
Theoretical and Applied Mechanics Letters 5 (2015) 107–110
Contents lists available at ScienceDirect

Theoretical and Applied Mechanics Letters

journal homepage: www.elsevier.com/locate/taml

Letter

WKBJ analysis in the periodic wake of a cylinder
F. Giannetti
Department of Industrial Engineering, University of Salerno, 84084 Fisciano (SA), Italy

a r t i c l e i n f o

Article history:
Received 31 July 2014
Received in revised form
15 November 2014
Accepted 11 December 2014
Available online 9 March 2015
*This article belongs to the Fluid Mechanics

Keywords:
Cylinder wake
Secondary instability
Lagrangian trajectories
WKBJ approximation

a b s t r a c t

The nature of the three-dimensional transition arising in the flow past a cylinder is investigated by apply-
ing the Lifschitz–Hameiri theory along special Lagrangian trajectories existing in its wake. Results show
that the von Kármán street is unstable with regard to short-wavelength perturbations. The asymptotic
analysis predicts the possible existence of both synchronous (as modes A and B) and asynchronous (as
mode C) instabilities, each associated to specific Lagrangian orbits. The proposed study provides useful
qualitative information on the origin of the different modes but no quantitative agreement between the
growth rates predicted by the asymptotic analysis and by a global stability analysis is observed. The rea-
sons for such mismatch are briefly discussed and possible improvements to the present analysis are sug-
gested.

© 2015 The Author. Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and
Applied Mechanics. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
The flow in the wake of a two-dimensional cylinder becomes
first unstable to three-dimensional disturbances at a Reynolds
number (based on the free-stream velocity and the cylinder di-
ameter) Re ≈ 190. Experiments and numerical simulations have
highlighted the presence of two different shedding modes with
different spatial characteristics, generally referred to as modes A
and B (see for examples in Refs. [1,2]). Floquet analysis [3] certifies
the existence of two separate bands of unstable modes: the first
one (mode A) emerges for Re > 189 and has a spanwise wave-
length of about 4 cylinder diameters, while the second one (mode
B) appears for Re > 259 and is characterized by a shorter spanwise
wavelength (about 0.8 diameter). Both of them are synchronous
modes, i.e., they have the same periodicity of the base flow. An
asynchronous quasi-periodic mode (usually termed mode C) with
an intermediatewavelength also exists andwas revealed by insert-
ing in the flow a thin wire placed parallel to the cylinder axis (see
Ref. [4]). Depending on the geometry this mode can be stable (as
in the case of a circular cylinder) or unstable (square cylinder and
other geometries). It is important to recall that the characteris-
tics of the above mentioned modes and the associated transition
scenarios are not specific to circular cylinders, but applies to a
whole range of two-dimensional geometries ranging from square
cylinders [5] to long plates with aerodynamic noses [6]. Despite
the large number of experimental, theoretical and numerical stud-
ies performed on similar geometries, the precise nature of these
modes is not fully understood yet. Several different mechanisms
have beenproposed to explain their genesis, including elliptic [7,8],
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hyperbolic [7], centrifugal [9], or Benjamin–Feir [10] instabilities
(see for instance in Ref. [11] for a detailed discussion). However,
no conclusive evidence supporting these speculations was given.
In particular, a weak point of all these models consists in the fact
that they are all based on idealized stationary flow configurations,
while the real wake flow evolves in time and space in a complex
way.

The scope of this letter is to illustrate an alternative approach to
investigate the nature of the secondary instability which is based
on the application of the Lifschitz andHameiri theory [12,13] along
particular orbits in the wake of the cylinder. The proposed analysis
is an attempt to overcome the limitation of the previous theories
bringing together results obtained through sensitivity analysis and
asymptotic techniques.

Helpful information on the spatial and temporal evolution of
the secondary instability can be retrieved by performing a struc-
tural sensitivity analysis of the unstable Floquet modes to local-
ized force–velocity feedbacks, as proposed and explained in Refs.
[14,15]. This procedure allows one to identify the instability core
by inspecting the spatial structure of the instantaneous sensitivity
tensor

I(x, y, k, t) =
f +(x, y, k, t) u(x, y, k, t) t+T

t


D
f + · u dS dt

(1)

where u and f + are respectively the direct and adjoint Floquet
eigenvectors and k is the wavenumber in the periodic direction.
By plotting its spectral norm, it is possible to trace the spatial and
temporal evolution of the instability core during the phases of the
vortex shedding. Results for mode A and mode B show that the in-
stability is very localized in space and evolves in times in a com-
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Fig. 1. Numbering of the closed orbits existing in the wake of a cylinder at Re =

260.

plex way (see Ref. [14] for details). Preliminary results obtained
on a square cylinder at Re = 205 presents similar characteris-
tics for all unstable modes. Moreover as noticed by Camarri and
Giannetti [14], in the wake of the cylinder there exist closed La-
grangian trajectories, i.e., orbits described bymaterial pointswhich
return to their initial position after a shedding cycle. Such orbits are
solutions of the ordinary differential equation (o.d.e.)

dX
dt

= Ub(X(t), t) (2)

with the periodic condition

X(t + T ) = X(t). (3)

In these expressions X ≡ {xo, yo} indicates the coordinates of
the material points lying along the Lagrangian trajectory, Ub is the
periodic base flow and T is the shedding period. Here we used a
fourth-order Runge–Kutta scheme coupled to a Newton–Raphson
procedure to solve Eqs. (2) and (3), while the base flow was deter-
mined with the same finite-difference immersed boundary code
described in Ref. [14]. The analysis was performed for both circular
and square cylinders (not documented here for sake of brevity):
in both cases we found three closed Lagrangian trajectories with
shapes and symmetries similar to those depicted in Fig. 1. For the
sake of precision, we have to say that there are actually an infin-
ity of closed orbits satisfying Eq. (2) but on which a material point
comes back to its initial position after n > 1 shedding periods.
These solutions, however, are not considered in the present letter
and are left for future investigations. The sensitivity analysis re-
veals that the instability core for modes A and B is highly localized
in space: the highest sensitivity regions strictly follow the position
of the material points moving along the closed orbits, showing the
existence of a strong correlation between these orbits and the in-
stability core. An example of such behavior is reported in Fig. 2,
where the temporal evolution of the points on the closed orbits
are depicted for mode B (at Re = 260) together with the spectral
norm of the sensitivity tensor I(x, y, k, t) during a whole shedding
period. Similar conclusions hold for the unstable modes arising in
the wake of a square cylinder.

The strong localization of the instability core revealed by the
structural sensitivity analysis suggests the possibility to use a ‘‘lo-
cal theory’’ to describe its generation and evolution. An appealing
approach in this context is given by the short-wavelength (WKBJ)
approximation introduced by Lifschitz and Hameiri [12,13]. Here,
the solution of the linearized Navier–Stokes equations is sought in
the formof a rapidly oscillating and localizedwave-packet evolving
along a Lagrangian trajectoryX(t) and characterized by awavevec-
tor k(t) = ∇φ(x, t) and an envelope a(x, t) such that

{u, p}(x, t) = a(x, t) exp(i φ(x, t)/ϵ) (4)
Table 1
Eigenvalues of the fundamental Floquet matrix associated to Eq. (5) for the three
closed orbits. See Fig. 1 for the orbit numbering.

Orbit Re µ1 µ2 µ3

1,2 190 −0.0317 −31.6541 1
3 190 +0.0127 +78.9224 1

1,2 260 −0.0138 −72.8052 1
3 260 +0.0055 +181.2131 1

with ϵ ≪ 1. In the limit of vanishing viscosity (Re → 0) and large
wavenumbers (∥k∥ → ∞), the theory enables one to evaluate, at
leading order, the growth rate associated with a localized pertur-
bation. This is achieved by solving the following set of linear o.d.e.

Dk
Dt

= −Lt(X)k, (5)

Da
Dt

=


2kkt

|k|2
− I


L(X)a (6)

along the Lagrangian trajectories satisfying Eq. (2) with some ini-
tial conditions. In the previous equations L = ∇Ub is the velocity
gradient tensor of the base flow, I is the identity tensor and the
superscript ‘‘t ’’ indicates the transpose operator.

As proved by Lifschitz and Hameir [12,13], inviscid instability
occurs when such system has at least one solution with ∥a(t)∥ →

∞ as t → ∞. This theory has been successfully applied in the past
to study centrifugal, elliptic and hyperbolic instabilities develop-
ing on 2D steady base flows (see for examples [16–22]). In order to
characterize the instability mechanism occurring in the periodic
wake of the cylinder using such local theory, however, the self-
excited nature of the instability must be properly accounted for. In
such context, a central role is played by the closed Lagrangian tra-
jectories described in the previous section. Such trajectories might
play a special role in the dynamics of the instability: from an invis-
cid point of view, in fact, local instability waves might propagate
on the closed orbits and feedback on themselves leading to a self-
excited mode.

In order to apply the theory, both Eqs. (5) and (6) must be
integrated along the three closed trajectories found in the wake.
Since the base flow is periodic, Eq. (5) is a linear o.d.e. with periodic
coefficients whose general solution can be written in terms of
Floquet modes. In particular, the solution can be found by building
the fundamental Floquet matrix M(T ), solution of the system

DM

Dt
= −Lt(X)M, (7)

M(0) = I, (8)

and extracting its eigenvalues and the corresponding eigenvectors.
Using these eigenvectors as initial conditions to integrate Eq.
(5), it is possible to retrieve the temporal evolution of k during
a whole shedding cycle. Equation (5) admits three independent
solutions related to the three eigenvectors of the fundamental
Floquet matrix M(T ). The corresponding eigenvalues µ for both
Re = 190 and Re = 260 are listed in Table 1. Since the base flow is
periodic and 2D, for each orbit there exists an eigenvalue equal to 1
with a corresponding eigenvector which remains constant in time
and perpendicular to the base flow. The other two eigenvectors,
instead, lie in the same plane as the base flow and are associated
with a complex conjugate pair of eigenvalues.

Once Eq. (5) is solved, the amplitude a can be found by inte-
grating Eq. (6). In principle, to set k in Eq. (6), we can use a general
linear combination of the Floquet modes previously determined.
However, since we are trying to determine a self-excited mode,
we only consider solutions of Eq. (5) which are periodic in time,
i.e., solutions such that k(0) = k(T ). Therefore, only the con-
stant eigenvector orthogonal to the base flow k = kẑ (associated
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Fig. 2. Closed Lagrangian orbits in the periodic wake behind a circular cylinder at Re = 260: the position of the material points (small circles) along the closed orbits (white
lines) is shown for the four phases (0,π/4,2π/4,3π/4) in which the shedding cycle has been divided. The spectral norm of the tensor I(x, y, t, k) is also superposed (mode
B at k = 7.64).
with the eigenvalue 1) has to be considered. Solutions of Eq. (6)
associated with an orthogonal k are usually termed ‘‘pressureless
modes’’. With this choice, Eq. (6) is again an ordinary linear dif-
ferential equation with periodic coefficients. According to Floquet
theory, its solution can be written in terms of Floquet modes

a(t) = ā(t) exp(σ t), (9)

where ā(t) is a T periodic function and σ is the growth rate of the
perturbation. In order to make a quantitative comparison with the
growth rates predicted by the global analysis, we have computed
the values of σ in Eq. (9) for the 3 closed orbits. As for Eq. (5), the
fundamental Floquet matrix A corresponding to Eq. (6) is built by
integrating the system

DA

Dt
=


2kkt

|k|2
− I


L(X)A, (10)

A(0) = I (11)

along each orbit. The eigenvalues µ and the corresponding eigen-
vectors of A(T ) are then easily extracted.

Since the base flow is 2D and the wavevector k is orthogonal
to the base flow plane, we expect that one eigenvalue of A is 1.
The others two, for the incompressibility constrain, must multiply
to 1, i.e., µ1µ2 = 1. The Floquet exponents σ are related to the
eigenvalues µ of A (Floquet multipliers) by the simple relation

σ = lg(µ)/T , (12)

where T is the period of the base flow. The Floquet exponents
for the three orbits and the corresponding eigenvalues µ of the
fundamental Floquet matrix are reported in Table 2, both for Re =

190 and for Re = 260.
According to these results the periodic wake behind the cylin-

der is highly unstable with regard to short-wavelength perturba-
tions. A parametric analysis on a limited number of configurations
has been performed in order to better understand the effects of
Table 2
Floquetmultipliersµ associated to Eq. (6) and the corresponding Floquet exponents
σ for the three closed orbits. See Fig. 1 for the orbit numbering.

Orbit Re µ1 µ2 µ3
(σ1) (σ2) (σ3)

1,2 190 −78.680 −0.012 1
(0.862 + 0.619i) (−0.862 + 0.619i) 0

3 190 0.0154 65.2106 1
(−0.8226) (0.8226) 0

1,2 260 −14.4258 −0.0695 1
(0.557 + 0.655i) (−0.557 + 0.655i) 0

3 260 0.0055 181.8017 1
(−1.0875) (1.0875) 0

the base-flow Reynolds number on the instability. At leading order
the theory is purely inviscid and viscous effects enter only through
themodification of the base-flow characteristics (velocity gradient,
shape of the closed orbits and value of the shedding period T ). Re-
sults show that the flow gets more and more unstable as the base-
flow Reynolds number is increased. Note also that the asymptotic
analysis predicts the presence of both synchronous instabilities (as
modes A and B) arising along orbit no. 3 and asynchronous instabil-
ities (asmode C) growing on orbits nos. 1 and 2. The considered or-
bits, thus, are sufficient to qualitatively justify the existence of the
different kind of modes observed in the wake behind 2D cylinders.
Note also that the asynchronous modes come in pairs and are as-
sociated to two different orbits, mimicking the fact that in a global
analysis mode C is associated to a complex conjugate pair of eigen-
values. On the other hand, in a global framework,modesA andB are
always associated to real Floquet exponents and are therefore com-
patible only with instabilities arising on orbit no. 3. Note that the
growth rates predicted by the asymptotic theory are not in quanti-
tative agreementwith those obtained by a full global stability anal-
ysis (see data reported in Table 3 for a short summary). A similar
conclusion was also found by Gallaire et al. [21] who applied the
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Table 3
Floquet multipliers µ and exponents σ for mode A (Re = 190) and mode B
(Re = 260) predicted by the global stability computations performed in the present
analysis and in Ref. [23].

Source Re k µ σ St

Present 190 1.585 1.002 3.9376 ×10−4 0.1971
Present 260 7.64 0.995 −0.0010 0.2087
Barkley [23] 190 1.585 1.034 – ≈0.1954
Barkley [23] 260 7.64 1.035 – ≈0.2070

Lifschitz and Hameiri theory to the transverse global instability of
a detached boundary layer.

One possible explanation for such disagreement can be found in
the lack of finite Reynolds-number and finite-wavenumber effects,
not accounted by the leading order approximation. Recall, in fact,
that Eqs. (5) and (6) provide an estimate of the perturbation growth
rate in the limit of vanishing viscosity and infinite wavenumber.
Considering that for the flow investigated here Re is only moder-
ately large and that the wavenumber k corresponding to the maxi-
mum amplification is just slightly larger than 1, such disagreement
is not really surprising.

Although the results obtained by the application of the asymp-
totic theory are not quantitatively correct, they provide valuable
information that can be further used to disclose the role of the
closed orbits in the development of the secondary instability. The
results discussed in this letter suggest that orbit no. 3 is responsible
for the generation of synchronous instabilities, like modes A and B,
while orbits no. 1 and no. 2 are associated to the existence of asyn-
chronous instabilities, likemode C. In principle, amore satisfactory
agreement between the global and the asymptotic analysis might
be achieved by considering correction terms due to viscous and fi-
nitewavenumber effects. Landman and Saffman [24] introduced in
Eqs. (5) and (6) a term accounting for the viscous dissipation: such
correction depends on both Re and |k| in a way to produce larger
attenuation formodeswith smaller spanwisewavelengths. For the
circular cylinder case, results show that for mode A at Re = 190
and k = 1.585 and for mode B at Re = 260 and k = 7.64 the Flo-
quet multiplier µ2 on orbit no. 3 is reduced respectively by 6.5%
and 65.5% compared to its inviscid values reported in Table 2. The
resulting growth rates, however, are still too large if compared
with those obtained by the global analysis. Larger corrections to
the growth rate could result from finite-wavenumber effects not
considered here. Bayly [16] pointed out that for 2D stationary flows
with closed streamlines it is possible to construct an inviscid global
mode of finite wavenumber along the most unstable closed orbit.
Using such theory, Citro et al. [22] studied the transverse instability
arising in open cavities and showed that only considering finite-
wavenumber corrections, the asymptotic theory is able to pro-
vide results in quantitative agreement with the global analysis.
For periodic flows, however, a ‘‘local theory’’ accounting for finite-
wavenumber effects and linking the characteristics of the closed
Lagrangian trajectories with the global spatial features of the self-
sustained mode is still lacking.

For this reason further tests are necessary to better clarify the
role of both viscosity and wavenumber on the localization of the
instability. In principle this can be achieved by freezing the base
flow at a given Reynolds number and then repeating the sensitivity
analysis while progressively increasing Re and k in the linearized
equations only. Preliminary results on the cylinderwake show that,
as k and Re get larger, the instantaneous sensitivity for mode B
tends to focus closer and closer to the Lagrangian point moving
on orbit 3, partially confirming the results presented in this paper.
Similar tests could provide further information on the possibility
to develop a complete local theory of the secondary instability.

The author is grateful to Professor P. Luchini and Professor
S. Camarri for their valuable comments and advices.

References

[1] C.H.K. Williamson, The existence of two stages in the transition to three-
dimensionality of a cylinder wake, Phys. Fluids 31 (1988) 3165–3168.

[2] C.H.K. Williamson, Vortex dynamics in the cylinder wake, Annu. Rev. Fluid
Mech. 28 (1996) 477–539.

[3] D. Barkley, R.D. Henderson, Three-dimensional Floquet stability analysis of the
wake of a circular cylinder, J. Fluid Mech. 322 (1996) 215–241.

[4] H.Q. Zhang, U.F. Fey, B.R. Noack, On the transition of the cylinder wake, Phys.
Fluids 7 (1995) 779–794.

[5] J. Robichaux, S. Balachandar, S. Vanka, Three-dimensional Floquet instability
of the wake of square cylinder, Phys. Fluids 11 (1999) 560–578.

[6] K. Hourigan, M. Thompson, B. Tan, Self-sustained oscillations in flows around
long blunt plates, J. Fluids Struct. 15 (2001) 387–398.

[7] C.H.K. Williamson, Three-dimensional wake transition, J. Fluid Mech. 328
(1996) 345–407.

[8] T. Leweke, C.H.K. Williamson, Three-dimensional instabilities in wake
transition, Eur. J. Mech. B Fluids 17 (1998) 571–586.

[9] M. Brede, H. Eckelmann, D. Rockwell, On secondary vortices in a cylinderwake,
Phys. Fluids 8 (1996) 2117–2124.

[10] T. Leweke, M. Provansal, The flow behind rings: bluff body wakes without end
effects, J. Fluid Mech. 288 (1995) 265–310.

[11] M.C. Thompson, T. Leweke, C.H.K. Williamson, The physical mechanism of
transition in bluff body wakes, J. Fluids Struct. 15 (2001) 607–616.

[12] A. Lifschitz, E. Hameiri, Local stability conditions in fluid dynamics, Phys. Fluids
3 (1991) 2644–2651.

[13] A. Lifschitz, Short wavelength instabilities of incompressible three-
dimensional flows and generation of vorticity, Phys. Lett. A 157 (1991)
481–487.

[14] S. Camarri, F. Giannetti, Effect of confinement on three-dimensional stability
in the wake of a circular cylinder, J. Fluid Mech. 642 (2010) 477–487.

[15] P. Luchini, F. Giannetti, J.O. Pralits, in: Proocedings of the 5th AIAA Theoretical
FluidMechanics Conference, 23-26 June, Seattle,Washington, USA, 2008, AIAA
paper AIAA-2008-4227.

[16] B.J. Bayly, Three-dimensional centrifugal-type instabilities in inviscid two-
dimensional flows, Phys. Fluids 31 (1988) 56–64.

[17] D. Sipp, L. Jacquin, Elliptic instability in two-dimensional flattened Taylor-
Green vortices, Phys. Fluids 10 (1998) 839–849.

[18] D. Sipp, E. Lauga, L. Jacquin, Vortices in rotating systems: centrifugal, elliptic
and hyperbolic type instabilities, Phys. Fluids 11 (1999) 3716–3728.

[19] S. Leblanc, C. Cambon, Effects of the Coriolis force on the stability of Stuart
vortices, J. Fluid Mech. 356 (1998) 353–379.

[20] C.P. Caulfield, R.R. Kerswell, The nonlinear development of three-dimensional
disturbances at hyperbolic stagnation points: A model of the braid region in
mixing layers, Phys. Fluids 12 (2000) 1032–1043.

[21] F. Gallaire, M. Marquillie, U. Ehrenstein, Sensitivity analysis and passive
control of cylinder flow, J. Fluid Mech. 571 (2008) 221–233.

[22] V. Citro, F. Giannetti, L. Brandt, P. Luchini, Linear three-dimensional global and
asymptotic stability analysis of incompressible open cavity flow, J. FluidMech.
768 (2015) 113–140.

[23] D. Barkley, Confined three-dimensional stability analysis of the cylinder wake,
Phys. Rev. E 71 (2005) 017301.

[24] M.J. Landman, P.G. Saffman, The three-dimensional instability of strained
vortices in a viscous fluid, Phys. Fluids 30 (1987) 2339–2342.

http://refhub.elsevier.com/S2095-0349(15)00022-7/sbref1
http://refhub.elsevier.com/S2095-0349(15)00022-7/sbref2
http://refhub.elsevier.com/S2095-0349(15)00022-7/sbref3
http://refhub.elsevier.com/S2095-0349(15)00022-7/sbref4
http://refhub.elsevier.com/S2095-0349(15)00022-7/sbref5
http://refhub.elsevier.com/S2095-0349(15)00022-7/sbref6
http://refhub.elsevier.com/S2095-0349(15)00022-7/sbref7
http://refhub.elsevier.com/S2095-0349(15)00022-7/sbref8
http://refhub.elsevier.com/S2095-0349(15)00022-7/sbref9
http://refhub.elsevier.com/S2095-0349(15)00022-7/sbref10
http://refhub.elsevier.com/S2095-0349(15)00022-7/sbref11
http://refhub.elsevier.com/S2095-0349(15)00022-7/sbref12
http://refhub.elsevier.com/S2095-0349(15)00022-7/sbref13
http://refhub.elsevier.com/S2095-0349(15)00022-7/sbref14
http://refhub.elsevier.com/S2095-0349(15)00022-7/sbref16
http://refhub.elsevier.com/S2095-0349(15)00022-7/sbref17
http://refhub.elsevier.com/S2095-0349(15)00022-7/sbref18
http://refhub.elsevier.com/S2095-0349(15)00022-7/sbref19
http://refhub.elsevier.com/S2095-0349(15)00022-7/sbref20
http://refhub.elsevier.com/S2095-0349(15)00022-7/sbref21
http://refhub.elsevier.com/S2095-0349(15)00022-7/sbref22
http://refhub.elsevier.com/S2095-0349(15)00022-7/sbref23
http://refhub.elsevier.com/S2095-0349(15)00022-7/sbref24

	WKBJ analysis in the periodic wake of a cylinder
	References


