] pointed out that drivers have an 

internal model of the dynamics of the vehicle they are con-
trolling, and that they manipulate this model to foresee the 
effects of their actions (also referred as driver having pre-
view abilities). 

Since optimal control is a method to “steer” a dynamic 
system to a desired state, a model of the dynamic system has 
to be supplied as an ingredient [11]. When optimal control is 
used to model a driver trajectory-planning activity, this 
means that the supplied model of the dynamic system repre-
sents the mental model of the driver, and that the methods 
represent the manipulation of the model to achieve the set 
goal. 

The dynamic model, in pre-engineered systems, has al-
ways been defined by the designer (e.g., [11]). However, it 
could be also provided in the form of a learnt PA map by an 
artificial cognitive system, thus modeling a driver who 
evolves it own knowledge of the dynamics of the system. 

C. Towards human-peer robots 
We are now in condition to put things together and clarify 

how a co-driver may “understand” the driver and how driver 
and co-driver may form a unity. 

To clarify what the term “understand” means, let us first 
resort to metaphors and think the Co-Driver were a human 
being (e.g., a driving tutor). The movement of humans is 
predictable to other human beings because, as explained 
above, human motor strategies are wired in the human brain 
and people are naturally aware of these motion schemes. By 
watching how other human beings move, people can quickly 
“reverse engineer” their knowledge about human motor 
strategies and identify the goal. The key element is establish-
ing a link between some observed initial motor activity and a 
meaningful goal. The same happens for a horse in the H-
metaphor, who links signs from the rider to meaningful 
goals.  

Out of the metaphor, a Co-Driver, which is made knowl-
edgeable of human motor strategies (because including a 
virtual driver made with one or more of the technologies 
discussed so far), would also be able to map driver activities 
onto meaningful goals. In a word a Co-Driver grounds (as-
signs a meaning) driver intentions. A vast amount of litera-
ture exists about forecasting driver behavior/intentions [40]. 
However, here a new step is taken: in addition to forecasting 
future driver actions a Co-Driver grounds these actions to a 
goal, a motivation (or hopefully a psychological state). 

Fig. 4 provides a revised architecture. Now the driver and 
co-driver blocks are modeled with an ECOM. The ECOM 
states of the driver (i.e., the goals at all levels) are not direct-
ly observable, but the comparison of driver and co-driver 
outputs (plus any additional information exchange) provides 
means to estimate driver ECOM states. In a broad sense this 
is a state estimation problem, where a model of a system is 
updated to match its output. 

Understanding the driver means that driver ECOM states, 
i.e., driver goals at all levels are estimated. The topmost lev-
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el (targeting level) makes a partial exception: where the 
driver has long-term goals, such co-driver long-term goals 
do not exist (in the sense that the co-driver has no aim to go 
anywhere). However, long-term goals of the co-driver may 
be to “second” the driver (i.e., the topmost aim of the co-
driver might be “seconding” the driver, which opens a whole 
set of interesting perspectives, far beyond what can be dis-
cussed in this paper). 

 

 
 
The last thing Fig.4 shows is that vehicle is actually con-

trolled by the co-driver. Nonetheless the Co-Driver will al-
most always move according to estimated driver goals 
(maintaining safety and fault-tolerant behavior if the percep-
tion system of the co-driver is sufficiently intelligent). Hints 
from the driver may identify meaningful goals, which the 
co-driver will pursue, just like hints to a horse are sufficient 
to make the horse find a goal and go there. Should the driver 
and co-driver diverge, hints from the driver will make the 
co-driver realize that a new goal has to be searched. The co-
driver (provided that the perception issue is solved) could 
also spot inconsistent erroneous driver requests, including 
driver maneuvers that have no clear goal or match clearly 
mistaken goals, and, only in this case, the co-driver could 
adopt a different and safer behavior. 

V. CURRENT ONGOING IMPLEMENTATION 
We mentioned that building blocks have already been 

tested in some projects. Today, the interactIVe project [41] 
is making, among the others, a simple Co-Driver implemen-
tation, as shown in Fig.5. This is for the Continuous Support 
(CS) function in subproject 4, which aims at providing pre-
ventive early warning and advices in a holistic fashion, inte-
grating the coverage of several types of risks.  

The interactIVe Co-Driver implements the ECOM regu-

lating and monitoring levels, respectively called Maneuvers 
and Goals in Fig.5. The tracking level is not needed because 
no active intervention is foreseen for CS function.  

The regulating level is implemented with a family of par-
ametric Receding Horizon Optimal Control problems. Each 
addresses a parametric different type of possible goal rang-
ing from green driving, in-lane driving, driving on lane ex-
tensions, lane change and overtake and obstacle manage-
ment.  

The monitoring level is implemented via a Finite State 
Machine, which turns on and of the parameterized OC prob-
lems. 

 

 
 
At any time the Co-Driver evaluates a couple of possible 

maneuvers: the one which looks better matching driver be-
havior (spotting any problem), and the one the Co-Driver 
would recommend (e.g. a safer or greener alternative). Eval-
uated maneuvers are then passed to the human machine in-
teraction manager (I.W.I. Strategies). 

VI. CONCLUSION 
This paper introduced the idea of Co-Drivers behaving as 

Human-peer robots and forming joint systems with drivers.  
A general architecture for a joint system has been pro-

posed and discussed.  
A first key element of this architecture is that Co-Drivers 

must be aware of human motor strategies, which in turn calls 
for embedding a virtual user and for accurate modeling of 
human motor strategies. 

A second element involves the concept of “understanding 
the driver” which can be traced down to a problem of identi-
fication or state estimation. The driver is modeled with a 
subsumptive ECOM, and ECOM states are identified com-
paring driver and co-driver output (which in turn stresses the 
good quality of virtual user models). 

Technologies that have been used to make some building 
blocks have been pointed out. Artificial Cognitive Systems, 
namely based on Perception-Action schemata, has been used 
to emulate virtual users in DIPLECS project. Receding hori-
zon optimal control has also been used to model virtual users 
for ADAS applications in PReVENT, SAFERIDER and is 
being used today in the interactIVe project to build a two-
layer Co-Driver.  

The next steps are integrating various technologies (PA, 
OC, etc.) to form an effective virtual driver; researching the 
ECOM state estimation (its quality) and the joint system. 

 
Fig. 4.  Revised joint system architecture. 

 

Fig. 5.  Co-Driver for Continuous Support function in interactIVe project. 
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